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ÍNDICE GENERAL

4.4.4. Algoritmo potencial af́ın . . . . . . . . . . . . . . . . . 199

4.4.5. Método primal-dual factible . . . . . . . . . . . . . . . 201

4.4.6. Algoritmo potencial primal-dual . . . . . . . . . . . . 204

4.4.7. Restricción adicional en el método primal . . . . . . . 206

4.4.8. Algoritmo ACCPM . . . . . . . . . . . . . . . . . . . . 208

v
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Prólogo

Este libro presenta algunos temas de optimización que, aunque son muy
importantes, generalmente no se ven en un primer curso de Optimización.
Puede servir para un curso de un semestre para estudiantes avanzados de
pregrado o para uno de posgrado.

En el primer caṕıtulo hay dos temas de Optimización Lineal, el método
simplex acotado y el método de descomposición de Dantzig y Wolfe.

El segundo caṕıtulo trata sobre Optimización Entera. Está el método
de cortes de Gomory y el método de bifurcación y acotamiento (branch and
bound) con varios criterios.

El tercer caṕıtulo se refiere a Optimización en Grafos. Los temas tratados
son los clásicos: ruta más corta, flujo máximo, flujo de costo mı́nimo, ruta
cŕıtica y árbol generador de costo mı́nimo.

El último caṕıtulo tiene dos temas de Optimización No Diferenciable:
método de planos de corte y ACCPM (analytic center cutting plane method).
También hay una parte dedicada a métodos de punto interior para el cálculo
del centro anaĺıtico.

Hay algunos conocimientos o conceptos necesarios para la buena com-
prensión de algunos temas. Ellos son: conjuntos convexos, puntos y direc-
ciones extremas, teorema de representación (de conjuntos poliédricos) en
Optimización Lineal, método simplex con obtención de direcciones extre-
mas cuando hay óptimo no acotado y método simplex revisado. También
es necesario disponer y saber utilizar un software para Optimización Li-
neal que, preferiblemente, dé direcciones extremas cuando hay óptimo no
acotado.

En las páginas electrónicas del autor, se encontrará una fe de erratas

vii
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del libro, que se irá completando a medida que los errores sean detectados.
Actualmente las direcciones son:

www.matematicas.unal.edu.co/~hmora/

www.geocities.com/hectormora

El autor estará muy agradecido por los comentarios, sugerencias y co-
rrecciones enviados a:

hmmorae@unal.edu.co

hectormora@yahoo.com

Quiero agradecer especialmente al profesor Jaime Malpica del Depar-
tamento de Ingenieŕıa de Sistemas e Industrial y a todos los estudiantes
del curso Optimización de la Carrera de Matemáticas y de las Maestŕıas
de Matemáticas y de Matemáticas Aplicadas, en particular a Jhon Jaiver
Rodŕıguez, Biviana Suárez y Diana Mart́ınez. Las sugerencias, comentarios
y correcciones de todos ellos fueron muy útiles.

Muchas gracias al profesor Gustavo Rubiano, Director de la Oficina de
Publicaciones de la Facultad de Ciencias por su eficiencia y continuo apoyo
durante varios años.

Deseo agradecer a la Universidad Nacional por haberme permitido des-
tinar un semestre sabático a esta obra, este tiempo fue una parte muy im-
portante del necesario para la realización del libro.
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Notación

R = conjunto de números reales.

R+ = {x ∈ R : x ≥ 0}.

Z = conjunto de números enteros.

Z+ = {x ∈ Z : x ≥ 0}.

N = {1, 2, ..., n}

M(m,n) = Rm×n = conjunto de matrices reales m × n, o sea, de m filas y n
columnas. Si A ∈M(m,n), entonces A es de la forma:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


aij = elemento o entrada de la matriz A, en la fila i y en la columna j.

M(n, 1) = Rn×1 = { matrices columna de n componentes }.

M(1, n) = R1×n = { matrices fila de n componentes }.

R1×1 = R.

AT = transpuesta de la matriz A.

Rn = { (x1, x2, . . . , xn ) : xj ∈ R ∀j}.

Rn := M(n, 1) = Rn×1, es decir:

x = ( x1, x2, . . . , xn ) :=


x1
x2
...
xn


xT =

[
x1 x2 . . . xn

]
Rn
+ = {x ∈ Rn : x ≥ 0}.



x Notación

Zn = Zn×1 = conjunto de matrices n× 1 con entradas (elementos) enteras.

Zn
+ = {x ∈ Zn : x ≥ 0}.

Ai· = fila i-ésima de la matriz A =
[
ai1 ai2 . . . ain

]
.

A·j = columna j-ésima de la matriz A =


a1j
a2j
...

amj

.
Ak = A(k) = matriz A en la iteración k, k = 0, 1, 2 . . .

n = número de variables.

m = número de restricciones.

p = n−m = número de variables libres (problemas en la forma estándar).

z = cTx = c1x1+ c2x2+ . . .+ cnxn = función objetivo o función económica
(generalmente para minimización).

c = (c1, c2, . . . , cn) =
[
c1 c2 . . . cn

]T
= vector de costos.

z es acotado ⇔ z es acotado inferiormente (problema de minimización).

Ai·x = ai1x1 + ai2x2 + . . .+ ainxn = lado izquierdo de la restricción i.

bi = término independiente o lado derecho de la restricción i.

min z := minimizar z.

max z := maximizar z.

x ≥ y ⇔ xi ≥ yi para todo i.

x ≥ 0 ⇔ xi ≥ 0 para todo i.

min z = cTx
Ax = b
x ≥ 0.

⇐⇒

min z = cTx
sujeto a

Ax = b
x ≥ 0.

|S| = número de elementos del conjunto S.
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Notación xi

F = conjunto admisible o factible de un problema de optimización.

z∗ = valor óptimo de z, cuando existe.

S∗ = S∗
f = Argmin

x∈S
f(x) = {x̄ ∈ S : f(x̄) ≤ f(x), ∀x ∈ S}.

x∗ = solución o minimizador, cuando existe, de un problema de optimiza-
ción.

|C| = ♯(C) = cardinal del conjunto C.

℘(X) = {A : A ⊆ X} = conjunto de subconjuntos de X.

℘k(X) = {A : A ⊆ X, |A| = k}.

℘ks(X) = ℘k(X) ∪ ℘s(X).

Cuando haya gráficas con sistema de coordenadas, el eje horizontal
es para x1, el vertical es para x2, el horizontal es positivo hacia la
derecha, el vertical es positivo hacia arriba.

En la escritura de números decimales, los enteros están separados de
los decimales por medio de un punto. No se usa la notación española
(los enteros están separados de los decimales por una coma). No se
utiliza un śımbolo para separar las unidades de mil de las centenas.
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Caṕıtulo 1

Métodos de optimización
lineal

1.1. Método simplex acotado

Este método, una adaptación del simplex, se aplica eficientemente a pro-
blemas de OL que se pueden expresar de la siguiente manera:

min z = cTx

Ai·x ≤ bi, i ∈M1 ⊆M = {1, 2, ...,m},
Ai·x = bi, i ∈M2 ⊆ M ∖M1,

Ai·x ≥ bi, i ∈M3 = M ∖ (M1 ∪M2),

uj ≤ xj ≤ vj , j = 1, ..., n.

Los datos son: c ∈ Rn×1, A ∈ Rm×n, b ∈ Rm×1, u ∈ Rn×1, v ∈ R̃n×1.
Se supone que para todo j

uj ≤ vj ,

vj ∈ R̃ = R ∪ {+∞}.

Las restricciones uj ≤ xj ≤ vj , llamadas restricciones de caja, se pueden
considerar como restricciones “normales”. Esto hace agregar filas a la matriz
A. Dependiendo de los valores ui, vj , pueden ser hasta 2n filas más. Como

1



2 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

usualmente se convierte el problema a la forma estándar, entonces hay 2n
variables de holgura adicionales. Además las restricciones xj ≥ uj dan origen
a n variables artificiales. Pero todas estas filas adicionales están compuestas
casi exclusivamente por ceros. En cada una de esas filas, además de los ceros,
hay un 1 o un −1.

El objetivo del método simplex acotado, MSA, es trabajar únicamente
con las restricciones originales y adaptar el simplex para considerar impĺıci-
tamente las restricciones de caja. Aśı se evita trabajar con una matriz mucho
más grande.

Por ejemplo, para el problema

min z = cTx

Ax ≥ b

u ≤ x ≤ v

x ≥ 0

al convertir las restricciones de caja en restricciones normales, se tendŕıa una
primera fase con una matriz de tamaño (m+2n)×(n+m+2n+m+n), ya que
hay n variables originales, m variables de holgura por Ax ≥ b, 2n holguras
por las restricciones de caja,m variables artificiales paraAx ≥ b y n variables
artificiales para las desigualdades xj ≥ vj . En resumen, (m+2n)×(2m+4n).
Si las restricciones de caja se consideran impĺıcitamente, se tiene una primera
fase con una matriz de tamaño m× (n+2m). Supongamos que m = 10, n =
20. En el primer caso la matriz tendŕıa 5000 entradas, en el caso impĺıcito
400.

La primera simplificación, muy útil, consiste en considerar únicamente
varaibles no negativas con cotas superiores. Para esto basta con hacer un
cambio de variable (en realidad n)

x′j = xj − uj ,

entonces uj − uj ≤ xj − uj ≤ vj − uj ,

0 ≤ x′j ≤ v′j ,

donde x′j = xj − uj , v′j = vj − uj . Aśı el problema

min z = cTx

2



1.1. MÉTODO SIMPLEX ACOTADO 3

Ai·x 2i bi , i = 1, ...,m,

u ≤ x ≤ v,

x ≥ 0,

donde 2i ∈ {≤, =, ≥}, se convierte en

min z′ = cTx′

Ai·x
′ 2i b

′
i ,

x′ ≤ v′,

x′ ≥ 0,

donde

z = z′ +K

K = cTu

b′i = bi −
n∑

j=1

ujaij

b′i = bi −Ai·u

o sea, b′ = b−
n∑

j=1

ujA·j

b′ = b−Au

v′ = v − u.

Después de obtener los valores óptimos de x′ y z′, es necesario regresar a las
variables iniciales:

x = x′ + u

z = z′ +K .

Ejemplo 1.1. El problema

max ζ = 5ξ1 + 7ξ2 + 4ξ3

ξ1 + ξ2 + ξ3 ≤ 40

ξ1 + 2ξ2 + ξ3 ≤ 58

3



4 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

4 ≤ ξ1 ≤ 30

0 ≤ ξ2 ≤ 15

5 ≤ ξ3 ≤ +∞

se convierte en

min z = −5x1 − 7x2 − 4x3

x1 + x2 + x3 ≤ 31

x1 + 2x2 + x3 ≤ 49

x1 ≤ 26

x2 ≤ 15

x3 ≤ +∞
x ≥ 0. 3

1.1.1. Una fase

El MSA, en el caso de una sola fase, requiere, lo mismo que el simplex,
un problema en la forma estándar, tener la matriz identidad y términos
independientes no negativos:

min z = cTx

Ax = b

0 ≤ x ≤ v,

donde

c ∈ Rn×1,

A ∈ Rm×n,

b ∈ Rm×1,

v ∈ R̃n×1,

b ≥ 0,

existe β ∈ Nm tal que

A(:, β) = Im ,

4



1.1. MÉTODO SIMPLEX ACOTADO 5

con N = {1, 2, ..., n}. A lo largo de este documento se utiliza ampliamente
la notación de Matlab y Scilab. Aśı A(:, β) es la matriz obtenida al tomar
de A las columnas correspondientes a los valores del vector β. Sea λ ∈ Np,
con p = n−m, el vector con los ı́ndices de las variables libres o no básicas.

En el simplex usual, la solución básica obtenida

xB = x(β) = b,

xL = x(λ) = 0

es factible. En el MSA, se requiere adicionalmente que, el anterior vector x
cumpla con las cotas superiores, o sea, se debe cumplir que

xB = b ≤ vB = v(β).

En resumen, el problema que se va a resolver es

min z = cTx

Ax = b (PA)

0 ≤ x ≤ v,

con las siguientes condiciones:

b ≥ 0,

A(:, β) = Im ,

b ≤ vB.

Ejemplo 1.2. En el siguiente problema

min z = 10x1 − 11x2 + 12x3 − 14x4
x1 + 5x3 + x4 = 6
2x1 + x2 + 3x3 = 4

x1 ≤ 10
x2 ≤ 5
x4 ≤ 3
x ≥ 0.

5



6 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

la solución básica inicial, x = (0, 4, 0, 6), no cumple con las cotas superiores.
Esto quiere decir que la cuarta columna no sirve para formar la identidad.
Se requiere introducir una variable artificial no acotada o con cota superior
mayor que 6. 3

El MSA trabaja en realidad con 2n variables, las variables x1, x2, ...,
xn y sus holguras correspondientes h1, h2, ..., hn , donde xj + hj = vj .
Aunque hay 2n variables, en cada iteración, solamente una variable de cada
pareja xj , hj es expĺıcita. Obsérvese que la cota vj es al mismo tiempo cota
para xj y para hj . Por notación, supondremos que siempre las n variables
son t1, t2,..., tn, donde tj es xj o hj . Se denotará por compl(tj) la variable
“complementaria” a tj .

Aśı por ejemplo, en una iteración están las variables x1, x2, x3, x4 ; en
otra iteración están x1, h2, x3, x4 ; en otra iteración están h1, h2, x3, x4 .

En el MSA, como en el simplex, hay variables básicas, variables libres,
costos reducidos, variable que entra, variable que sale, pivoteo.

El manejo (y cálculo) de variables básicas, variables libres, costos redu-
cidos, criterio de optimalidad y variable que entra es el mismo que se hace
en el simplex.

Costos reducidos:

c̃ = c−ATB−1TcB

c̃ = c−ATcB

c̃L = cL − LTcB

c̃B = 0

Criterio de optimalidad: Si

c̃L ≥ 0 ,

entonces la solución factible básica actual es óptima.

Usualmente se escoge te la variable que entra por:

c̃e = min{c̃j : c̃j < 0, tj es libre}.

Depués de haber escogido la variable que entra empiezan los cambios
con respecto al simplex. En el simplex cuando la variable que entra, pasa
de cero a un valor positivo, únicamente hay que controlar que no se vuelva

6



1.1. MÉTODO SIMPLEX ACOTADO 7

negativa ninguna de las variables básicas. Esto se presenta cuando aie > 0 .
Para esto se calcula

w1 =

+∞ si A·e ≤ 0
bσ1

aσ1e
= min{ bi

aie
: aie > 0} en caso contrario.

En el MSA hay dos controles adicionales. Ninguna de las variables básicas
puede sobrepasar la cota superior. Esto se presenta cuando aie < 0 . Entonces
se calcula

w2 =


+∞ si A·e ≥ 0
v
βσ2
− bσ2

−aσ2e
= min{

v
βi
− bi

−aie
: aie < 0} en caso contrario.

El tercer control, simplemente impide que la variable que entra sobrepase
su propia cota superior.

w3 = ve .

De los tres controles, se escoge el más restrictivo:

w̄ = min{w1, w2, w3}.

Si w̄ = +∞, el óptimo es no acotado. Se puede obtener una dirección a
lo largo de la cual z disminuye indefinidamente.

Si w̄ = w1 el tratamiento es exactamente el mismo del simplex. La va-
riable te entra a la base, la variable tβσ1

sale de la base, se pivotea toda la
matriz aumentada sobre el elemento aσ1e.

Si w̄ = w2 , entra a la base te y sale compl(tβσ2
) :

bσ2 ← v
βσ2
− bσ2

Lσ2· = −Lσ2· Se cambia el signo de todas las entradas de variables
libres en la fila σ2 de la matriz A.

tβσ2
← compl(tβσ2

) , es decir, xβσ2
↔ hβσ2

. Si se estaba trabajando
con xβσ2

, ahora se trabajará con hβσ2
y viceversa.

Pivoteo sobre el elemento aσ2e .

7



8 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

Si w̄ = w3 , se va a usar la variable compl(te) :

te ← compl(te)

b← b− veA·e

A·e ← −A·e

−z ← −z − c̃eve

c̃e ← −c̃e

Ejemplo 1.3.

min z = −4x1 − 2x2 − 2x3 + x4
2x1 + x2 − 5x3 + x4 + = 10
x1 + 1/2x2 + 1/2x3 + x5 = 6

3x1 + 2x2 + 4x3 + x6 = 20
x1 ≤ 4
x2 ≤ 3
x3 ≤ 2
x4 ≤ 10
x ≥ 0.

Matriz aumentada:

x4
x5
x6

x1 x2 x3 x4 x5 x6 b
2 1 −5 1 0 0 10
1 1/2 1/2 0 1 0 6
3 2 4 0 0 1 20

−4 −2 −2 1 0 0 0

Con costos reducidos:

x4
x5
x6
−z

x1 x2 x3 x4 x5 x6 b
2 1 −5 1 0 0 10
1 1/2 1/2 0 1 0 6
3 2 4 0 0 1 20

−6 −3 3 0 0 0 −10

Iteración 1:

xe = x1

8



1.1. MÉTODO SIMPLEX ACOTADO 9

w1 = min{5, 6, 20/3} = 5

w2 = +∞
w3 = 4

w̄ = w3 = 4

b =

106
20

− 4

21
3

 =

22
8


−z = −10− (−6)4 = 14

Nueva tabla:

x4
x5
x6
−z

h1 x2 x3 x4 x5 x6 b
−2 1 −5 1 0 0 2
−1 1/2 1/2 0 1 0 2
−3 2 4 0 0 1 8

6 −3 3 0 0 0 14

Iteración 2:

xe = x2

w1 = min{2, 4, 4} = 2

w2 = +∞
w3 = 3

w̄ = w1 = 2

xβσ1
= xβ1 = x4 .

Pivoteo usual sobre el elemento a12 :

x2
x5
x6
−z

h1 x2 x3 x4 x5 x6 b
−2 1 −5 1 0 0 2
0 0 3 −1/2 1 0 1
1 0 14 −2 0 1 4

0 0 −12 3 0 0 20

9
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Iteración 3:

xe = x3

w1 = min{1/3, 2/7} = 2/7

w2 = min{ 3− 2

− − 5
} = 1/5

w3 = 2

w̄ = w2 = 1/5

xβσ2
= xβ1 = x2 .

b1 = 3− 2 = 1

L1· = −L1·

x2 ↔ h2

h2
x5
x6
−z

h1 h2 x3 x4 x5 x6 b
2 1 5 −1 0 0 1
0 0 3 −1/2 1 0 1
1 0 14 −2 0 1 4

0 0 −12 3 0 0 20

Pivoteo sobre el elemento a13:

x3
x5
x6
−z

h1 h2 x3 x4 x5 x6 b
2/5 1/5 1 −1/5 0 0 1/5
−6/5 −3/5 0 1/10 1 0 2/5
−23/5 −14/5 0 4/5 0 1 6/5

24/5 12/5 0 3/5 0 0 112/5

La tabla es óptima,

h1 = 0, h2 = 0, x3 = 1/5, x4 = 0, x5 = 2/5, x6 = 6/5, z = −112/5,
x1 = 4, x2 = 3, x3 = 1/5, x4 = 0, x5 = 2/5, x6 = 6/5, z = −112/5. 3

1.1.2. Dos fases

En un problema de OL donde, fuera de las restricciones de caja, hay
desigualdades, es necesario introducir variables de holgura para llevarlo a la

10



1.1. MÉTODO SIMPLEX ACOTADO 11

forma estándar. Fácilmente se obtiene que b ≥ 0. Si no se tienen las condi-
ciones A(:, β) = Im y b ≤ vB , entonces es necesario introducir variables
artificiales y empezar con la primera fase como en un problema usual de OL.

Tanto las variables de holgura como las artificiales tendrán cota inferior
nula y cota superior igual a +∞.

Al empezar la primera fase, salvo casos muy especiales, para todas las
variables tj = xj . Supongamos que al acabar la primera fase, se obtuvo un
punto factible. Al empezar la segunda fase, para algunas variables originales
puede suceder que tj = hj . Dado que hj = vj − xj , entonces es necesario
tener en cuenta que el costo de hj es el inverso aditivo del costo de xj :

c(hj) = −c(xj) .

Además por cada una de estas variables es necesario modificar z de la si-
guiente manera:

−z ← −z + vjc(hj) .

Ejemplo 1.4.
min ζ = 10ξ1 + 3ξ2

ξ1 + 2ξ2 ≥ 4
5ξ1 + 2ξ2 ≥ 12
0 ≤ ξ1 ≤ 3/2
1 ≤ ξ2 ≤ 4

Cambio de variable para obtener cotas inferiores nulas: x1 = ξ1,

x2 = ξ2 − 1.

min z = 10x1 + 3x2
x1 + 2x2 ≥ 2
5x1 + 2x2 ≥ 10

x1 ≤ 3/2
x2 ≤ 3
x ≥ 0.

Variables de holgura:

min z = 10x1 + 3x2
x1 + 2x2 − x3 = 2
5x1 + 2x2 − x4 = 10

x1 ≤ 3/2
x2 ≤ 3
x ≥ 0.

11



12 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

Primera fase con variables de artificiales:

min za = x5 + x6
x1 + 2x2 − x3 + x5 = 2

5x1 + 2x2 − x4 + x6 = 10
x1 ≤ 3/2
x2 ≤ 3
x ≥ 0

x5
x6

x1 x2 x3 x4 x5 x6 b
1 2 −1 0 1 0 2
5 2 0 −1 0 1 10

0 0 0 0 1 1 0

Cálculo de costos reducidos:

x5
x6
−z

x1 x2 x3 x4 x5 x6 b
1 2 −1 0 1 0 2
5 2 0 −1 0 1 10

−6 −4 1 1 0 0 −12

Iteración 1:

xe = x1

w1 = min{2, 2} = 2

w2 = +∞
w3 = 3/2

w̄ = w3 = 3/2

Cambios en la tabla:

x5
x6
−z

h1 x2 x3 x4 x5 x6 b
−1 2 −1 0 1 0 1/2
−5 2 0 −1 0 1 5/2

6 −4 1 1 0 0 −3

Iteración 2:

12
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xe = x2

w1 = min{1/4, 5/4} = 1/4

w2 = +∞
w3 = 3

w̄ = w1 = 1/4

xβσ1
= xβ1 = x5 .

Pivoteo usual sobre el elemento a12 :

x2
x6
−z

h1 x2 x3 x4 x6 b
−1/2 1 −1/2 0 0 1/4
−4 0 1 −1 1 2

4 0 −1 1 0 −2

Iteración 3:

xe = x3

w1 = min{2} = 2

w2 = min{3− 1/4

1/2
} = 11/2

w3 =∞
w̄ = w1 = 2

xβσ1
= xβ2 = x6 .

Pivoteo usual sobre el elemento a23 :

x2
x3
−z

h1 x2 x3 x4 b
−5/2 1 0 −1/2 5/4
−4 0 1 −1 2

0 0 0 0 0

Fin de la primera fase con la obtención de un punto factible. Ahora se
construye la matriz aumentada con los costos originales.

x2
x3

h1 x2 x3 x4 b
−5/2 1 0 −1/2 5/4
−4 0 1 −1 2

10 3 0 0 0

13
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Modificación de la matriz por las variables hj . Cambio de signo del primer
costo: c(h1) = −10. Además

−z ← 0 + (3/2)(−10) = −15

x2
x3

h1 x2 x3 x4 b
−5/2 1 0 −1/2 5/4
−4 0 1 −1 2

−10 3 0 0 −15

Cálculo de costos reducidos:

x2
x3
−z

h1 x2 x3 x4 b
−5/2 1 0 −1/2 5/4
−4 0 1 −1 2

−5/2 0 0 3/2 −75/4

Iteración 4:

xe = h1

w1 =∞

w2 = min{3− 5/4

5/2
, ∞} = 7/10

w3 = 3/2

w̄ = w2 = 7/10

xβσ2
= xβ1 = x2 .

La variable básica x2 llega a su cota superior: b1 ← 3− 5/4 = 7/4,
L1· ← −L1· , x2 ↔ h2 ,

h2
x3
−z

h1 h2 x3 x4 b
5/2 1 0 1/2 7/4
−4 0 1 −1 2

−5/2 0 0 3/2 −75/4

Pivoteo sobre el elemento a11 :

14
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h1
x3
−z

h1 h2 x3 x4 b
1 2/5 0 1/5 7/10
0 8/5 1 −1/5 24/5

0 1 0 2 −17

La tabla es óptima.

h1 = 7/10, h2 = 0, x3 = 24/5, x4 = 0, z = 17,

x1 = 4/5, x2 = 3, x3 = 24/5, x4 = 0, z = 17,

ξ1 = 4/5, ξ2 = 4, ζ = 20. 3

1.2. Método de descomposición de Dantzig y Wol-
fe

Este método, MD, sirve para resolver eficientemente problemas de OL
que se pueden plantear en la forma

min z = cTx

Ax = b (1.1)

x ∈ X,

donde el conjunto X está definido por desigualdades, igualdades lineales
(o afines) y variables no negativas de tal forma que para cualquier vector
d ∈ Rn×1, se puede resolver fácilmente el siguiente problema de OL:

min dTx (1.2)

x ∈ X.

El ejemplo usual se tiene cuando X se define por medio de una matriz
diagonal por bloques y por restriciones de no negatividad:

X = {x : Ax = b, x ≥ 0},

A =


A1

A2

. . .

Ap


15



16 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

b =


b1

b2

...
bp

 ,

es decir, A es una matriz diagonal por bloques, pero estos bloques diagona-
les no son necesariamente cuadrados. Obviamente debe haber concordancia
entre el número de filas de Aj y el de bj . Las restricciones Ax = b se llaman
restricciones de acople.

Aqúı, por facilidad, se supuso que las restricciones son todas igualdades,
pero, sin ninguna pérdida de generalidad, también puede haber, indis-
tintamente, desigualdades e igualdades.

Si el vector de incógnitas también se decompone por bloques de acuerdo
al número de columnas de cada matriz Aj ,

x =


x1

x2

...
xp

 ,

entonces Ax = b, x ≥ 0, se separa en p bloques

Ajxj = bj , j = 1, ..., p,

xj ≥ 0.

En estas condiciones el problema de OL (1.2) se llama separable y, se
dice que el conjunto X es “separable”.

Resolver (1.2) equivale a resolver p problemas pequeños:

min dj
T
xj

Ajxj = bj , (1.3)

xj ≥ 0.

Si se define

Xj = {xj : Ajxj = bj , xj ≥ 0},

16
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entonces

X = X1 ×X2 × · · · ×Xp

y (1.3) se puede escribir

min dj
T
xj

xj ∈ Xj .

Ejemplo 1.5. Problema de producción y almacenamiento. Una compañ́ıa
fabrica 2 productos no perecederos diferentes. El gerente desea planificar la
poĺıtica de producción y almacenamiento para los 4 trimestres del año. Las
restricciones para la producción son la capacidad de trabajo y la capacidad
de almacenamiento de cada trimestre. Sean

dij = la previsión de demanda del producto i en el periodo j. Estas pre-
visiones de demanda deben ser satisfechas al final de cada trimes-
tre. La producción sobrante puede ser almacenada para el periodo
siguiente.

ti = número de horas de trabajo requeridas para elaborar una unidad
del producto i.

cij = costo de una hora de trabajo dedicada al producto i en el periodo
j.

wj = número de horas de trabajo disponibles en el trimestre j.
vi = volumen, en m3, de cada unidad del producto i.
uij = costo de almacenamiento de una unidad del producto i durante el

trimestre j o durante parte de él.
aj = capacidad de almacenamiento, en m3, en el trimestre j.

Las variables de cada periodo, correspondientes a las actividades de cada
periodo, pueden ser:

xij = número de unidades del producto i elaboradas en el trimestre j.
yij = número de unidades del producto i almacenadas al final del perio-

do j para ser utilizadas a partir del periodo j + 1.

Para el periodo j se tiene:

min c1jt1x1j + c2jt2x2j + u1jy1j + u2jy2j

17
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t1x1j + t2x2j + hwj = wj

v1y1j + v2y2j + haj = aj

y1,j−1 + x1j − y1j = d1j

y2,j−1 + x2j − y2j = d2j ,

donde hwj es la holgura con respecto a la capacidad de trabajo en el periodo
j, es decir, la capacidad de trabajo no utilizada en el periodo j. De manera
análoga, haj es la capacidad de almacenamiento no utilizada en el periodo
j.

La porción de la matriz de restricciones, correspondiente a las restric-
ciones del periodo j, tiene el siguiente esquema:

y1,j−1 y2,j−1 x1j x2j y1j y2j hwj haj
t1 t2 1 = wj

v1 v2 1 = aj
1 1 −1 = d1j

1 1 −1 = d2j
c1jt1 c2jt2 u1j u2j

Suponiendo que fueran 5 periodos, la matriz general de restricciones
presenta el siguiente aspecto:

La matriz tiene una diagonal de bloques y bloques subdiagonales. Los
bloques diagonales corresponden a las variables del periodo j; los bloques
subdiagonales están relacionados con actividades del periodo anterior. Fre-
cuentemente se dice que esta matriz tiene forma de escalera.

Consideremos el siguiente reordenamiento: primero todas las restric-
ciones relacionadas con las previsiones de demanda; enseguida las restric-
ciones, periodo por periodo, relacionadas con la capacidad de trabajo o con

18



1.2. MÉTODO DE DESCOMPOSICIÓN DE DANTZIG Y WOLFE 19

la capacidad de almacenamiento. La matriz de restricciones tendrá el si-
guiente aspecto:

De una matriz con este aspecto se dice que tiene forma angular. Es-
te tipo de matriz permite la aplicación de manera eficiente del método de
descomposición. Las primeras restricciones, las que tienen que ver con de-
mandas, y que involucran variables de más de un periodo, corresponden a
Ax = b. Las otras restricciones permiten definir el conjunto X.

Este tipo de matrices es t́ıpico de problemas o modelos dinámicos donde
hay asignación de recursos en el tiempo. Un ejemplo importante es el modelo
dinámico de Leontief. Ver [Las70].

1.2.1. Conjunto acotado

Supongamos inicialmente que el conjunto X ̸= ∅ es acotado. Como se
hab́ıa dicho antes X está definido por igualdades, desigualdades y variables
no negativas. En estas condiciones, X tiene puntos extremos y se puede
expresar como combinación convexa de ellos. Sean x1, x2, ..., xs los puntos
extremos de X,

X =

{
s∑
1

λix
i : λi ≥ 0,

s∑
1

λi = 1

}
.

Aśı el problema (1.1) se puede reescribir

min z =

s∑
1

cTxjλj

19



20 CAṔITULO 1. MÉTODOS DE OPTIMIZACIÓN LINEAL

s∑
1

Axjλj = b

s∑
1

λj = 1

λ ≥ 0

y de manera más compacta

min z = fTλ

Dλ = g (1.4)

λ ≥ 0,

donde

fj = cTxj , j = 1, ..., s,

f =


f1
f2
...
fs

 ∈ Rs×1

D =

Ax1 Ax2 · · · Axs

1 1 · · · 1

 ∈ R(m+1)×s

g =


b1
...
bm
1

 ∈ R(m+1)×1.

El MD utiliza el método simplex revisado para el problema (1.4). La
matriz de trabajo del MSR tiene la forma

 DB
−1 gk Dk

·e

πT −z f̃e


20
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donde

Dk
·e = DB

−1D·e

πT = −fT
BD

−1
B

πT =
[
π1 π2 · · · πm πm+1

]
πT =

[
π̄T πm+1

]
π̄T =

[
π1 π2 · · · πm

]
−z = −fT

BDB
−1g0.

El valor −z se puede obtener de dos maneras

−z = πTg0

−z = −fT
B gk

Los costos reducidos para el problema (1.4) se calculan por la fórmula

f̃T = πTD + fT.

En particular

f̃T
B = 0,

f̃T
L = πTDL + fT

L .

Para saber si el punto actual es óptimo se busca el menor costo reducido,

f̃e = min
1≤j≤s

f̃j .

Como f̃B = 0

f̃e ≤ 0.

Si f̃e = 0, entonces la solución actual es óptima. Sino, la variable λe entra a
la base. El cálculo expĺıcito de cada uno de los costos reducidos da:

f̃j = cTxj +
[
π̄T πm+1

] [Axj
1

]
21
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f̃j = (cT + π̄TA)xj + πm+1 .

Obtener directamente f̃e = min{f̃j} es muy dispendioso, pues requiere
conocer expĺıcitamente todos los puntos extremos de X y s puede ser muy
grande. Sin embargo, f̃e se puede obtener de otra manera. Sea

γT = cT + π̄TA.

Consideremos φ el valor óptimo del problema

min γTx+πm+1 (1.5)

x ∈ X .

Como (1.5) es un problema de OL, si tiene óptimo finito, éste se obtiene
siempre en un punto extremo. Luego f̃e = φ. Esto quiere decir que f̃e se
puede obtener mediante la solución de (1.5) y, se ha supuesto, que este
problema se puede resolver fácilmente.

Algoritmo de descomposición

1. Encontrar una solución básica inicial de (1.4).

2. Obtener la matriz del MSR calculando D−1
B , gk, −z, πT.

Obtener f̃e, costo mı́nimo reducido de las variables de holgura libres.

Si f̃e < 0, entrar esta variable de holgura libre a la base y completar
la iteración.

3. Calcular γT = cT + π̄TA.

4. Hallar φ̄ = min{γTx : x ∈ X} y xe punto óptimo.

5. f̃e = φ̄+ πm+1

6. Si f̃e = 0, la solución es óptima. Parar.

7. La variable λe entra a la base. Calcular

Dk
·e = D−1

B

[
Axe

1

]
.

22
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8. Escoger la variable básica que sale y pivotear.

9. Ir al paso 3.

En el algoritmo anterior hay pasos que es necesario aclarar poco a poco:

la introducción de variables de holgura cuando, en las restricciones de
acople, hay desigualdades.

la obtención de una solución básica inicial.

la introducción de variables artificiales.

cálculo de los costos reducidos de las variables de holgura libres.

escogencia de la variable que entra cuando también hay variables de
holgura libres.

A lo largo de la descripción detallada del método se utilizarán los si-
guientes resultados:

El conjunto X = X1 × X2 × · · · × Xp es acotado sssi cada conjunto
Xj es acotado.

El punto x = (x1, ..., xp) es punto extremo de X sssi cada punto xj es
punto extremo de Xj.

El conjunto X es vaćıo sssi algún conjunto Xj es vaćıo.

En las restricciones de acople las variables de holgura se introducen como
en cualquier problema de OL. Supongamos que las variables xn+1, xn+2, ...,
xn2 son las variables de holgura para las restricciones de acople. El problema
depende ahora de

yT =
[
λ1 λ2 · · · λs xn+1 · · · xn2

]
y el problema (1.4) se reescribe

min z = fTy

Dy = g (1.6)

y ≥ 0.

23
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Aqúı hay una ambiguedad en la notación que no perjudica la presentación
del algoritmo y que el lector benevolente no objetará. La matriz D de (1.4)
corresponde únicamente a variables λj . La matriz D de (1.6) corresponde a
variables λj y a variables de holgura. La misma observación es válida para
f .

Para una variable λj ,

fj = cTxj ,

D·j =

[
Axj

1

]
.

Para una variable de holgura por defecto,

fj = 0,

D·j =

eρ
0

 =



0
...
1
...
0
0


,

donde eρ ∈ Rm×1 y ρ indica la restricción para la cual fue introducida esa
variable de holgura. Para una variable de holgura por exceso,

fj = 0,

D·j =

−eρ
0

 =



0
...
−1
...
0
0


.

Para las variables λj , el menor costo reducido se obtiene, como está
expresado en el algoritmo, por medio de

f̃e = φ̄+ πm+1 .

Como se está utizando el simplex revisado, el costo reducido para una
variable de holgura por defecto se obtiene por

24
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f̃j =
[

π̄T πm+1

] eρ
0

+ 0 = πρ .

De manera análoga, para una variable de holgura por exceso

f̃j = −πρ .

Ejemplo 1.6.

min z = −10x1 − 8x2 − 2x3 − 5x4
x1 + x3 ≤ 3
x1 + x2 + x3 + x4 ≤ 4

2x1 + x2 ≤ 5
x3 + 2x4 ≤ 8
3x3 + 2x4 ≤ 18

x ≥ 0.

Las dos primeras restricciones son las de acople. Las tres siguientes y
las de no negatividad definen el conjunto X. Es claro que es fácil resolver
un problema de OL en X, pues resulta un problema separable. X se puede
definir por medio de dos bloques, el primero con una restricción y dos varia-
bles no negativas x1 y x2, el segundo con dos restricciones y dos variables
no negativas x3 y x4.

Es necesario introducir dos variables de holgura, x5 y x6, para las res-
tricciones de acople.

x1 + x3 + x5 = 3
x1 + x2 + x3 + x4 + x6 = 4

La matriz D tendrá tres filas. Entonces, para empezar, se requieren tres
variables básicas. Pueden ser x5, x6 y λ1, correspondiente a un punto extre-
mo de X. Este puede ser

x1 = (0, 0, 0, 0).

La columna de D correspondiente a x5 es simplemente

25
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D·5 =

10
0


La correspondiente a x6 es

D·6 =

01
0


La columna correspondiente a λ1 es

D·1 =

[
Ax1

1

]
=

00
1



DB =

1 0 0
0 1 0
0 0 1

 , DB
−1 =

1 0 0
0 1 0
0 0 1

 .

Como x5 y x6 son variables de holgura, su costo fj es 0. Para λ1

f1 = cTx1 =
[
−10 −8 −2 −5

] 
0
0
0
0

 = 0.

πT = −fT
BDB

−1 = −
[
0 0 0

]
DB

−1

πT =
[
0 0 0

]
−z = πTg0 =

[
0 0 0

]
g0

−z = 0 .

La tabla o matriz R del simplex revisado para el método de descomposición
es:

x5
x6
λ1

−z


1 0 0 3
0 1 0 4
0 0 1 1
0 0 0 0


26
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Iteración 1:

El punto actual es simplemente x = λ1x
1 = 1x1 = (0, 0, 0, 0). Como no

hay variables de holgura libres, se procede a resolver un problema de OL en
X:

γT = cT + π̄TA

=
[
−10 −8 −2 −5

]
+
[
0 0

]
A

γT =
[
−10 −8 −2 −5

]
.

Al minimizar γTx con x ∈ X, se obtiene

x2 = x∗ = (0, 5, 0, 4),

φ̄ = −60,
f̃e = φ̄+ πm+1

= −60 + 0 = −60.

Se deduce que el punto actual no es óptimo y que λ2 entra a la base.

D·2 =

[
Ax2

1

]
=

09
1


DB

−1D·2 =

09
1


Ahora hay que agregar, a la tabla del simplex revisado, la columna

DB
−1D·2 y el valor f̃e .

x5
x6
λ1

−z


1 0 0 3 0
0 1 0 4 9
0 0 1 1 1
0 0 0 0 −60


Para escoger la variable que sale es necesario considerar los cocientes 4/9

y 1/1. La variable básica que sale es la segunda, o sea, x6. Ahora se pivotea
sobre el elemento R25 .
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x5
λ2

λ1

−z


1 0 0 3
0 1/9 0 4/9
0 −1/9 1 5/9
0 20/3 0 80/3


Iteración 2:

El punto actual es x = λ1x
1+λ2x

2 = 5/9 x1+4/9 x2 = (0, 20/9, 0, 16/9).
La variable de holgura x6 es libre y f̃(x6) = π2 = 20/3 ≥ 0. Se procede a
resolver un problema de OL en X:

γT = cT + π̄TA

=
[
−10 −8 −2 −5

]
+
[
0 20/3

]
A

γT =
[
−10/3 −4/3 14/3 5/3

]
.

Al minimizar γTx con x ∈ X, se obtiene

x3 = x∗ = (5/2, 0, 0, 0),

φ̄ = −25/3,
f̃e = φ̄+ πm+1

= −25/3 + 0 = −25/3.

Se deduce que el punto actual no es óptimo y que λ3 entra a la base.

D·3 =

[
Ax3

1

]
=

5/25/2
1


DB

−1D·3 =

 5/2
5/18
13/18


Ahora hay que agregar, a la tabla del simplex revisado, la columna

DB
−1D·3 y el valor f̃e .

x5
λ2

λ1

−z


1 0 0 3 5/2
0 1/9 0 4/9 5/18
0 −1/9 1 5/9 13/18
0 20/3 0 80/3 −25/3


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Para escoger la variable que sale es necesario considerar los cocientes
3/(5/2) = 6/5, (4/9)/(5/18) = 8/5 y (5/9)/(13/18) = 10/13. La variable
básica que sale es la tercera, o sea, λ1. Ahora se pivotea sobre el elemento
R35 .

x5
λ2

λ3

−z


1 5/13 −45/13 14/13
0 2/13 −5/13 3/13
0 −2/13 18/13 10/13
0 70/13 150/13 430/13


Iteración 3:

El punto actual es x = (3/13)x2 + (10/13)x3 = (25/13, 15/13, 0, 12/13).
La variable de holgura x6 es libre y f̃(x6) = π2 = 70/13 ≥ 0. Se procede a
resolver un problema de OL en X:

γT = cT + π̄TA

=
[
−10 −8 −2 −5

]
+
[
0 70/13

]
A

γT =
[
−60/13 −34/13 44/13 5/13

]
.

Al minimizar γTx con x ∈ X, se obtiene

x4 = x∗ = (0, 5, 0, 0),

φ̄ = −170/13,
f̃e = φ̄+ πm+1

= −170/13 + 150/13 = −20/13.

Se deduce que el punto actual no es óptimo y que λ4 entra a la base.

D·4 =

[
Ax4

1

]
=

05
1


DB

−1D·4 =

−20/135/13
8/13


29
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Ahora hay que agregar, a la tabla del simplex revisado, la columna
DB

−1D·4 y el valor f̃e .

x5
λ2

λ3

−z


1 5/13 −45/13 14/13 −20/13
0 2/13 −5/13 3/13 5/13
0 −2/13 18/13 10/13 8/13
0 70/13 150/13 430/13 −20/13


Para escoger la variable que sale es necesario considerar los cocientes

(3/13)/(5/13) = 3/5 y (10/13)/(8/13) = 5/4. La variable básica que sale es
la segunda, o sea, λ2. Ahora se pivotea sobre el elemento R25 .

x5
λ4

λ3

−z


1 1 −5 2
0 2/5 −1 3/5
0 −2/5 2 2/5
0 6 10 34


Iteración 4:

El punto actual es x = (2/5)x3 + (3/5)x4 = (1, 3, 0, 0). La variable de
holgura x6 es libre y f̃(x6) = π2 = 6 ≥ 0. Se procede a resolver un problema
de OL en X:

γT = cT + π̄TA

=
[
−10 −8 −2 −5

]
+
[
0 6

]
A

γT =
[
−4 −2 4 1

]
.

Al minimizar γTx con x ∈ X, se obtiene

x5 = x∗ = (5/2, 0, 0, 0),

φ̄ = −10,
f̃e = φ̄+ πm+1

= −10 + 10 = 0.

Se deduce que el punto actual, x = (1, 3, 0, 0), es óptimo y z∗ = −34. Al
remplazar este punto en las dos restricciones de acople, se obtiene que la
primera holgura es 2, lo cual coincide con x5 = 2; en la segunda restricción
la holgura es nula, concordando con x6 = 0. 3
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Ejemplo 1.7. Para resolver el mismo problema del ejemplo anterior, se
puede empezar directamente con variables artificiales. Para este caso las
columnas de las variables de holgura x5 y x6 sirven para conformar la matriz
I3 . Se requiere una tercera columna, o sea, una variable artificial: x7 . En la
primera fase se debe minimizar la suma de las variables artificiales. En este
caso,

min za = x7

DB =

1 0 0
0 1 0
0 0 1

 , DB
−1 =

1 0 0
0 1 0
0 0 1

 .

Como x5 y x6 son variables de holgura, su costo fj es 0. Para x7, el costo
es f7 = 1.

Para λ1

πT = −fT
BDB

−1 = −
[
0 0 1

]
DB

−1

πT =
[
0 0 −1

]
−za =

[
0 0 −1

]
g0

−za = −1 .

La tabla o matriz R del simplex revisado para el método de descomposición
es:

x5
x6
x7
−za


1 0 0 3
0 1 0 4
0 0 1 1
0 0 −1 −1


Iteración 1:

Como no hay variables de holgura libres, se procede a resolver un problema
de OL en X:

γT = cT + π̄TA

=
[
0 0 0 0

]
+
[
0 0

]
A
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γT =
[
0 0 0 0

]
.

Al minimizar γTx con x ∈ X, se obtiene

x1 = x∗ = (0, 0, 0, 0),

φ̄ = 0,

f̃e = φ̄+ πm+1

= 0 + −1 = −1.

Este último problema de OL tienes muchas soluciones (cualquier punto fac-
tible). Se deduce que la tabla no es óptima y que λ1 entra a la base.

D·1 =

[
Ax1

1

]
=

00
1


DB

−1D·1 =

00
1


Ahora hay que agregar, a la tabla del simplex revisado, la columna

DB
−1D·1 y el valor f̃e .

x5
x6
x7
−za


1 0 0 3 0
0 1 0 4 0
0 0 1 1 1
0 0 −1 0 −1


La variable que sale es necesariamente x7. Ahora se pivotea sobre el

elemento R35 .

x5
x6
λ1

−za


1 0 0 3
0 1 0 4
0 0 1 1
0 0 0 0


Iteración 2:

El punto actual es x = λ1x
1 = (0, 0, 0, 0). No hay variables de holgura

libres. Se procede a resolver un problema de OL en X:
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γT = cT + π̄TA

=
[
0 0 0 0

]
+
[
0 0

]
A

γT =
[
0 0 0 0

]
.

Al minimizar γTx con x ∈ X, se obtiene

x2 = x∗ = (0, 0, 0, 0),

φ̄ = 0,

f̃e = φ̄+ πm+1

= 0 + 0 = 0.

Se deduce la tabla actual es óptima para la primera fase. Como za = 0, se
prosigue con la segunda fase. Al pasar a la segunda fase cambian los costos
y es necesario recalcular fB, π

T y −z. La segunda fase ya se realizó en el
ejemplo anterior. 3

1.2.2. Conjunto no acotado

Si el conjunto X ̸= ∅ no es acotado, entonces se puede expresar en
función de sus puntos extremos y direcciones extremas. Sean x1, x2, ..., xs

los puntos extremos de X y d1, d2, ..., dt sus direcciones extremas, entonces

X = {x =
s∑

i=1

λix
i +

t∑
j=1

µjd
j , λi ≥ 0 ∀i,

s∑
i=1

λi = 1, µj ≥ 0 ∀j}.

Aśı el problema (1.1) se puede reescribir

min z =

s∑
i=1

cTxiλi +

s∑
j=1

cTdjµj

s∑
i=1

Axiλi +
t∑

j=1

Adjµj = b

s∑
i=1

λi = 1
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λ, µ ≥ 0

y de manera más compacta

min z = fT

[
λ
µ

]
D

[
λ
µ

]
= g (1.7)

λ, µ ≥ 0,

donde

fT =
[
cTx1 · · · cTxs cTd1 · · · cTdt

]
f ∈ R(s+t)×1

D =

Ax1 · · · Axs Ad1 · · · Adt

1 1 0 0

 ∈ R(m+1)×(s+t)

g =


b1
...
bm
1

 ∈ R(m+1)×1.

Cuando X es separable, o sea, cuando X se puede definir por medio de
una matriz diagonal por bloques, las direcciones están relacionadas por el
siguiente resultado.

Si dk es una dirección extrema de Xk, entonces

d = (0, ..., 0, dk, 0, ..., 0)

es dirección extrema de X.

Los cambios que se presentan ante la presencia de direcciones extremas de
X son los siguientes:

Las variables, en el caso general, serán: λi, µj , las variables de holgura
y las variables artificiales.
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Para problemas separables, se trabaja con una dirección extrema de
X cuando en uno de los subproblemas se tiene óptimo no acotado y
una dirección de descenso dk, permitiendo construir dj una dirección
extrema de X.

En las condiciones anteriores, f̃e = γTdj < 0. Es el mismo valor del
costo reducido del subproblema. Recuérdese que para puntos extremos,
f̃e = γTxi + πm+1 .

La columna de D correspondiente a µj es:

D·e =

[
Adj

0

]
.

La escogencia de la variable básica que sale y el pivoteo se hacen como
en el caso acotado.

Se puede presentar que

DB
−1D·e ≤ 0.

En este caso, no se puede escoger la variable básica que sale, el proble-
ma general tiene óptimo no acotado y se puede construir una dirección
de descenso. La dirección se construye de manera análoga a como se
hace en el simplex cuando en la columna de la variable que entra no
hay elementos positivos.

d = dj −
m+1∑
i=1
∗

yi d
i′ ,

donde y = DB
−1D·e y el śımbolo ∗ indica que la suma se hace úni-

camente con los ı́ndices de las variables básicas correspondientes a di-
recciones. La dirección di

′
es la dirección correspondiente a la i-ésima

variable básica.
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Ejemplo 1.8.

min z = 4x1 + x2 − 2x3 + x4
x1 + x2 + 2x3 − 3x4 ≤ 5
x1 + 2x2 − x3 + x4 ≤ 8

2x1 + x2 ≥ 3
x1 + x2 ≥ 2

x4 ≤ 2
x3 − x4 ≥ 2

x ≥ 0.

Las dos primeras restricciones son las de acople. Las cuatro siguientes y
las de no negatividad definen el conjunto X, en el cual es fácil resolver un
problema de OL.

Es necesario introducir dos variables de holgura, x5 y x6, para las res-
tricciones de acople.

x1 + x2 + 2x3 − 3x4 + x5 = 5
x1 + 2x2 − x3 + x4 + x6 = 8

Para empezar, se requieren tres variables básicas. Además de x5 y x6, la
tercera puede ser x7, variable artificial para la tercera fila (λ1+λ2+· · ·+λs =
1).

DB =

1 0 0
0 1 0
0 0 1

 , DB
−1 =

1 0 0
0 1 0
0 0 1

 .

Como x5 y x6 son variables de holgura, su costo fj es 0. Para x7, el costo
artificial es 1.

πT = −fT
BDB

−1 = −
[
0 0 1

]
DB

−1

πT =
[
0 0 −1

]
−z = πTg0 =

[
0 0 −1

] 58
1


−z = −1 .
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La tabla o matriz R del simplex revisado para el método de descomposición
es:

x5
x6
x7
−z


1 0 0 5
0 1 0 8
0 0 1 1
0 0 −1 −1


Iteración 1-1:

Como no hay variables de holgura libres, se procede a resolver un problema
de OL en X:

γT = cT + π̄TA

=
[
0 0 0 0

]
+
[
0 0

]
A

γT =
[
0 0 0 0

]
.

En X hay muchos puntos factibles, luego muchos puntos óptimos para este
problema. Al minimizar γTx con x ∈ X, se obtiene, por ejemplo

x1 = (1, 1, 2, 0),

φ̄ = 0,

f̃e = φ̄+ πm+1

= 0 + −1 = −1.

Se deduce que la tabla actual no es óptima y que λ1 entra a la base.

D·1 =

[
Ax1

1

]
=

61
1


DB

−1D·1 =

61
1


Ahora hay que agregar, a la tabla del simplex revisado, la columna

DB
−1D·1 y el valor f̃e .
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x5
x6
x7
−z


1 0 0 5 6
0 1 0 8 1
0 0 1 1 1
0 0 −1 −1 −1


Para escoger la variable que sale es necesario considerar los cocientes

5/6, 8/1 y 1/1. La variable básica que sale es la primera, o sea, x5. Ahora
se pivotea sobre el elemento R15 .

λ1

x6
x7
−z


1/6 0 0 5/6
−1/6 1 0 43/6
−1/6 0 1 1/6
1/6 0 −1 −1/6


Iteración 1-2:

La variable de holgura por defecto x5 es libre, su costo reducido es π1 =
1/6 > 0. Entonces se procede a resolver un problema de OL en X:

γT =
[
0 0 0 0

]
+
[
1/6 0

]
A

γT =
[
1/6 1/6 1/3 −1/2

]
.

Al minimizar γTx con x ∈ X, se obtiene,

x2 = (1, 1, 4, 2),

φ̄ = 2/3,

f̃e = φ̄+ πm+1

= 2/3 + −1 = −1/3.

Se deduce que la tabla actual no es óptima y que λ2 entra a la base.

D·2 =

[
Ax2

1

]
=

41
1


DB

−1D·2 =

2/31/3
1/3


38
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Ahora hay que agregar, a la tabla del simplex revisado, la columna
DB

−1D·2 y el valor f̃e .

λ1

x6
x7
−z


1/6 0 0 5/6 2/3
−1/6 1 0 43/6 1/3
−1/6 0 1 1/6 1/3
1/6 0 −1 −1/6 −1/3


Para escoger la variable que sale es necesario considerar los cocientes

(5/6)/(2/3), (43/6)/(1/3) y (1/6)/(1/3). La variable básica que sale es la
tercera, o sea, x7. Ahora se pivotea sobre el elemento R35 .

λ1

x6
λ2

−z


1/2 0 −2 1/2

0 1 −1 7
−1/2 0 3 1/2

0 0 0 0


Como ya se anuló la única variable artificial que hab́ıa, se tiene el óptimo

de la primera fase. No es necesario calcular γ ni resolver un problema de OL
para obtener f̃e.

Segunda fase:

De la última tabla, únicamente es necesario recalcular πT y −z utilizando
los costos reales.

f1 = cTx1

=
[
4 1 −2 1

] 
1
1
2
0


= 1

f2 = cTx2

=
[
4 1 −2 1

] 
1
1
4
2


= −1

Para la variable x6 el costo es 0.
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πT = −fBDB
−1

= −
[
1 0 −1

]  1/2 0 −2
0 1 −1

−1/2 0 3


=
[
−1 0 5

]
−z = πTg0

=
[
−1 0 5

] 58
1


= 0.

λ1

x6
λ2

−z


1/2 0 −2 1/2

0 1 −1 7
−1/2 0 3 1/2
−1 0 5 0


Iteración 2-1:

El punto actual es x = λ1x
1 + λ2x

2 = (1, 1, 3, 1). El costo reducido de
variable de holgura por defecto x5 es f̃e = π1 = −1. Luego x5 entra a la
base.

D·e =

10
0


DB

−1D·e =

 1/2 0 −2
0 1 −1

−1/2 0 3

10
0


=

 1/2
0

−1/2


Ahora hay que agregar, a la tabla del simplex revisado, la columna

DB
−1D·e y el valor f̃e .
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λ1

x6
λ2

−z


1/2 0 −2 1/2 1/2
0 1 −1 7 0

−1/2 0 3 1/2 −1/2
−1 0 5 0 −1


Sale la primera variable básica, o sea, λ1. Al pivotear sobre R15 se ob-

tiene:

x5
x6
λ2

−z


1 0 −4 1
0 1 −1 7
0 0 1 1
0 0 1 1


Iteración 2-2:

El punto actual es x = λ2x
2 = (1, 1, 4, 2). No hay variables de holgura

libres. Entonces se procede a resolver un problema de OL en X:

γT =
[
4 1 −2 1

]
+
[
0 0

]
A

γT =
[
4 1 −2 1

]
.

Ahora se minimiza γTx con x ∈ X. En X1 se obtiene x1 = (0, 3). En X2

resulta óptimo no acotato con la dirección de descenso (1, 0). Entonces para
el problema en X,

d1 = (0, 0, 1, 0)

es una dirección extrema de descenso y f̃e = cTd1 = −2

D·e =

[
Ad1

0

]
=

 2
−1
0


DB

−1D·e =

 2
−1
0


Ahora hay que agregar, a la tabla del simplex revisado, la columna

DB
−1D·e y el valor f̃e .
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x5
x6
λ2

−z


1 0 −4 1 2
0 1 −1 7 −1
0 0 1 1 0
0 0 1 1 −2


Necesariamente sale la primera variable básica, o sea, x5. Al pivotear

sobre R15 se obtiene:

µ1

x6
λ2

−z


1/2 0 −2 1/2
1/2 1 −3 15/2
0 0 1 1
1 0 −3 2


Iteración 2-3:

El punto actual es x = µ1d
1 + λ2x

2 = (1, 1, 9/2, 2). La variable x5 es de
holgura por defecto libre. Su costo reducido es π1 = 1. Entonces se procede
a resolver un problema de OL en X.

γT =
[
4 1 −2 1

]
+
[
1 0

]
A

γT =
[
5 2 0 −2

]
.

Al minimizar γTx con x ∈ X, se obtiene,

x3 = (0, 3, 4, 2),

φ̄ = 2,

f̃e = φ̄+ πm+1

= 2 + −3 = −1.

Se deduce que la tabla actual no es óptima y que λ3 entra a la base.

D·e =

[
Ax3

1

]
=

54
1


DB

−1D·e =

1/27/2
1


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Ahora hay que agregar, a la tabla del simplex revisado, la columna
DB

−1D·e y el valor f̃e .

µ1

x6
λ2

−z


1/2 0 −2 1/2 1/2
1/2 1 −3 15/2 7/2

0 0 1 1 1
1 0 −3 2 −1


Para escoger la variable que sale es necesario considerar los cocientes

(1/2)/(1/2), (15/2)/(7/2) y 1/1. La variable básica que sale es la primera,
o sea, µ1. Ahora se pivotea sobre el elemento R15 .

λ3

x6
λ2

−z


1 0 −4 1
−3 1 11 4
−1 0 5 0
2 0 −7 3


Iteración 2-4:

El punto actual es x = λ3x
3 + λ2x

2 = (0, 3, 4, 2). La variable x5 es de
holgura por defecto libre. Su costo reducido es π1 = 2. Entonces se procede
a resolver un problema de OL en X.

γT =
[
4 1 −2 1

]
+
[
2 0

]
A

γT =
[
6 3 2 −5

]
.

Al minimizar γTx con x ∈ X, se obtiene,

x4 = (1, 1, 4, 2),

φ̄ = 7,

f̃e = φ̄+ πm+1

= 7 + −7 = 0.

Se deduce que la tabla actual es óptima y que

x∗ = xactual

x∗ = (0, 3, 4, 2)

z∗ = −3. 3
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Ejemplo 1.9.

min z = −3x1 + 4x2 − 10x3 − 6x4
−x1 + x2 − x3 + x4 ≥ 4

2x1 − x2 ≥ 3
x1 − x2 ≤ 5

x4 ≤ 2
x3 − x4 ≥ 2

x ≥ 0.

Es necesario introducir x5, variable de holgura por exceso y x6, x7, variables
artificiales, que serán las variables básicas.

DB =

[
1 0
0 1

]
, DB

−1 = DB .

πT = −fT
BDB

−1 = −
[
1 1

]
DB

−1

πT =
[
−1 −1

]
−z = πTg0 =

[
−1 −1

] [4
1

]
−z = −5 .

La tabla o matriz R del simplex revisado para el método de descomposición
es:

x6
x7
−z

 1 0 4
0 1 1
−1 −1 −5


Iteración 1-1:

Para x5, variable de holgura por exceso, el costo reducido es −π1 = − −1 =
1. Entonces:

γT = cT + π̄TA

=
[
0 0 0 0

]
+
[
−1
]
A

γT =
[
1 −1 1 −1

]
.
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Al minimizar γTx con x ∈ X, en X1 se obtiene óptimo no acotado con
dirección de descenso (1/2, 1). Entonces se construye una dirección extrema
de descenso para X

d1 = (1/2, 1, 0, 0),

f̃e = γTd1

= −1/2.

Se deduce que la tabla actual no es óptima y que µ1 entra a la base.

D·e =

[
Ad1

0

]
=

[
1/2
0

]
DB

−1D·e =

[
1/2
0

]

x6
x7
−z

 1 0 4 1/2
0 1 1 0
−1 −1 −5 −1/2


Sale x6.

µ1

x7
−z

2 0 8
0 1 1
0 −1 −1


Iteración 1-2:

Para x5, variable de holgura por exceso, el costo reducido es −π1 = 0.
Entonces:

γT = cT + π̄TA

=
[
0 0 0 0

]
+
[
0
]
A

γT =
[
0 0 0 0

]
.

x1 = (3/2, 0, 2, 0),
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f̃e = γTx1 + πm+1

= 0 +−1 = −1.

La tabla actual no es óptima y λ1 entra a la base.

D·e =

[
Ax1

1

]
=

[
−7/2
1

]
DB

−1D·e =

[
−7
1

]

µ1

x7
−z

2 0 8 −7
0 1 1 1
0 −1 −1 −1


Sale x7.

µ1

λ1

−z

2 7 15
0 1 1
0 0 0


Como las variables artificiales son nulas, se puede afirmar que la tabla

anterior es óptima, sin minimizar γTx con x ∈ X.

Segunda fase:

fB =

[
cTd1

cTx1

]
=

[
5/2

−49/2

]
πT = −fT

BDB
−1 =

[
−5 7

]
−z = πTg0 = −13

µ1

λ1

−z

 2 7 15
0 1 1
−5 7 −13


Iteración 2-1:

El punto actual es x = µ1d
1 + λ1x

1 = 15d1 + x1 = (9, 15, 2, 0) y z = 13.
Para x5, variable de holgura por exceso, el costo reducido es −π1 = 5.
Entonces:
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γT = cT + π̄TA

=
[
−3 4 −10 −6

]
+
[
−5
]
A

γT =
[
2 −1 −5 −11

]
.

Al minimizar γTx para x ∈ X, en X2 se obtiene óptimo no acotado y la
dirección de descenso (1, 0). Entonces para X,

d2 =
[
0 0 1 0

]T
es dirección de descenso.

f̃e = γTd2

= −5

D·e =

[
Ad2

0

]
=

[
−1
0

]
DB

−1D·e =

[
−2
0

]

µ1

λ1

−z

 2 7 15 −2
0 1 1 0
−5 7 −13 −5


Como DB

−1D·e ≤ 0, entonces el problema completo tiene óptimo no
acotado. Se puede construir una dirección de descenso:

d = d2 − (−2)d1

=
[
0 0 1 0

]T
+ 2

[
1/2 1 0 0

]T
=
[
1 2 1 0

]T
cTd = −5. 3
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Ejercicios

1.1 Resuelva utilizando el método simplex acotado

min z = 3x1 − 4x2

x1 + 2x2 ≤ 10

4x1 + 3x2 ≤ 20

1 ≤ x1 ≤ 10

2 ≤ x2 ≤ 4.

Respuesta: x = (1, 4), z = −13.

1.2 Resuelva utilizando el método simplex acotado

min z = −5x1 − 2x2

5x1 + 2x2 ≥ 40

4x1 + 9x2 ≥ 50

3 ≤ x1 ≤ 10

4 ≤ x2 ≤ 20.

Respuesta: x = (10, 20), z = −90.

1.3 Resuelva utilizando el método simplex acotado

min z = −5x1 − 2x2

5x1 + 2x2 ≥ 40

4x1 + 9x2 ≥ 50

3 ≤ x1 ≤ 5

4 ≤ x2 ≤ 5.

Respuesta: no hay puntos factibles.

1.4 Resuelva utilizando el método simplex acotado

min z = −5x1 − 2x2
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5x1 + 2x2 ≥ 40

4x1 + 9x2 ≥ 50

2 ≤ x1 ≤ 5

3 ≤ x2

Respuesta: óptimo no acotado.

1.5 Resuelva utilizando el método simplex acotado

min z = 9.5x1 + 7x2

x1 + 2x2 ≥ 11

3x1 + 2x2 ≥ 19

0 ≤ x1 ≤ 7/2

1 ≤ x2 ≤ 5

Respuesta: x = (7/2, 17/4), z = 63.

1.6 Resuelva por el método de descomposición de Dantzig y Wolfe:

min z = −10x1 − 10x2 − 12x3 − 8x4
2x1 + x3 ≤ 4
x1 + x2 + x3 + x4 ≤ 12

2x1 + 3x2 ≤ 6
x3 + 2x4 ≤ 11
3x3 + x4 ≤ 8

x ≥ 0.

Para empezar utilice las variables básicas x5, x6 y λ1 correspondiente
a x1 = (0, 0, 0, 0).

Respuesta: x = (3/2, 1, 1, 5) obtenido con λ2 = 1/2, x2 = (3, 0, 1, 5),
λ4 = 1/2, x4 = (0, 2, 1, 5), z = −77.
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1.7 Resuelva por el método de descomposición de Dantzig y Wolfe:

min z = −10x1 − 10x2 − 12x3 − 8x4
2x1 + x3 ≤ 10
x1 + x2 + x3 + x4 ≤ 15

2x1 + 3x2 ≥ 6
x3 + 2x4 ≥ 4

3x3 + x4 ≥ 7
x ≥ 0.

Para empezar utilice las variables básicas x5, x6 y λ1 correspondiente
a x1 = (0, 2, 2, 1).

Respuesta: x = (0, 5, 10, 0) obtenido con µ2 = 6, d2 = (0, 0, 1, 0),
µ1 = 9, d1 = (0, 1/3, 0, 0), λ2 = 1, x2 = (0, 2, 4, 0), z = −170.

1.8 Resuelva por el método de descomposición de Dantzig y Wolfe:

min z = 6x1 + 7x2 + 8x3 − 9x4
x1 + x2 + x4 ≥ 3
x1 + x2 + x3 + x4 ≤ 10

x1 + 2x2 ≤ 3
3x1 + 2x2 ≥ 5

2x3 + x4 ≥ 4
x ≥ 0.

Respuesta: x = (5/3, 0, 0, 25/3) obtenido con λ1 = 1, x1 = (5/3, 0, 0, 4),
µ1 = 13/3, d1 = (0, 0, 0, 1), z = −65.

1.9 Resuelva por el método de descomposición de Dantzig y Wolfe:

min z = 6x1 + 7x2 + 8x3 − 9x4
x1 + x2 + x4 ≥ 3
x1 + x2 + x3 + x4 ≥ 10

x1 + 2x2 ≤ 3
3x1 + 2x2 ≥ 5

2x3 + x4 ≥ 4
x ≥ 0.

Respuesta: óptimo no acotado.
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1.10 Resuelva por el método de descomposición de Dantzig y Wolfe:

min z = 6x1 + 7x2 + 8x3 − 9x4
x1 + x2 + x4 ≥ 3
x1 + x2 + x3 + x4 ≥ 10

x1 + 2x2 ≤ 3
3x1 + 2x2 ≤ 5

2x3 + x4 ≤ 4
x ≥ 0.

Respuesta: no hay puntos factibles.
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Caṕıtulo 2

Optimización entera

Un problema de OL con variables no negativas se puede expresar aśı:

min z = cTx

Ai·x ≥ bi, i ∈M1 ⊆M = {1, ...,m},
Ai·x = bi, i ∈M2 = M ∖M1 (Pr )

x ∈ Rn
+,

donde Rn
+ = {x ∈ Rn : x ≥ 0}. Relacionado con este problema, se tiene un

problema de optimización entera, OE, objeto de estudio del caṕıtulo:

min z = cTx

Ai·x ≥ bi, i ∈M1

Ai·x = bi, i ∈M2 (Pe )

x ∈ Zn
+,

donde Zn
+ = {x ∈ Zn : x ≥ 0}. En la práctica, sin pérdida de generalidad, se

puede suponer que todos los valores cj , aij y bi son racionales. Esto impli-
ca que se puede obtener una formulación equivalente de los dos problemas
donde todos los coeficientes cj , aij y bi son enteros.

Algunos problemas, por su misma naturaleza, son problemas de OE,
pero se supone o acepta que si se resuelven como un problema de OL el
error cometido es muy pequeño y despreciable. Esto quiere decir que al
obtener la solución de Pr , si ésta no es entera, se puede aproximar por un
punto entero cercano cometiendo un error despreciable.
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Si en la solución por OL de un problema de OE resulta que mensualmente
hay que fabricar 8765.4 zapatos, no se comete un error muy grande al decir
que hay que fabricar 8765 zapatos.

Sin embargo, en otros problemas, necesariamente se debe considerar que
la solución debe ser entera. Como se verá más adelante, no siempre la solu-
ción entera está cerca de la solución real.

Si en la solución por OL de un problema de OE resulta que hay que
construir 4.56 centrales hidroeléctricas, no se puede decir alegremente que
la solución óptima consiste en construir 5 centrales.

En otros problemas, de ninguna manera se puede considerar que una
variable entera pueda tomar valores no enteros.

Ejemplo 2.1. Problema de secuenciación. Un taller tiene n contratos de
trabajo pero solamente puede hacer uno a la vez. Para cada contrato hay una
fecha prevista de entrega gi . La duración o tiempo requerido para efectuar
el trabajo correspondiente al contrato i es di (entero positivo). La multa por
cada d́ıa de retraso en la terminación del contrato es pi . ¿Cuál debe ser el
orden de secuenciación para minimizar la multa?

Para el planteamiento de este problema se supone que si se empieza un
trabajo el d́ıa j, y éste dura t d́ıas, entonces podrá ser entregado al comienzo
del d́ıa j + t, pero no podrá ser entregado al final del d́ıa j + t− 1.

La programación se debe hacer sobre el número de d́ıas necesarios, T =∑
i di. El último trabajo realizado se entregará al comienzo del d́ıa T + 1.

Las variables para este problema pueden ser:

xij =

{
1 si el contrato i empieza el d́ıa j,

0 si no,

con i = 1, ..., n, j = 1, ..., fi = T − di + 1. Por ejemplo, si T = 30 y d2 = 5,
entonces f2 = 26, o sea, el segundo contrato puede empezar, a más tardar,
el d́ıa 26.

Como cada contrato empieza una y solamente una vez, entonces

fi∑
j=1

xij = 1, i = 1, ..., n.

Para considerar que cada d́ıa hay un solo contrato en ejecución, se in-
troduce una variable intermedia, dependiente de x, que sirve para saber si
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el trabajo i está en ejecución el d́ıa j:

yij =

min{j,fi}∑
k=max{1,j−di+1}

xik

donde i = 1, ..., n, j = 1, ..., T . Obviamente esta variable debe cumplir
yij ≤ 1. Si yij = 0, entonces el d́ıa j el trabajo i no está en ejecución.
Si yij = 1, entonces el d́ıa j el trabajo i está en ejecución. Si yij > 1, se
tendŕıa que en los d́ıas previos a j el trabajo i empezó varias veces. Hay una
restricción más fuerte que incluye la anterior. En cualquier d́ıa hay un único
trabajo en ejecución.

n∑
i=1

yij = 1, j = 1, ..., T.

A partir de los datos, independiente de x, se pueden construir los valores
mij que facilitan la expresión de la función objetivo:

mij =

{
0 si j + di ≤ gi

j + di − gi si j + di > gi

Este valor mij indica el número de d́ıas de multa si el trabajo i empieza
el d́ıa j, con i = 1, ..., n, j = 1, ..., fi . De manera más sencilla

mij = max{0, j + di − gi}.

La función objetivo es simplemente

min z =

n∑
i=1

pi

fi∑
j=1

mijxij . 3

Ejemplo 2.2. Problema de inversión. El Ministerio de Desarrollo Económi-
co proyecta invertir en n sectores y para cada sector hay mi alternativas de
inversión. En cada sector es necesario llevar a cabo por lo menos ni alterna-
tivas. La planeación se hará a lo largo de T años. Para cada sector i y cada
alternativa j, se conoce el flujo de inversión, es decir, se conocen los valores
fijk , monto de la inversión en el año k. Cada alternativa j del sector i ge-
nera eij empleos y produce un beneficio económico bij , pero la capacidad de
inversión de cada año es ck. Por razones económicas y poĺıticas, es necesario
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generar por lo menos E empleos durante estos T años. ¿Qué alternativas de
cada sector se deben escoger para maximizar el beneficio?

Con las variables

xij =

{
1 si para el sector i se escoge la alternativa j,

0 en caso contrario,

con i = 1, ..., n, j = 1, ...,mi, se puede plantear el problema de la siguiente
manera:

max z =
n∑

i=1

mi∑
j=1

bijxij

n∑
i=1

mi∑
j=1

fijkxij ≤ ck , k = 1, ..., T,

mi∑
j=1

xij ≥ ni , i = 1, ..., n,

n∑
i=1

mi∑
j=1

eijxij ≥ E,

xij ∈ {0, 1}. 3

Ejemplo 2.3. Problema del agente viajero (TSP “traveling salesman pro-
blem”). Saliendo de una ciudad, él debe visitar otras n−1 ciudades diferentes
y regresar a la ciudad inicial sin repetir trayectos ni ciudades. Se conoce una
matriz C ∈ Rn×n, donde cij indica el costo correspondiente a ir de la ciudad
i a la ciudad j. No necesariamente cij = cji. Se desea encontrar el orden en
que el agente viajero debe hacer la visita para que el costo se mı́nimo.

Sea

xij =

{
1 si, después de la ciudad i, él visita la ciudad j,

0 en caso contrario,

donde i = 1, ..., n, j = 1, ..., i− 1, i+ 1, .., n.

Planteamiento:
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min z =

n∑
i=1

n∑
j=1
j ̸=i

cijxij

n∑
j=1
j ̸=i

xij = 1, i = 1, ..., n,

n∑
i=1
i ̸=j

xij = 1, j = 1, ..., n,

∑
i∈S, j /∈S

xij ≥ 1, S ⊆ N, 2 ≤ |S| ≤ n− 2,

xij ∈ {0, 1}.

El tercer grupo de restricciones evita la presencia de subciclos indepen-
dientes, por ejemplo, no debe estar permitido el esquema de la figura. Alĺı,
x13 = x31 = x24 = x42 = 1, las demás variables son nulas. Estos valores de
xij cumplen los dos primeros grupos de restricciones.

3124

La idea subyacente en el tercer grupo de restricciones es la siguiente: si
S y T son subconjuntos de N no vaćıos y disyuntos, entonces debe haber
por lo menos un viaje de S a T o uno de T a S; basta con considerar como
posibles conjuntos S y S̄; los conjuntos de cardinal 1 y los de n − 1 están
considerados en los dos primeras grupos de restricciones 3

En lo que sigue se utilizará la siguiente notación:
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FA = {x ∈ Rn : Ai·x ≥ bi, i ∈M1, Ai·x = bi, i ∈M2} , conjunto de
puntos que cumplen las desigualdades e igualdades.

Fr = FA ∩ Rn
+ , conjunto de puntos factibles para el problema de OL

o problema real.

F ∗
r : conjunto de puntos óptimos para el problema real.

z∗r : valor óptimo de z para el problema real. Se utiliza la siguiente
convención:

z∗r = +∞ indica que no hay puntos factibles (Fr = ∅).

z∗r = −∞ indica que se tiene óptimo no acotado.

Fe = FA ∩Zn
+ = Fr ∩Zn

+ = Fr ∩Zn , conjunto de puntos factibles para
el problema de OE o problema entero.

F ∗
e : conjunto de puntos óptimos para el problema entero.

z∗e : valor óptimo de z para el problema entero.

Algunos resultados son inmediatos:

Fe ⊆ Fr .

z∗r ≤ z∗e

Puede suceder que Fr ̸= ∅ y Fe = ∅.

Ejemplo 2.4.

min z = 3x1 + 4x2
x1 + 9x2 ≤ 6
−x1 + 9x2 ≥ 3

x ≥ 0
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0 1 2
0

1

••••x2x1

Para estas restricciones, Fr es la región sombreada. En cambio Fe = ∅ . 3

Ejemplo 2.5. Considere los problemas de OL y OE definidos por las si-
guientes restricciones:

min z = −15x1 − 14x2
2x2 ≤ 11

12x1 + 11x2 ≤ 65
x1 ≤ 5

x ≥ 0

Los puntos extremos de Fr son

(
5, 5/11

)
z = −895/11(

3/8, 11/2
)

z = −661/8(
5, 0

)
z = −75(

0, 11/2
)

z = −77(
0, 0

)
z = 0

Como Fr es acotado, simplemente se escoge el mejor punto extremo, o
sea que para el problema Pr .

59
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x∗r = (3/8, 11/2).

0 1 2 3 4 5
0

1

2

3

4

5

•(3/8, 11/2)z = −661/8z = −75

Fe está formado por los puntos enteros de Fr, es decir, por (0, 0), (0, 1), ...,
(0, 5) (1, 0), (1, 1), ..., (1, 4), ..., (4, 0), (4, 1), (5, 0). De ellos, el mejor es

x∗e = (5, 0), z∗e = −75.

Obsérvese que el punto óptimo para el problema Pe está muy alejado del
punto óptimo del problema Pr . 3

Definición 2.1. Sean P1 y P2 dos problemas de optimización cuyos conjun-
tos admisibles son F1 y F2. Se dice que P2 es una relajación de P1 si los dos
problemas tienen la misma función objetivo y F1 ⊆ F2. Se dice P2 es una
relajación lineal si P2, además de ser una relajación de P1, es un problema
de OL.

En lo que sigue, mientras no se diga lo contrario, cuando se mencione una
relajación se supone que se trata de una relajación lineal. De todas maneras
algunas veces se enfatizará que se trata de una relajación lineal.

El problema Pr es una relajación lineal del problema Pe . En general,
los métodos de OE buscan obtener, de manera iterativa, un problema P’,
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relajación lineal de Pe , tal que la (una) solución de P’ sea también solución
de Pe .

Para el problema de OE del ejemplo anterior, una relajación muy buena es
la siguiente:

min z = −15x1 − 14x2
x1 + x2 ≤ 5

x ∈ Rn
+

Definición 2.2. Un corte o plano cortante es simplemente una restricción
adicional de la forma gTx ≤ φ (o de la forma gTx ≥ φ ).

En una parte importante de los métodos de OE, se arranca con la relaja-
ción natural de Pe , es decir con P0 =Pr . De manera iterativa se construyen,
mediante cortes, relajaciones lineales más estrictas que las anteriores, es
decir, los conjuntos admisibles deben ser subconjuntos propios de los an-
teriores. Obviamente estas relajaciones no pueden quitar puntos factibles
enteros. El proceso acaba cuando la solución de una relajación es un punto
entero.

P0 =Pr
F0 = Fr

para k = 0, 1, 2, ...
obtener xk solución de Pk

si xk ∈ Zn, ent parar

obtener un corte adecuado gk
T
x ≤ φk

Fk+1 = Fk ∩ {x : gk
T
x ≤ φk}

fin-para

En el problema Pk hay que minimizar cTx con x ∈ Fk. Un corte es adecuado
si:

Fk+1 ⊊ Fk ,

Fk+1 ⊇ Fe .

2.1. Cortes de Gomory

Este método se aplica a problemas de OE escritos en la forma estándar.
Está dentro de los descritos anteriormente. Tiene las siguientes caracteŕısti-
cas adicionales:
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El proceso es finito.

El punto óptimo de problema actual no cumple el corte.

Sea ⌊t⌋ la parte entera inferior y {t} la parte fraccionaria de un real, es
decir, {t} = t − ⌊t⌋. Cuando en un problema Pk, el punto óptimo no es
entero, el corte de Gomory se escoge de la siguiente manera:

{br} = max
1≤i≤m

{bi} (2.1)∑
xj libre

{arj}xj ≥ {br} , (2.2)

donde los valores bi y arj se toman de la última tabla.

Este corte (o restricción adicional) resulta de las siquiente consideraciones.
La restricción r es:

n∑
j=1

arjxj = br .

Separando en columnas básicas y libres:∑
xj básica

arjxj +
∑

xj libre

arjxj = br .

Para las columnas básicas, todos los coeficientes son nulos salvo uno:

xβr +
∑

xj libre

arjxj = br .

Separando parte entera y fraccionaria:

xβr +
∑

xj libre

{arj}xj +
∑

xj libre

⌊arj⌋xj = {br}+ ⌊br⌋.

Agrupando:

{br} −
∑

xj libre

{arj}xj = xβr +
∑

xj libre

⌊arj⌋xj − ⌊br⌋.

Como x debe ser entero:

{br} −
∑

xj libre

{arj}xj ∈ Z. (2.3)
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Como {br} < 1 y
∑

xj libre

{arj}xj ≥ 0 , entonces

{br} −
∑

xj libre

{arj}xj ≤ 0 .

La anterior desigualdad es el corte de Gomory. Si para todas las colum-
nas libres {arj} = 0, entonces habŕıa una contradicción en (2.3). Se puede
mostrar que el punto xk obtenido no satisface el corte, es decir, xk /∈ Pk+1.

Una manera eficiente de implementar el método de cortes de Gomory
consiste en utilizar el simplex dual, ya que al agregar un corte que no es
cumplido por el punto óptimo actual, esta restricción se puede agregar a
la última tabla, los costos reducidos (no negativos) no van a cambiar y se
tendrá un término independiente negativo. Sin embargo, en la práctica, el
método de cortes de Gomory no es muy eficiente.

Ejemplo 2.6.
min z = −11x1 − 12x2

x1 + 2x2 ≤ 10
3x1 + 2x2 ≤ 13

x ∈ Zn
+

Para la relajación inicial se quita la restricción de integralidad. Al re-
solver ese problema de OL se obtiene la siguiente tabla o matriz ampliada
óptima.

x2
x1
−z

0 1 3/4 −1/4 17/4
1 0 −1/2 1/2 3/2
0 0 7/2 5/2 135/2



xr =
[
3/2 17/4 0 0

]T
{br} = {b2} = 1/2

Corte:

(1/2)x3 + (1/2)x4 ≥ 1/2

Variable de holgura:

(1/2)x3 + (1/2)x4 − x5 = 1/2
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Al agregar esta nueva restricción a las 2 igualdades de la tabla óptima
se tiene:

x2
x1

−z


0 1 3/4 −1/4 0 17/4
1 0 −1/2 1/2 0 3/2
0 0 1/2 1/2 −1 1/2
0 0 7/2 5/2 0 135/2


Para aplicar el simplex dual se requiere la matriz identidad. Ésta se

puede obtener multiplicando la tercera igualdad por −1.

x2
x1
x5
−z


0 1 3/4 −1/4 0 17/4
1 0 −1/2 1/2 0 3/2
0 0 −1/2 −1/2 1 −1/2
0 0 7/2 5/2 0 135/2


Sale la variable xβ3 = x5 y entra x4. Se pivotea sobre el elemento a34 .

x2
x1
x4
−z


0 1 1 0 −1/2 9/2
1 0 −1 0 1 1
0 0 1 1 −2 1
0 0 1 0 5 65


Esta tabla, además de tener costos reducidos no negativos, es factible, luego

x∗ =
[
1 9/2 0 1 0

]T
.

Pero este punto no es entero, luego se crea un nuevo corte, a partir de los
elementos de la primera fila

(1/2)x5 ≥ 1/2 .

Al agregar este corte al problema anterior se obtiene

x∗ =
[
0 5 0 3 1 0

]T
,

punto entero. Luego, para el problema original de OE

x∗ =
[
0 5

]T
. 3
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2.2. Ramificación y acotamiento

Generalmente se habla del método de ramificacion y acotamiento, MRA,
o bifurcación y acotamiento, “branch and bound”, aunque más que un méto-
do espećıfico y preciso, se trata de un grupo de métodos que tienen en común
ciertas reglas. La mayoŕıa del software comercial para OE está basado en
el RA, al que se le agregan otras técnicas y refinamientos para hacerlo más
eficiente.

El esṕıritu del método está basado en el célebre dicho “divide y ven-
cerás”. Sea P0 el problema inicial Pe y P ′

0 su relajación lineal. Si la solución
de P ′

0 es entera, entonces también es solución de Pe . Si no es entera, enton-
ces el conjunto factible de P0 se divide en dos conjuntos disyuntos F1 y F2.
Eso da origen a dos problemas de OE, P1 y P2, de tal forma que la solución
de Pe debe ser la solución de P1 o la solución de P2. Para resolver estos
dos problemas de OE, se procede a resolver la relajación lineal de cada uno
de ellos. Para cada uno de estos problemas se repite el proceso hasta haber
estudiado todos los casos posibles. Estudiar un caso quiere decir resolver la
relajación lineal o descartar adecuadamente el caso sin tener que resolver la
relajación lineal.

Ejemplo 2.7.

min z = 5x1 + 6x2
2x1 + x2 ≥ 13
x1 + 2x2 ≥ 12
x1 + x2 ≤ 11

x ∈ Zn
+

El problema anterior es Pe , o sea, P0.
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0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

F ′
0••••••••••••••••••

La relajación lineal de P0 es:

min z = 5x1 + 6x2
2x1 + x2 ≥ 13
x1 + 2x2 ≥ 12
x1 + x2 ≤ 11

x ∈ Rn
+

(P ′
0)

Su solución es

x0 =
[
14/3 11/3

]T
, z0 = 136/3.

Vamos a dividir F0, el conjunto factible de P0 , de acuerdo a la variable
x1 = 14/3 = 4 + 2/3, que no es entera en la solución de P ′

0.

F1 = {x ∈ F0 : x1 ≤ 4},
F2 = {x ∈ F0 : x1 ≥ 5}.

Expĺıcitamente, F1 se puede representar por las restricciones:
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2x1 + x2 ≥ 13
x1 + 2x2 ≥ 12
x1 + x2 ≤ 11
x1 ≤ 4

x ∈ Zn
+

De manera análoga se puede definir F2 . Al considerar la relajación lineal se
tienen los problemas P ′

1 y P ′
2, con conjuntos factibles F ′

1 y F ′
2.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
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7
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F ′
1F
′
2••••••••••••••••••

La solución del problema P ′
1 es

x1 =
[
4 5

]T
, z1 = 50,

punto entero, que podŕıa ser la solución de P0. Sin embargo, es necesario
estudiar P ′

2. Su solución es

x2 =
[
5 7/2

]T
, z2 = 46,

punto no entero. Entonces, utilizando la variable no entera x2 = 7/2 =
3 + 1/2, F2 se puede dividir en dos conjuntos disyuntos, F3 y F4 , por
medio de las restricciones x2 ≤ 3 y x2 ≥ 4.
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La solución de P ′
3 es

x3 =
[
6 3

]T
, z3 = 48,

punto entero. La solución de P ′
4 es

x4 =
[
5 4

]T
, z4 = 49,

punto entero. Ya se han estudiado todas las posibilidades, luego la solución
de P0 es el mejor punto entero obtenido, o sea,

x∗ =
[
6 3

]T
, z∗ = 48. 3

En el MRA el proceso de dividir o bifurcar se acostumbra a representar
por medio de un árbol binario con ráız. Cada nodo representa un problema,
el nodo 0 representa el problema, P0, el nodo i representa el problema Pi.
Realmente, cada nodo representa dos problemas relacionados, el problema
entero Pi y su relajación lineal P ′

i . Se usa la terminoloǵıa usual de padre e
hijo.

En el ejemplo anterior, el problema P2 es el padre de los problemas P3 y
P4. O simplemente, el nodo 2 es padre de 3 y 4 y, perdón por la redundancia,
3 y 4 son hijos de 2.
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Cuando se hace la representación gráfica del árbol, se usa la convención
usual, la ráız está arriba, y su hijos y nietos están abajo.

01234x = (14/3, 11/3)z = 136/3x = (4, 5)z = 50x = (5, 7/2)z = 46x = (6, 3)z = 48x = (5, 4)z = 49x1 ≤ 4x1 ≥ 5x2 ≤ 3x2 ≥ 4

Se acostumbra decir que un nodo es descartado o podado (“pruned”)
en uno de los tres casos siguientes:

No tiene solución.

Tiene solución entera.

Se puede afirmar que si el nodo tuviera solución entera, ésta no será
mejor que otro punto entero factible ya conocido.

Más adelante hay una explicación detallada del tercer caso.

Cuando un nodo es descartado, es necesario escoger otro nodo para exa-
minarlo. Cuando no hay más nodos para examinar, es decir, todos los nodos
fueron estudiados o descartados, entonces ha finalizado el estudio del pro-
blema y hay dos resultados posibles:

La solución del problema Pe es el mejor punto entero obtenido.

El problema Pe no tiene solución.

Recordemos que se ha supuesto que la relajación lineal de Pe tiene
óptimo finito. O sea, suponemos que para la relajación lineal inicial no se
presenta el caso de óptimo no acotado ni el caso de conjunto factible vaćıo.

Poco a poco, veremos algunas reglas y algunos criterios para el desarrollo
del MRA. Hasta el momento:
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Un nodo, o no tiene hijos, o tiene dos hijos.

Si en el nodo i, xij /∈ Z y se escoge la variable xj para bifurcar,
entonces los dos hijos de i están dados por las restricciones

xj ≤ ⌊xij⌋,
xj ≥ ⌈xij⌉ = ⌊xij⌋+ 1.

Además de la restricción caracteŕıstica de cada nodo, el hijo hereda
las demás restricciones del padre.

En el ejemplo anterior, para la solución del nodo 3 (del problema asociado
al nodo 3) están las restricciones originales, la restricción x1 ≥ 5, heredada
de 2 y la restricción espećıfica x2 ≤ 3.

Supongamos que Pe tiene solución finita y que z∗ es el valor óptimo de
z. Siempre se puede considerar que se conoce z̄, una cota superior para z∗.
Inicialmente, z̄ = +∞. Cuando se encuentra, durante el proceso, un nodo
con solución entera, se actualiza el valor de z̄.

Aśı, en el ejemplo, cuando se obtiene la solución del nodo 1, entonces
z̄ = 50. Con la solución del nodo 3, z̄ = 48. La solución del nodo 4 no
mejora el valor de z.

En la solución del nodo 0, z0 = 136/3 = 45 + 1/3. La solución del nodo
0 no es entera, eso quiere decir, que se tiene z, una cota inferior para z∗,
ya que el mejor valor de z que podŕıa tener cualquier descendiente entero
del nodo 0 seŕıa

z = ⌈z0⌉ = 46.

El mismo razonamiento aplicado a otros nodos permite deducir resultados
y reglas para el MRA.

Si el nodo i tiene solución no entera y

⌈zi⌉ ≥ z̄ actual,

entonces el nodo es descartado y no bifurca.

Si el nodo i ya fue creado pero no estudiado, aunque no se conoce zi,
entonces

⌈zi⌉ ≥ ⌈z( padre(i) )⌉
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Si el nodo i ya fue creado pero no estudiado y

⌈z( padre(i) )⌉ ≥ z̄ actual,

entonces el nodo i se descarta y no es necesario resolverlo (obviamente
no podrá bifurcar).

Ejemplo 2.8.

min z = 11x1 + 20x2 + 15x3
2x1 + 4x2 + 3x3 ≥ 17
x1 + 3x2 + x3 ≥ 7

x ∈ Zn
+

0123456x = (0, 4/5, 23/5)⌈z⌉ = 85x = (0, 1, 13/3)⌈z⌉ = 85x = (0, 1, 5)⌈z⌉ = 95x = (0, 5/4, 4)⌈z⌉ = 85x = (0, 2, 3)z̄ = 85descartadodescartadox2 ≥ 1x2 ≤ 0x3 ≥ 5x3 ≤ 4x2 ≥ 2x2 ≤ 1

A continuación aparece el orden en que fueron estudiados los nodos.

Nodo 0:

x0 =
[
0 4/5 23/5

]T
,

z0 = 85, ⌈z0⌉ = 85.

Bifurca la variable x2 para dar origen al nodo 1 con x2 ≥ 1 y al 2 con x2 ≤ 0.

Nodo 1:
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x1 =
[
0 1 13/3

]T
,

z1 = 85, ⌈z1⌉ = 85.

Bifurca la variable x3 para dar origen al nodo 3 con x3 ≥ 5 y al 4 con x3 ≤ 4.

Nodo 3:

x3 =
[
0 1 5

]T
,

z3 = 95, z̄ = 95.

La solución es entera y no hay bifurcación.

Nodo 4:

x4 =
[
0 5/4 4

]T
,

z4 = 85, ⌈z4⌉ = 85.

Bifurca la variable x2 para dar origen al nodo 5 con x2 ≥ 2 y al 6 con x2 ≤ 1.

Nodo 5:

x5 =
[
0 2 3

]T
,

z5 = 85, z̄ = 85.

La solución es entera y no hay bifurcación. Además los nodos 2 y 6, todav́ıa
no estudiados, no pueden dar lugar a puntos mejores que el mejor punto
entero actual, luego son descartados. Ya no quedan nodos por estudiar, luego
la solución es el mejor punto entero hallado,

x∗ =
[
0 2 3

]T
,

z∗ = 85. 3

2.2.1. Escogencia de la variable que bifurca

Hay criterios para escoger, cuando hay más de una variable no entera en
la solución del nodo i, la variable que bifurca. Algunos de ellos son claramente
contradictorios.
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La primera variable no entera encontrada, o sea, la variable no entera
de sub́ındice menor.

La variable no entera de mayor parte fraccionaria.

La variable no entera “menos entera” [Wol98] y [NeWo99], es decir la
variable más alejada de los dos enteros que la rodean, o lo que es lo
mismo, la variable cuya parte fraccionaria está más cerca de 1/2. Se
bifurca con xj si

δk = min{ {xik}, 1− {xik} }
δj = max{δk : xik /∈ Z}.

Mientras no haya confusión, se utilzará la notación

f i
k = {xik}.

Entonces

δk = min{f i
k, 1− f i

k }
δj = max{δk : xik /∈ Z}.

La variable no entera más cercana a un entero [Rar98]. Se bifurca con
xj si

δk = min{f i
k, 1− f i

k }
δj = min{δk : xik /∈ Z}.

La variable no entera que podŕıa dar lugar más fácilmente a descarte
por cota [NeWo99]. Se bifurca con xj si

∆k = max{ f i
k, 1− f i

k }
∆j = max{∆k : xik /∈ Z}.
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Consideremos, en el ejemplo anterior, la solución del nodo 0:

x0 =
[
0 4/5 23/5

]T
,

δ2 = min{4/5, 1/5},
δ2 = 1/5,

δ3 = min{3/5, 2/5},
δ3 = 2/5.

Si se escoge la primera variable no entera, se usaŕıa x2. Si se escoge la
variable de mayor parte fraccionaria, se usaŕıa x2. Si se escoge la variable
menos entera, se usaŕıa x3. Si se escoge la variable más cercana a un entero,
se usaŕıa x2.

2.2.2. Escogencia del nodo

Después de estudiar un nodo, se pueden presentar tres casos:

La solución no es entera, se escoge una variable para bifurcar y se
crean dos nodos hijos.

La solución es entera, se actualiza z̄ y se descarta el nodo

No hay solución y se descarta el nodo,

De todas maneras se requiere escoger el siguiente nodo a estudiar. Para
escogerlo hay dos poĺıticas diferentes: en profundidad y a lo ancho. Para
estas dos poĺıticas, aśı como para los diferentes criterios que se pueden usar
en el MRA, no hay demostraciones que garanticen que un criterio sea mejor
que el otro. Simplemente hay justificaciones “razonables” a favor de cada
criterio. Además, un criterio, después de resolver muchos problemas, puede
haber mostrado mayor eficiencia para un tipo de problemas y ser peor para
otro tipo de problemas.

Cuando se utiliza la escogencia en profundidad, después de estudiar un
nodo con solución no entera, siempre se estudia en seguida uno de sus hi-
jos. Por otro lado, si el nodo es descartado (solución entera o problema sin
solución) se estudia enseguida su hermano, si éste no ha sido estudiado.

74
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Cuando la escogencia se hace a lo ancho, el siguiente nodo es el menos
profundo entre los no estudiados y no descartados.

En el ejemplo anterior, la escogencia se hizo en profundidad Después del
nodo 1 se estudió uno de sus hijos. Después del nodo 4 se estudió uno de sus
hijos, el nodo 5.

Si en este mismo ejemplo la escogencia fuera a lo ancho, después de
estudiar el nodo 1 se estudiaŕıa el nodo 2.

Hay dos razones importantes para escoger en profundidad el siguiente nodo
[Wol98]:

Para disminuir el número de nodos a estudiar, es decir, el número de
problemas de OL, parece conveniente obtener pronto un punto entero
factible, con la esperanza de que provea una buena cota superior para
z.

Desde el punto de vista computacional, se puede lograr mayor eficien-
cia, cuando a partir de la tabla óptima del nodo padre, se busca la
solución del nodo hijo, donde simplemente se agregó una restricción
adicional (método simplex dual).

Otra idea útil que puede ayudar a disminuir el número de nodos a resolver,
consiste en escoger el mejor nodo, es decir, el nodo que tenga un mejor
valor posible de z, o sea, el nodo no estudiado, cuyo padre tenga el valor de
z más pequeño.

Otra técnica usada es la escogencia en profundidad con vuelta hacia
atrás (“backtracking”). También es llamada LIFO (“last in, first out”).
En esta técnica cuando un nodo es descartado (por solución entera, por
inadmisibilidad o por cota), se busca, si lo hay, recorriendo el camino desde el
nodo descartado hasta la ráız, el primer nodo que tenga un hijo no estudiado.
Este hijo será el nodo a estudiar. En el siguiente árbol se observa la aplicación
de esta técnica. El śımbolo 8 indica un nodo descartado. Los nodos fueron
estudiados en el orden i, ii, iii, ...
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012345678iiiviiiivviixviiviii88888

Las estrategias también se pueden combinar. Por ejemplo, es razonable
usar al comienzo, únicamente la estrategia de profundidad, hasta encontrar
un punto entero factible. Después se puede utilizar la estrategia del mejor
nodo combinada con la escogencia en profundidad.

2.2.3. Escogencia de la rama

Bien sea que se usa la estrategia en profundidad o la estrategia a lo
ancho u otra estrategia, algunas veces hay que escoger entre dos hermanos,
es decir, se necesita escoger una de las dos ramas.

Hay criterios arbitrarios, por ejemplo, siempre se escoge primero la rama
xj ≤ ..., o siempre se escoge primero la rama xj ≥ ....

Hay otros criterios que están relacionados con la escogencia de la variable
que bifurca. Por ejemplo, supongamos que se escoge para bifurcar la variable
menos entera. Entonces, al mismo tiempo se puede escoger la rama que hace
que esa variable sea menos entera:

rama =

{
xj ≤ ⌊xij⌋ si δj = {xij} ≤ 1− {xij},
xj ≥ ⌈xij⌉ si δj = 1− {xij} > {xij}.

Al considerar la solución del nodo 0 del ejemplo 2.8

δ2 = min{4/5, 1/5},
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δ2 = 1/5,

δ3 = min{3/5, 2/5},
δ3 = 2/5,

δj = δ3 .

Entonces se debeŕıa escoger primero la rama x3 ≥ 5.

Hay un criterio más sofisticado que permite al mismo tiempo determinar
la variable que bifurca y la rama que se debe estudiar primero.

Sea zi el valor de z en la solución del nodo i y zi−k el valor de z en el
problema obtenido al agregar al nodo i la restricción xk ≤ ⌊xik⌋, suponiendo
que el nuevo problema tiene solución. De manera análoga, sea zi+k el valor de
z en el problema obtenido al agregar al nodo i la restricción xk ≥ ⌈xik⌉, supo-
niendo que el nuevo problema tiene solución. Si uno de los nuevos problema
no tiene solución, se considera que el valor de z es +∞.

Como el conjunto factible de cada uno de los nuevos problemas es más
pequeño, entonces

zi ≤ zi−k

zi ≤ zi+k

Sean

∆−
k (z) = zi−k − zi,

∆+
k (z) = zi+k − zi.

Al buscar

max
k

min{ ∆−
k (z), ∆+

k (z) }

quedan determinadas la variable que bifurca y la rama que se debe estudiar
primero.

Ejemplo 2.9.
min z = 11x1 + 20x2 + 14x3

2x1 + 4x2 + 3x3 ≥ 17
x1 + 3x2 + x3 ≥ 7

x ∈ Zn
+
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Al resolver la relajación lineal:

x0 =
[
0 4/5 23/5

]T
z0 = 402/5

Para calcular los valores ∆k(z) se puede aplicar el simplex dual utilizando
la última tabla.

x3
x2
−z

2/5 0 1 −3/5 4/5 23/5
1/5 1 0 1/5 −3/5 4/5
7/5 0 0 22/5 4/5 −402/5

Al agregar la restricción x2 ≤ 0, después de introducir una variable de
holgura, se tiene

x2 + x6 = 0.

Esto hace agregar una fila y columna a la tabla:

x3
x2
x6
−z

2/5 0 1 −3/5 4/5 0 23/5
1/5 1 0 1/5 −3/5 0 4/5

0 1 0 0 0 1 0
7/5 0 0 22/5 4/5 0 −402/5

Para obtener la matriz identidad 3× 3, basta con restar a la tercera fila, la
segunda fila.

x3
x2
x6
−z

2/5 0 1 −3/5 4/5 0 23/5
1/5 1 0 1/5 −3/5 0 4/5
−1/5 0 0 −1/5 3/5 1 −4/5
7/5 0 0 22/5 4/5 0 −402/5

El método simplex dual puede empezar. Sale la tercera variable básica,
xβσ = xβ3 = x6. Para escoger la variable que entra es necesario buscar

max{ c̃j
aσj

: aσj < 0}

max{ 7/5

−1/5
,

22/5

−1/5
} = −7

Entonces entra x1 y la nueva tabla es factible (y óptima).
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x3
x2
x1
−z

0 0 1 −1 2 2 3
0 1 0 0 0 1 0
1 0 0 1 −3 −5 4
0 0 0 3 5 7 −86

Entonces ∆−
2 (z) = 86 − 402/5 = 28/5. Realmente no es necesario calcular

completa la nueva tabla para obtener ∆−
2 (z). Basta con efectuar el producto

7× 4/5. De manera general, para calcular ∆−
k (z), basta con

xβq = xik ,

p− = min
j
{ c̃j
aqj

: xj es libre y aqj > 0},

∆−
k (z) = p− {xik}.

Al agregar al problema inicial la restricción x2 ≥ 1, después de introducir
una variable de holgura, se tiene

x2 − x6 = 1

−x2 + x6 = −1

Esto hace agregar una fila y columna a la tabla:

x3
x2
x6
−z

2/5 0 1 −3/5 4/5 0 23/5
1/5 1 0 1/5 −3/5 0 4/5
0 −1 0 0 0 1 −1

7/5 0 0 22/5 4/5 0 −402/5

Para obtener la matriz identidad 3× 3, basta con sumar a la tercera fila, la
segunda fila.

x3
x2
x6
−z

2/5 0 1 −3/5 4/5 0 23/5
1/5 1 0 1/5 −3/5 0 4/5
1/5 0 0 1/5 −3/5 1 −1/5
7/5 0 0 22/5 4/5 0 −402/5

El método simplex dual puede empezar. Sale la tercera variable básica,
xβσ = xβ3 = x6. Para escoger la variable que entra es necesario buscar
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80 CAṔITULO 2. OPTIMIZACIÓN ENTERA

max{ c̃j
aσj

: aσj < 0}

max{ 4/5

−3/5
} = −4/3

Entonces entra x5 y la nueva tabla es factible (y óptima).

x3
x2
x5
−z

2/3 0 1 −1/3 0 4/3 13/3
0 1 0 0 0 −1 1

−1/3 0 0 −1/3 1 −5/3 1/3
5/3 0 0 14/3 0 4/3 −242/3

Entonces ∆+
2 (z) = 242/3−402/5 = 4/15. De nuevo, realmente no es necesa-

rio calcular completa la nueva tabla para obtener ∆+
2 (z). Basta con efectuar

el producto 4/3× 1/5. De manera general, para calcular ∆+
k (z), basta con

xβq = xik ,

p+ = min
j
{ c̃j
−aqj

: xj es libre y aqj < 0},

∆+
k (z) = p+ ( 1− {xik} ).

Procediendo de manera análoga con la variable x3,

p− = min{7/5
2/5

,
4/5

4/5
} = 1 ,

∆−
3 (z) = (1)(3/5) = 3/5 ,

p+ = min{ 22/5

− − 3/5
} = 22/3 ,

∆+
3 (z) = (22/3)(1− 3/5) = 44/15 .

Entonces

max
k

min{ ∆−
k (z), ∆+

k (z) } = max{min{28/5, 4/15}, min{3/5, 44/15}}

= max{4/15, 3/5}
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2.2. RAMIFICACIÓN Y ACOTAMIENTO 81

= 3/5 .

Según el criterio, conocido a veces con el nombre de penalización, se
debeŕıa bifurcar con la variable x3 y estudiar primero la rama x3 ≤ 4.

Este criterio se utilizó bastante en software para OE, pero, en problemas
grandes, la práctica muestra que los cálculos no se justifican [NeWo99].

Ejemplo 2.10. Resolver el siguiente problema utilizando las siguientes op-
ciones: bifurcación sobre la variable menos entera; escogencia del nodo según
la técnica LIFO, mientras no haya puntos enteros conocidos; escogencia del
mejor nodo cuando ya se conoce un punto entero.

max z = 15x1 − 7x2
3x1 + 5x2 ≤ 40
8x1 − 6x2 ≤ 63

x ∈ Zn
+

Convertido al formato usual:

min z = −15x1 + 7x2
3x1 + 5x2 ≤ 40
8x1 − 6x2 ≤ 63

x ∈ Zn
+
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82 CAṔITULO 2. OPTIMIZACIÓN ENTERA

012345678910x = (555/58, 131/58)⌈z⌉ = −127ino factibleiix = (9, 3/2)⌈z⌉ = −124iiix = (69/8, 1)⌈z⌉ = −122ivno factiblevx = (8, 1/6)⌈z⌉ = −118vix = (63/8, 0)⌈z⌉ = −118viino factibleviiix = (7, 0)z = −105ixx = (9, 2)z = −121xdescarte por cotaxix1 ≥ 10x1 ≤ 9x2 ≤ 1x2 ≥ 2x1 ≥ 9x1 ≤ 8x2 ≤ 0x2 ≥ 1x1 ≥ 8x1 ≤ 7

Los detalles de la solución, algunos ya están en el árbol, son los siguientes:

x0 =
[
555/58 131/58

]T
z0 = −3704/29, ⌈z⌉ = −127
f0
1 = 33/58, 1− f0

1 = 25/58, δ1 = 25/58

f0
2 = 15/58, 1− f0

2 = 43/58, δ2 = 15/58

δj = δ1, x1 ≥ 10, x1 ≤ 9

F ′
1 = ∅, se descarta el nodo 1,

por LIFO se escoge el nodo 2,

x2 =
[
9 3/2

]T
z2 = −249/2, ⌈z⌉ = −124
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2.2. RAMIFICACIÓN Y ACOTAMIENTO 83

f2
=1/2, 1− f2

2 = 1/2, δ2 = 1/2

δj = δ2, x2 ≤ 1, x2 ≥ 2

x3 =
[
69/8 1

]T
z3 = −979/8, ⌈z⌉ = −122
f3
1 = 5/8, 1− f3

1 = 3/8, δ1 = 3/8

δj = δ1, x1 ≥ 9, x1 ≤ 8

F ′
5 = ∅, se descarta el nodo 5,

por LIFO se escoge el nodo 6,

x6 =
[
8 1/6

]T
z6 = −713/6, ⌈z⌉ = −118
f6
2 = 1/6, 1− f6

2 = 5/6, δ2 = 1/6

δj = δ2, x2 ≤ 0, x2 ≥ 1

x7 =
[
63/8 0

]T
z7 = −945/8, ⌈z⌉ = −118
f7
1 = 7/8, 1− f7

1 = 1/8, δ1 = 1/8

δj = δ1, x1 ≥ 8, x1 ≤ 7

F ′
9 = ∅, se descarta el nodo 9,

por LIFO se escoge el nodo 10,

x10 =
[
7 0

]T
, z10 = −105,

primer punto entero, se escoge el mejor nodo: el 4,

x4 =
[
9 2

]T
, z10 = −121,

nuevo mejor punto entero,

se descarta el nodo 8 por cota,

no hay nodos activos.
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84 CAṔITULO 2. OPTIMIZACIÓN ENTERA

Entonces la (una) solución es

x∗ =
[
9 2

]T
,

z∗ = −121. 3

2.2.4. Aproximaciones

Cuando el punto xi, solución del nodo i, no es entero, se pueden construir
fácilmente tres aproximaciones, una por redondeo, otra por parte entera
inferior y otra por parte entera superior. Sea t̃ el valor entero obtenido al
redondear t,

x̃i =
[
x̃i1 x̃i2 · · · x̃in

]T
,

⌊xi⌋ =
[
⌊xi1⌋ ⌊xi2⌋ · · · ⌊xin⌋

]T
,

⌈xi⌉ =
[
⌈xi1⌉ ⌈xi2⌉ · · · ⌈xin⌉

]T
.

En seguida se averigua si son puntos factibles, y si lo son, se puede saber
si son mejores que el mejor punto entero obtenido. Los tres pasos requeri-
dos (construir las aproximaciones, averiguar si son factibles y comparar con
el mejor punto actual) requieren pocas operaciones y pueden disminuir el
número total de nodos o el número de utilizaciones del simplex.

Ejemplo 2.11. Resolver el problema del ejemplo anterior, con los mismos
criterios, agregando la construcción de las aproximaciones.

max z = 15x1 − 7x2
3x1 + 5x2 ≤ 40
8x1 − 6x2 ≤ 63

x ∈ Zn
+

En el formato usual:

min z = −15x1 + 7x2
3x1 + 5x2 ≤ 40
8x1 − 6x2 ≤ 63

x ∈ Zn
+
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0123456x = (555/58, 131/58)⌈z⌉ = −127⌊x⌋ = (9, 2), z = −121ino factibleiix = (9, 3/2)⌈z⌉ = −124iiix = (69/8, 1)⌈z⌉ = −122ivno factiblevix = (8, 1/6)⌈z⌉ = −118descarte por cotaviix = (9, 2)z = −121vx1 ≥ 10x1 ≤ 9x2 ≤ 1x2 ≥ 2x1 ≥ 9x1 ≤ 8

Ejercicios

2.1 Resuelva

min z = 7x1 + 13x2 + 15x3

2x1 + 4x2 + 5x3 ≥ 23

x1 + x2 + x3 ≥ 3

x ∈ Zn
+

Utilice el método de Gomory y el de bifurcación y acotamiento. Emplee
varios criterios.

Respuesta: x = (0, 2, 3), z = 71.

2.2 Resuelva

max z = 17x1 + 13x2

x1 + 3x2 ≤ 11

9x1 + 5x2 ≤ 19

x ∈ Zn
+

Utilice el método de Gomory y el de bifurcación y acotamiento. Emplee
varios criterios.

Respuesta: x = (1, 2), z = 43.
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2.3 Resuelva

min z = 2x1 + 3x2

10x1 + 11x2 ≤ 29

13x1 + 12x2 ≥ 27

x1 ≤ 2

x2 ≤ 2,

x ∈ Zn
+

Utilice el método de Gomory y el de bifurcación y acotamiento. Emplee
varios criterios.

Respuesta: no hay puntos factibles.

2.4 Resuelva

max z = 12x1 + 10x2 + 11x3

2x1 + 3x2 + 4x3 ≥ 23

7x1 + 6x2 + 5x3 ≤ 83

x ∈ Zn
+

Utilice el método de Gomory y el de bifurcación y acotamiento. Emplee
varios criterios.

Respuesta: x = (1, 0, 15), z = 177.

2.5 Resuelva

max z = 8x1 + 13x2 + 23x3 + 31x4

3x1 + 5x2 + 7x3 + 11x4 ≤ 61

x ∈ Zn
+

Utilice el método de Gomory y el de bifurcación y acotamiento. Emplee
varios criterios.

Respuesta: x = (0, 1, 8, 0), z = 197.

2.6 Resuelva

min z = 12x1 + 5x2 + 14x3 + 7x4

6x1 + 5x2 + 16x3 + 3x4 ≥ 7

xi ∈ {0, 1}, ∀i.
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Utilice el método de Gomory y el de bifurcación y acotamiento. Emplee
varios criterios.

Respuesta: x = (0, 1, 0, 1), z = 12.
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Caṕıtulo 3

Optimización en grafos

3.1. Conceptos iniciales

Un p-grafo está formado por un conjunto no vaćıo y finito de vértices, y
por un conjunto finito de arcos o flechas, donde cada arco va de un vértice
a otro vértice y, por mucho, hay p arcos entre un vértice y otro.

a14αxbcusrqdwe

Figura 3.1.

Esta figura muestra un 3-grafo. Sus vértices son 1, a, 4, α y x. Tiene 9
flechas.

De manera más formal, un p-grafo G es una tripla G = (V,A, f), donde

· V ̸= ∅ finito, es el conjunto de vértices o nodos,

· A finito, es el conjunto de arcos o flechas,
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90 CAṔITULO 3. OPTIMIZACIÓN EN GRAFOS

· f : A→ V × V , tal que

max{
∣∣f−1

(i, j)
∣∣ : (i, j) ∈ f(A)} = p .

La función f asigna a un arco una pareja (i, j) para indicar que la flecha
arranca de i y llega a j. En el ejemplo de la figura 3.1, f(u) = (4, 1), ya
que la flecha u va de 4 hacia 1. La imagen inversa de la pareja de vértices
(1, a) es el conjunto {c}, es decir, es el conjunto de flechas que van desde
1 hasta a. La imagen inversa de la pareja de vértices (1, 4) es el conjunto
{q, r, s}, es decir, es el conjunto de flechas que van desde 1 hasta 4. Como no
hay imágenes inversas con más de 3 elementos y hay una con 3 elementos,
entonces se tiene un 3-grafo.

3.1.1. Grafos dirigidos

Cuando p = 1 se tiene un 1-grafo, grafo, grafo dirigido o digrafo. En
algunos libros, grafo es diferente de digrafo. En este documento, grafo es
exactamente lo mismo que digrafo.

Como en un grafo hay a lo más una flecha de un nodo a otro nodo,
entonces se puede representar, sin ambiguedad, la flecha que va del nodo i
al nodo j por la pareja (i, j).

Un grafo se puede representar por una pareja G = (V,A), donde
V ̸= ∅ finito, es el conjunto de vértices,
A ⊆ V × V es el conjunto de arcos.

1234567

Figura 3.2.

En el grafo de la figura anterior,

V = {1, 2, 3, 4, 5, 6, 7},
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3.1. CONCEPTOS INICIALES 91

A = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5), (4, 6), (5, 7), (7, 6)}.

En muchas de las aplicaciones de los grafos, un p-grafo se puede convertir
en un grafo, introduciendo vértices ficticios cada vez que haya más de un
arco entre dos vértices.

En un grafo, un arco de la forma (i, i) se llama un bucle. En el 3-grafo
de la figura 3.1, el arco w es un bucle.

Si en un p-grafo, las flechas no tienen dirección, se tiene un multigrafo,
y las “flechas” reciben el nombre de aristas.

Denotemos por ℘k(X) el conjunto de subconjuntos de X de k elementos
y por ℘ks(X) = ℘k(X) ∪ ℘s(X).

Un multigrafo se puede representar por una tripla G = (V,E, g), donde
· V es el conjunto de vértices,
· E es el conjunto de aristas,
· g : E → ℘12(V ).

En un multigrafo, una arista une 2 vertices o une un vértice consigo
mismo. La función g evaluada en una arista a, es decir g(a), indica cuáles
vértices une la arista a.

Un grafo es simétrico si (i, j) ∈ A ⇒ (j, i) ∈ A. Un grafo es antisimétri-
co si (i, j) ∈ A ⇒ (j, i) /∈ A.

Si en un grafo antisimétrico sin bucles, las flechas se convierten en aristas,
se tiene un grafo simple. Un grafo simple se puede representar por un pareja
G = (V,E), donde V es el conjunto de vértices, E ⊆ ℘2(V ) es el conjunto de
aristas. O sea, la arista que une el vértice i y el vértice j se puede representar
por el conjunto {i, j}.

Un grafo simple es equivalente a un grafo simétrico sin bucles. O sea,
si en un grafo, siempre que hay un arco (i, j) también está el arco (j, i),
entonces se pueden representar las dos flechas (i, j), (j, i) por la ĺınea o
arista {i, j}.

De aqúı en adelante, mientras no se diga lo contrario, se supone que:

p = 1, es decir, todo se refiere a grafos.

El número de vértices es n, o sea, |V | = n.

El número de arcos es m, o sea, |A| = m.

V = {v1, v2, ...., vn}, o de manera más sencilla, V = {1, 2, ...., n}.
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92 CAṔITULO 3. OPTIMIZACIÓN EN GRAFOS

Si (i, j) ∈ A, se dice que i es el origen del arco, j es el destino del arco,
i es predecesor o antecesor de j, j es sucesor de i.

Se denota por

P (i) = Γ−
i = Γ−(i) = {k ∈ V : (k, i) ∈ A}

el conjunto de predecesores de i y por

S(i) = Γ+
i = Γ+(i) = {j ∈ V : (i, j) ∈ A}

el conjunto de sucesores de i.

En el grafo de la figura 3.2, Γ+(2) = {3, 4, 5}, Γ−(2) = {1}, Γ+(6) = ∅.
El diccionario de sucesores es la lista de los conjuntos de sucesores

de todos los nodos. Es otra manera de representar o de tener información
sobre un grafo. De manera análoga, un grafo se puede representar por el
diccionario de predecesores.

El grafo de la figura 3.2 se pude representar por su diccionario de suce-
sores:

i Γ+(i)

1 2, 3
2 3, 4, 5
3 5
4 5, 6
5 7
6
7 6

Se denota por Γi = Γ(i) = Γ−(i) ∪ Γ+(i) el conjunto de vecinos de i.

Si Γ(i) = ∅, se dice que i es aislado.

Si j ̸= i y j ∈ Γ(i), se dice que j es adyacente a i.

Si U ⊆ V , se define el conjunto (amplio) de vecinos de U

Γ(U) =
∪
u∈U

Γ(u) \ U.

Si i /∈ U ⊆ V y i ∈ Γ(U), se dice que i es adyacente a U .

Dos arcos (i, j), (u, v) son adyacentes si tienen algún vértice en común,
es decir, si {i, j}∩{u, v} ̸= ∅. En particular un arco es adyacente a śı mismo.
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Una cadena de longitud p es una sucesión de arcos de G (i1, j1), (i2, j2),
..., (ip, jp) tal que para k = 2, ..., p-1 los arcos (ik−1, jk−1), (ik, jk) son adya-
centes. y los arcos (ik, jk), (ik+1, jk+1) también son adyacentes.

Un ciclo es una cadena donde el primer arco y el útimo son adyacentes.

Una trayectoria, camino o ruta de longitud p es una cadena (i1, j1),
(i2, j2), ..., (ip, jp) tal que para k = 1, ..., p-1 el destino de cada arco coincide
con el origen del siguiente, es decir, jk = ik+1, o sea, es una sucesión de arcos
de G de la forma (i1, i2), (i2, i3), ..., (ip, ip+1). Se dice que el camino va de
i1 a ip+1 = jp. Este camino también se puede representar simplemente por
los vértices: (i1, i2, ..., ip, ip+1). Por convención, (i), camino formado por un
solo vértice, es de longitud 0.

En el grafo de la figura 3.2, (1, 2, 5, 7) y (1, 2, 4, 5) son caminos de longitud
3

Un circuito es un camino tal que el primer origen es igual al último
destino, o sea, i1 = ip+1.

Si existe un camino de i a j se dice que j es un descendiente de i, y que i
es un ascendiente de j. Un nodo es descendiente y ascendiente de si mismo.
Dados dos nodos diferentes i y j, puede suceder que i sea descendiente de j
y j descendiente de i.

Un vértice i es una ráız del grafo si todos los otros vértices son sus
descendientes. Un vértice j es una antiráız del grafo si es descendiente de
todos los otros vértices. Un vértice i es una fuente del grafo si no tiene
predecesores. Un vértice j es un sumidero del grafo si no tiene sucesores.

El vértice 1 es ráız del grafo de la figura 3.2 y también es una fuente. El
vértice 6 es un sumidero y también antiráız. En la figura 3.3, el nodo 6 es
un sumidero pero no es antiráız.

Se dice que B es una base del grafo G = (V,A) si:
· B ̸= ∅,
· B ⊆ V ,
· i , j ∈ B ⇒ (i, j) /∈ A , (j, i) /∈ A,
· si k /∈ B, entonces es descendiente de algún elemento de B.

A continuación, algunos resultados importantes.
· Siempre existe por lo menos una base.
· No siempre existe una ráız.
· Una ráız es una base de un elemento en un grafo sin bucles.

Si en un grafo G = (V,A) se toma A′ ⊆ A se tiene un grafo parcial
G′ = (V,A′).
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94 CAṔITULO 3. OPTIMIZACIÓN EN GRAFOS

La figura 3.3 muestra un grafo parcial del grafo de la figura 3.2. De él se
han suprimido los arcos (2, 3), (4, 5) y (7, 6).

1234567

Figura 3.3.

Un grafo H = (U,B) es subgrafo de G = (V,A) si U ⊆ V y B ⊆ A.
Como se supone que H es grafo, entonces B ⊆ U×U . Si se toma U ⊆ V y B
formado por los arcos de A que están en U × U , se tiene el subgrafo (U,B)
generado por U .

Al tomar, en el grafo de la figura 3.2, el conjunto U = {1, 2, 4, 5, 6}, es
decir, quitando los nodos 3 y 7, se obtiene el subgrafo de la figura 3.4.

12456

Figura 3.4.

Un camino es elemental si pasa una sola vez por cada uno de sus vértices.

Un camino es prehamiltoniano si pasa por todos los vértices de V .

Un camino prehamiltoniano y elemental se llama hamiltoniano.

Un camino es simple si no pasa más de una vez por sus arcos.
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Un camino es preeuleriano si pasa por todos los arcos de A.

Un camino preeuleriano y simple se llama euleriano.

Un grafo se puede puede representar por la matriz asociada al grafo,
algunas veces llamada matriz de incidencia nodo-nodo. Esta matriz es de
tamaño n× n:

mij = 1 si (i, j) ∈ A

mij = 0 si (i, j) /∈ A .

La matriz asociada al grafo de la figura 3.2 es:

M =



0 1 1 0 0 0 0
0 0 1 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 1 0


También existe la matriz de incidencia nodo-arco, también llamada sim-

plemente matriz de incidencia. Esta matriz es de tamaño n×m, cada fila
corresponde a un nodo, cada columna corresponde a un arco (los arcos deben
tener un orden, primer arco, segundo, ...).

µik = 1 si i es origen o destino del k-ésimo arco,

µik = 0 en caso contrario.

Para el grafo de la figura 3.2, tomando los arcos en el orden A = { (1, 2),
(1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5), (4, 6), (5, 7), (7, 6) }, la matriz de
incidencia nodo-arco es:

1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1


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La matriz de incidencia no contiene toda la información sobre un grafo
dirigido, en cambio un grafo no dirigido se puede representar perfectamente
por su matriz de incidencia.

3.1.2. Detección de descendientes de un nodo

El siguiente algoritmo, muy sencillo, permite conocer los descendientes
de un nodo a. Como caso particular permite saber si a es ráız del grafo.

· Marcar el nodo a.
· Marcar los sucesores de todos los nodos marcados.
· Repetir el proceso hasta que no haya nuevos nodos marcados.

Al final todos los nodos marcados, diferentes de a, son descendientes de a.
Sea p una variable que indica el número de nodos marcados en una iteración
y µ ∈ {0, 1, 2}n definido por

µi =


0 si el nodo i no está marcado,

1 si el nodo i está marcado, pero no sus sucesores,

2 si el nodo i está marcado y sus sucesores también.

96



3.1. CONCEPTOS INICIALES 97

descendientes de un nodo

datos: : V , A, a
µ← 0
µa ← 1
p← 1
mientras p > 0 y min{µi} = 0

p← 0
para i = 1 : n

si µi = 1
para j ∈ Γ+(i)

si µj = 0 ent
µj = 1
p← p+ 1

fin-si
fin-para
µi ← 2

fin-si
fin-para

fin-mientras
µa ← 0

A la salida del algoritmo anterior, todos los nodos marcados, µi ≥ 1, son
descendientes de a.

Ejemplo 3.1. Hallar los descendientes de 1 en el grafo de la figura 3.5.

1234567

Figura 3.5.

Su diccionario de sucesores es:
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i Γ+(i)

1 2, 3
2 3, 4, 5
3 5
4 5, 6
5 7
6
7 6

El proceso de marcación es el siguiente: Marcación de 1 y de sus sucesores
2 y 3.

12, 21, 31, 4, 5, 6, 7

Sucesores de 2: nodos marcados: 4, 5.

12, 22, 31, 41, 51, 6, 7

Sucesores de 3: ningún nodo marcado.

12, 22, 32, 41, 51, 6, 7

Sucesores de 4: nodos marcados: 6.

12, 22, 32, 42, 51, 61, 7

Sucesores de 5: nodos marcados: 7.

12, 22, 32, 42, 52, 61, 71

6 no tiene sucesores.

12, 22, 32, 42, 52, 62, 71

Sucesores de 7: ningún nodo marcado.

12, 22, 32, 42, 52, 61, 72

p = 6 pero para todos los nodos µi ≥ 1. Entonces se acaba el proceso
iterativo, µ1 ← 0. Aśı todos los nodos, diferentes de 1, son descendientes de
1, luego 1 es una ráız. 3

Ejemplo 3.2. Hallar los descendientes de 2 en el grafo del ejemplo anterior.

Sucesores de 2: nodos marcados: 3, 4, 5.

1, 22, 31, 41, 51, 6, 7
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Sucesores de 3: ningún nodo marcado.

1, 22, 32, 41, 51, 6, 7

Sucesores de 4: nodos marcados: 6.

1, 22, 32, 42, 51, 61, 7

Sucesores de 5: nodos marcados: 7

1, 22, 32, 42, 52, 61, 71

6 no tiene sucesores.

1, 22, 32, 42, 52, 62, 71

Sucesores de 7: ningún nodo marcado.

1, 22, 32, 42, 52, 62, 72

p = 5, se empieza una nueva iteración.

En esta nueva iteración p = 0, luego los descendientes de 2 son : 3, 4, 5, 6,
7. 3

3.1.3. Detección de un circuito

Cuando se desea saber si un grafo G = (V,A) tiene circuitos, se puede
utilizar el siguiente algoritmo, el cual utiliza el diccionario de sucesores.

1. Buscar en el diccionario de sucesores, un nodo sin sucesores.

2. Eliminar este nodo de todo el diccionario.

3. Mientras sea posible, repetir los pasos 1 y 2.

El algoritmo anterior acaba de dos formas:
a) El diccionario quedó “vaćıo”.
b) Ya no es posible quitar más nodos.

En el caso a), G no tiene circuitos. En el caso b), con el subgrafo obtenido
por los nodos no suprimidos, se obtiene un circuito.

Ejemplo 3.3. Averiguar si el grafo de la figura 3.6 tiene circuitos.

Su diccionario de sucesores es:
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1234567

Figura 3.6.

i Γ+(i)

1 2, 3
2 3, 4, 5
3 5
4 5, 6
5 7
6
7 6

Suprimir 6.

i Γ+(i)

1 2, 3
2 3, 4, 5
3 5
4 5
5 7
7

Suprimir 7.

i Γ+(i)

1 2, 3
2 3, 4, 5
3 5
4 5
5
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Suprimir 5.

i Γ+(i)

1 2, 3
2 3, 4
3
4

Suprimir 3 y 4.

i Γ+(i)

1 2
2

Suprimir 2 .

i Γ+(i)

1

Se suprime el nodo 1, luego se concluye que el grafo no tiene circuitos. 3

Ejemplo 3.4. Averiguar si el garfo de la figura 3.7 tiene circuitos.

1234567

Figura 3.7.

Su diccionario de sucesores es:
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i Γ+(i)

1 2, 3
2 3, 4
3 5
4 5, 6
5 2, 7
6
7 6

Se suprime 6.

i Γ+(i)

1 2, 3
2 3, 4
3 5
4 5
5 2, 7
7

Se suprime 7.

i Γ+(i)

1 2, 3
2 3, 4
3 5
4 5
5 2

Como no se puede continuar el proceso y el diccionario no está vaćıo, se
puede concluir que hay un circuito. En el subgrafo resultante, figura 3.8,
está el circuito (2, 4, 5, 2).

3.1.4. Grafos no dirigidos

Un grafo no dirigido G se puede representar por la pareja (V,E), donde
V ̸= ∅ es el conjunto finito de vértices y E ⊆ ℘2(V ) es el conjunto de aristas.

En un grafo no dirigido se pueden definir algunos de los conceptos vistos
para grafos (dirigidos).
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12345

Figura 3.8.

El vértice j es vecino de i o adyacente a i si {i, j} ∈ E. Se denota por
Γi = Γ(i) el conjunto de vecinos o de adyacentes a i. Dada la definición de
E ⊆ ℘2(V ), es claro que i /∈ Γ(i).

Si Γ(i) = ∅, se dice que i es aislado.

Si U ⊆ V , se define el conjunto (amplio) de vecinos de U

Γ(U) =
∪
u∈U

Γ(u)∖ U .

Dos aristas diferentes {i, j}, {u, v} son adyacentes si tienen un vértice
en común, es decir, si {i, j} ∩ {u, v} ̸= ∅.

Una cadena de longitud p es una sucesión de aristas de G, {i1, j1},
{i2, j2}, ..., {ip, jp} tal que para k=1, ..., p-1 se cumple {ik, jk} ̸= {ik+1, jk+1}
y jk = ik+1. En este caso se dice que la cadena une los vértices i1 y jp .
Es usual representar la cadena por la (p+ 1)−upla

(i1, i2, ..., ip, jp)

Un grafo no dirigido es conexo si para cualquier par de vértices i y j en
V , con i ̸= j, existe una cadena que los une.

Sea G = (V,E) un grafo no dirigido, U ⊆ V , H el subgrafo generado por
U . Si H es conexo y al agregar a U cualquier vértice, el subgrafo generado
no es conexo, se dice que H es la componente conexa generada por U . Aśı,
un grafo se puede “dividir” en una o varias componentes conexas.

Un ciclo es una cadena (i1, i2, ..., ik+1) de longitud k ≥ 3 donde ik+1 = i1.

Un árbol es un grafo no dirigido conexo y sin ciclos.
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Dado un grafo no dirigido G = (V,E), un árbol generador o árbol de
expansión (“spanning tree”) es un árbol que contiene todos los vértices de
G. Este árbol tiene n − 1 aristas. Un grafo es conexo sssi tiene un arbol
generador.

3.2. Camino más corto

3.2.1. Introducción

Una red (dirigida) es un grafo (dirigido) con una función de costo (o de
longitud), o sea, es una tripla R = (V,A, c), donde (V,A) es un grafo y c es
una función de costo, c : A→ R. El costo se denota c(i, j) = cij .

Sean R = (V,A, c) una red y α = (i1, i2, ..., ip, ip+1) un camino. Se define
el costo del camino o la longitud del camino como la suma de los costos,
es decir,

c(α) =

p∑
k=1

c(ik, ik+1) .

Obsérvese que cuando se tiene una red, la longitud del camino ya no se
refiere al número de arcos del camino, la longitud es la suma de costos o
distancias. Se puede pensar que un grafo es un caso particular de una red,
donde cij = 1 para todo (i, j) ∈ A.

Sean a, z ∈ V , z descendiente de a. Un camino α de a a z es minimal
o es un camino más corto, si no existe otro camino más corto de a a z. Si
existe una ruta más corta de a a z, su costo se llama el costo o distancia
entre a y z:

c∗(a, z) = min{c(α) : α es un camino de a a z} .

Dados a, z ∈ V , z descendiente de a, el problema del CMC (camino
más corto), consiste en obtener, si es posible, c∗(a, z) y un camino α tal
que c∗(a, z) = c(α). Aunque a primera vista, siempre debe existir un valor
mı́nimo, esto no siempre es cierto.

Como el CMC únicamente tiene sentido si a, z ∈ V y z es descendiente
de a, entonces basta con considerar el subgrafo generado por a y sus descen-
dientes. Más aún, se puede entonces simplemente suponer que a es una
ráız de R.
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Un circuito α se llama absorbente si c(α) < 0. Ahora si se puede enun-
ciar, de manera precisa, el resultado que parećıa obvio

Si la red no tiene circuitos absorbentes, entonces el problema de CMC
tiene solución.

La anterior afirmación es simplemente una condición suficiente, mas no
necesaria. Esto quiere decir, que algunas veces, dependiendo de z, puede
existir un CMC en presencia de circuitos absorbentes.

1432564−82357

Figura 3.9.

En la red de la figura 3.9, no se puede calcular c∗(1, 5) ya que siempre
se puede construir un camino cada vez menos largo, por ejemplo,

(1, 2, 3, 4, 2, 3, 4, 2, 3, 4, ...., 2, 3, 4, ...., 2, 5) .

En este mismo grafo, aunque hay un circuito absorbente, c∗(1, 6) = 7 .

Mientras no se diga lo contrario, supongamos que R = (V,A, c) es
una red sin circuitos absorbentes, a es ráız de R.

Para cada elemento i de V , su distancia a a, también llamada potencial,
se denota por

c∗(i) = c∗(a, i) .

Si (i, j) ∈ A entonces

c∗(i) + c(i, j) ≥ c∗(j) .

Sea G′ el grafo parcial obtenido al considerar los arcos (i, j) tales que
c∗(i) + c(i, j) = c∗(j) y R′ la red correspondiente. Entonces a es ráız de G′.
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En general, la ráız de un grafo no es siempre ráız de todos sus subgrafos.

3.2.2. Algoritmo de Dijkstra

Este algoritmo [Dij59] es muy sencillo, de él se han derivado modificacio-
nes más eficientes y generales. Para mayor sencillez supongamos que cij ≥ 0
para todos los arcos. Esto garantiza que la red no tiene circuitos absorbentes.

En este algoritmo se usa el simbolismo gráfico de rótulos. A los nodos, a
los que se ha calculado el valor c∗, se les coloca una “marca” y se dice que
están marcados.

Inicialmente se marca el nodo a y c∗(a) = 0. A los demás nodos se les
da un valor provisional c′(i) =∞. A los sucesores del último nodo marcado
i, se les recalcula el valor provisonal c′ de la siguiente manera:

c′(j)← min
i∈Γ−

j

{ c′(j), c∗(i) + cij }.

De los nodos no marcados, se escoge el de menor c′(k), se asigna este
valor como su potencial, y se marca el nodo escogido. Ahora se repite el
proceso hasta marcar el nodo z.

Para poder reconstruir el camino se requiere saber desde qué nodo se
marcó un nodo, luego es necesario saber desde qué nodo se calculó el valor
c′.

Como los rótulos tienen un significado visual, para mayor sencillez del
esquema del algoritmo, convengamos que un nodo j está marcado si c∗(j) <
∞. Convengamos también que p(j) indica de donde “proviene” j, o sea, el
nodo desde donde se llega a j por el mejor camino (o uno de los mejores)
obtenido hasta ese momento.
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Algoritmo de Dijkstra

datos: : V , A, a, z, MAXIT
para j = 1, ..., n

c∗(j)←∞, c′(j)←∞, p(j)← 0
fin-para
c∗(a)← 0, c′(a)← 0
i← a, k ← 1
mientras c∗(z) =∞ y k < MAXIT

para j ∈ Γ+(i)
t← c∗(i) + cij
si t < c′(j)

c′(j)← t, p(j)← i
fin-si

fin-para
i← argmin j{c′(j) : c∗(j) =∞}
c∗(i) = c′(i)
k ← k + 1

fin-mientras

El algoritmo se acaba de dos maneras:

c∗(z) <∞, es decir, se encontró la distancia de a a z.

k ≥ MAXIT , es decir, hubo demasiadas iteraciones y posiblemente
no haya convergencia, o sea, posiblemente hay circuitos absorbentes o
posiblemente z no es descendiente de a.

Una de las rutas óptimas se encuentra “al revés”, z, p(z), p(p(z)), p(p(p(z))),
..., a.

Ejemplo 3.5. Hallar un camino más corto en la red de la figura 3.10, entre
a = 1 y z = 7.

Esta información gráfica se puede representar por medio de la siguiente
lista de arcos y costos.

107
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12345673621212424

Figura 3.10.

i j cij
1 2 3
1 3 6
2 3 2
2 4 1
2 5 2
3 5 1
4 5 2
4 6 4
5 7 2
7 6 4

Inicialmente se marca el nodo a:

j c∗(j) c′(j) p(j)
1 0 0 0
2 ∞ ∞ 0
3 ∞ ∞ 0
4 ∞ ∞ 0
5 ∞ ∞ 0
6 ∞ ∞ 0
7 ∞ ∞ 0

Para los sucesores de 1, es decir, para los nodos 2 y 3, se recalcula c′(j), por
ejemplo,
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c′(2)← min{ c′(2), c∗(1) + c12 }
c′(2)← min{∞, 0 + 3 } = 3 .

j c∗(j) c′(j) p(j)
1 0 0 0
2 ∞ 3 1
3 ∞ 6 1
4 ∞ ∞ 0
5 ∞ ∞ 0
6 ∞ ∞ 0
7 ∞ ∞ 0

El nodo no marcado de menor c′(j) es el nodo 2, entonces se marca:

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 ∞ 6 1
4 ∞ ∞ 0
5 ∞ ∞ 0
6 ∞ ∞ 0
7 ∞ ∞ 0

Para los sucesores de 2, es decir, para los nodos 3, 4 y 5, se recalcula c′(j),
por ejemplo,

c′(3)← min{ c′(3), c∗(2) + c23 }
c′(3)← min{ 6, 3 + 2 } = 5 .

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 ∞ 5 2
4 ∞ 4 2
5 ∞ 5 2
6 ∞ ∞ 0
7 ∞ ∞ 0
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El nodo no marcado de menor c′(j) es el nodo 4, entonces se marca:

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 ∞ 5 2
4 4 4 2
5 ∞ 5 2
6 ∞ ∞ 0
7 ∞ ∞ 0

Para los sucesores de 4, es decir, para los nodos 6 y 5, se recalcula c′(j):

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 ∞ 5 2
4 4 4 2
5 ∞ 5 2
6 ∞ 8 4
7 ∞ ∞ 0

El nodo no marcado de menor c′(j) es el nodo 3, entonces se marca:

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 ∞ 5 2
6 ∞ 8 4
7 ∞ ∞ 0

Para los sucesores de 3, es decir, para el nodo 5, se recalcula c′(j):
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j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 ∞ 5 2
6 ∞ 8 4
7 ∞ ∞ 0

El nodo no marcado de menor c′(j) es el nodo 5, entonces se marca:

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 5 5 2
6 ∞ 8 4
7 ∞ ∞ 0

Para los sucesores de 5, es decir, para el nodo 7, se recalcula c′(j):

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 5 5 2
6 ∞ 8 4
7 ∞ 7 5

El nodo no marcado de menor c′(j) es el nodo 7, entonces se marca:

j c∗(j) c′(j) p(j)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 5 5 2
6 ∞ 8 4
7 7 7 5
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Como ya se marcó el nodo z = 7, se detiene el proceso. El CMC tiene
longitud 7. Para reconstruir la ruta, se empieza en z = 7 que proviene de
5, que a su vez viene de 2, que viene de 1. Luego uno de los caminos más
cortos es (1, 2, 5, 7).

Obsérvese que el problema acabó porque se marcó z = 7, pero, por ejemplo,
6 no está marcado.

12345673621212424

Figura 3.11.

3.2.3. Algoritmo de Floyd-Warshall

Este algoritmo [Flo62] es más general que el de Dijkstra. Puede ser usado
en una red con costos negativos. Además permite detectar circuitos de costo
negativo. Requiere más espacio para guardar la información necesaria, ya
que utiliza dos matrices n×n, pero da más información, puesto que cuando
no hay circuitos de costo negativo, proporciona la distancia más corta entre
todas las parejas de nodos.

Este algoritmo empieza con dos matrices cuadradas de orden n: D0 y
T 0. A partir de ellas se calculan D1, T 1, luego D2, T 2, ..., hasta llegar a
D = Dn, T = Tn. Aqúı los supeŕındices indican iteración y no potencia
(multiplicación) de matrices.

Si no hay circuitos absorbentes, el elemento dij de la matriz final D
indica la distancia (distancia más corta) entre el nodo i y el nodo j. En
particular, si dij =∞, no hay un camino que va de i a j. La matriz final T
sirve para reconstruir el camino o trayecto de un nodo i a un nodo j.

Las matrices iniciales D0 y T 0 se construyen aśı:
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d0ij =


0 si i = j ;

∞ si i ̸= j , (i, j) /∈ A ;

cij si i ̸= j , (i, j) ∈ A .

t0ij = j ∀i .

La matrices de las iteraciones se calculan mediante las siguientes reglas:

si dk−1
ij ≤ dk−1

ik + dk−1
kj

dkij = dk−1
ij

tkij = tk−1
ij

sino

dkij = dk−1
ik + dk−1

kj

tkij = tk−1
ik

fin-si

Para reconstruir un CMC de i a j se procede de la siguiente manera.
Sea q = tij . Si tij = j entonces el CMC de i hasta j es simplemente el arco
(i, j). Si q ̸= j entonces el CMC de i hasta j, empieza en i, enseguida pasa
por q y después se averigua por el CMC entre q y j.

En lo que sigue se usará parcialmente una notación semejante de Matlab
y Scilab. Si se tiene un vector fila x de p elementos, entonces

(x, t)

es un vector fila en el que t es un elemento adicional en la posicion p+ 1.

Si j es descendiente de i, el siguiente esquema algoŕıtmico permite ob-
tener un camino de costo mı́nimo desde i hasta j, usando las matrices D y
T .

q ← tij
α← (i, q)
k ← 1
mientras q ̸= j y k ≤ n

q ← tqj
λ← (α, q)
k ← k + 1

fin-mientras
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Si en una de las matrices Dk aparece un elemento diagonal negativo, por
ejemplo, dkii < 0, entonces existe un circuito de costo negativo que empieza
en i y acaba en i. Utilizando T k se construye uno de estos circuitos. Se aplica
el mismo esquema anterior con T = T k para obtener un camino entre i e i.

Ejemplo 3.6. Hallar, en la red de la figura 3.12, las distancias más cortas
entre los nodos o encontrar un circuito de costo negativo.

14325614−82357

Figura 3.12.

D0 =



0 2 ∞ ∞ ∞ 7
∞ 0 3 ∞ 5 1
∞ ∞ 0 4 ∞ ∞
∞ −8 ∞ 0 ∞ ∞
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 0

 , T 0 =



1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6


En esta iteración siempre d0ij ≤ d0i1 + d01j , entonces D

1 = D0 y T 1 = T 0.

Por ejemplo, d025 = 5 ≤ d021 + d015 =∞+∞.

D1 =



0 2 ∞ ∞ ∞ 7
∞ 0 3 ∞ 5 1
∞ ∞ 0 4 ∞ ∞
∞ −8 ∞ 0 ∞ ∞
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 0

 , T 1 =



1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6


En esta iteración śı hay cambios. Por ejemplo, d143 = ∞ ≰ d142 + d123 =

−8 + 3 = −5, entonces d243 = −5 y t243 = t142 = 2.
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D2 =



0 2 5 ∞ 7 3
∞ 0 3 ∞ 5 1
∞ ∞ 0 4 ∞ ∞
∞ −8 −5 0 −3 −7
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 0

 , T 2 =



1 2 2 4 2 2
1 2 3 4 5 6
1 2 3 4 5 6
1 2 2 4 2 2
1 2 3 4 5 6
1 2 3 4 5 6



D3 =



0 2 5 9 7 3
∞ 0 3 7 5 1
∞ ∞ 0 4 ∞ ∞
∞ −8 −5 −1 −3 −7
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 0

 , T 3 =



1 2 2 2 2 2
1 2 3 3 5 6
1 2 3 4 5 6
1 2 2 2 2 2
1 2 3 4 5 6
1 2 3 4 5 6


El elemento diagonal d44 = −1, luego hay un circuito, que empieza en 4 y

acaba en 4, de costo negativo. Para obtener uno de estos circuitos se realizan
los siguientes pasos: t44 = 2, luego el circuito empieza en 4 y sigue después
a 2; t24 = 3, luego el circuito continúa por 3; t34 = 4, luego el circuito acaba
en 4. En resumen, el circuito (4, 2, 3, 4) tiene costo −1. 3

Ejemplo 3.7. Hallar las distancias más cortas entre los nodos de la red de
la figura 3.10 (ejemplo 3.5), o encontrar un circuito de costo negativo.

D0 =



0 3 6 ∞ ∞ ∞ ∞
∞ 0 2 1 2 ∞ ∞
∞ ∞ 0 ∞ 1 ∞ ∞
∞ ∞ ∞ 0 2 4 ∞
∞ ∞ ∞ ∞ 0 ∞ 2
∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 4 0


, T 0 =



1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7



D7 =



0 3 5 4 5 8 7
∞ 0 2 1 2 5 4
∞ ∞ 0 ∞ 1 7 3
∞ ∞ ∞ 0 2 4 4
∞ ∞ ∞ ∞ 0 6 2
∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 4 0


, T 7 =



1 2 2 2 2 2 2
1 2 3 4 5 4 5
1 2 3 4 5 5 5
1 2 3 4 5 6 5
1 2 3 4 5 7 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7


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El costo del CMC entre 1 y 6 es 8. Reconstrucción de un camino: t16 = 2,
t26 = 4, t46 = 6. Luego un CMC es (1, 2, 4, 6). 3

3.3. Flujo máximo

3.3.1. Introducción

Sea una red R = (V,A, u) con una única fuente a y un único sumidero z.
Supongamos ahora que la función u : A→ R+ indica la capacidad que tiene
cada arco. En estas notas R+ = [0,∞[. Suponemos además que los valores
de u son enteros, es decir, u : A→ Z+.

Se desea llevar el mayor número de unidades de un mismo producto
desde el nodo a hasta z, respetando las capacidades de los arcos. En cada
vértice, diferente de a y z, se debe cumplir la ley de conservación, “lo que
entra es igual a lo que sale”. O de otra forma, “lo que entra menos lo que
sale es igual a cero”.

Sea xij el número de unidades que van del vértice i al vértice j. El
problema se puede plantear aśı:

max
∑

j∈Γ+(a)

xaj

∑
i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀ j ̸= a, z

xij ≤ uij ∀ (i, j) ∈ A

xij ≥ 0 ∀ (i, j) ∈ A .

También se puede plantear aśı:

max v

∑
i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk =


−v si j = a

0 si j ̸= a, z

v si j = z

xij ≤ uij ∀ (i, j) ∈ A

xij ≥ 0 ∀ (i, j) ∈ A .
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3.3. FLUJO MÁXIMO 117

Fijemos un orden para enumerar los m arcos. Un flujo admisible es un
vector x = (..., xij , ...) ∈ Rm que cumple las restriciones. Para este problema
siempre existe por lo menos uno: x = 0, es decir, xij = 0 para todo arco
(i, j). Para un flujo admisible, la cantidad

v = v(x) =
∑

j∈Γ+(a)

xaj

se llama el valor del flujo.

Se dice que una pareja de conjuntos (X,Y ) es un corte que separa a de
z o, simplemente, un corte, si:

· X ⊆ V
· Y ⊆ V
· a ∈ X
· z ∈ Y
· X ∩ Y = ∅
· X ∪ Y = V .

Por la definición se ve que Y debe ser el complemento de X con respecto
a V . En estas notas, siempre que no se diga lo contrario, y mientras no sea
ambiguo, dado X un subconjunto de V , se denotará el complemento de X
con respecto a V por medio de X̄. Entonces, un corte es una pareja (X, X̄)
tal que:

· X ⊆ V
· a ∈ X
· z /∈ X.

Dado un flujo admisible x y, X y Y dos subconjuntos de V , no nece-
sariamente disyuntos, se define el conjunto de arcos que van de X a Y , el
flujo y la capacidad:

A(X,Y ) = {(i, j) ∈ A : i ∈ X, j ∈ Y }

v(X,Y ) = v(x,X, Y ) =
∑

(i,j)∈A(X,Y )

xij

u(X,Y ) =
∑

(i,j)∈A(X,Y )

uij .

Si se tiene un corte (X, X̄), A(X, X̄) indica el conjunto de arcos que
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118 CAṔITULO 3. OPTIMIZACIÓN EN GRAFOS

empiezan en un nodo de X y acaban en un nodo fuera de X, u(X, X̄) indica
la capacidad del corte y v(X, X̄) indica el valor del flujo del corte.

Se puede demostrar rigurosamente y también se pude intuir que si x es
un flujo admisible y (X, X̄) es un corte, entonces

v = v(x) ≤ u(X, X̄) .

Sea v∗ el máximo valor de los flujos. Como los valores de las capacidades
son enteros, y

v ≤
∑

j∈Γ+(a)

u(a, j),

entonces existe el valor v∗. Un flujo x tal que v(x) = v∗ se llama un flujo
óptimo.

Se deduce entonces que si x es un flujo admisible y existe un corte (X, X̄)
tal que

v(x) = u(X, X̄),

entonces v(x) = v∗, es decir, x es óptimo.

Como V es finito, entonces el número de cortes (que separan a de z) es
finito, luego existe el valor

u∗ = min{u(X, X̄) : (X, X̄) es un corte }.

Un corte (X, X̄) tal que u(X, X̄) = u∗ se llama un corte minimal.

También se puede demostrar que si se tiene x un flujo óptimo entonces
v(x) = v∗ = u∗. En resumen, el teorema de Ford-Fulkerson dice que un flujo
admisible x es óptimo si y sólo si existe un corte (X, X̄) tal que

v(x) = u(X, X̄) .

La demostración del teorema y el algoritmo se basan en las siguientes
ideas. Si se tiene un flujo admisible se construye un corte (X, X̄) de la
siguiente manera:

i) a ∈ X;

ii) si i ∈ X, j ∈ Γ+(i) y xij < uij , entonces j ∈ X;

iii) si i ∈ X, j ∈ Γ−(i) y xji > 0, entonces j ∈ X.
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3.3. FLUJO MÁXIMO 119

Se demuestra que si el flujo es óptimo, entonces z /∈ X, es decir, (X, X̄) es
un corte y que

v(x) = u(X, X̄) .

3.3.2. Algoritmo de Ford-Fulkerson

En este algoritmo, dado un flujo admisible x, se construye X según los
criterios i), ii) y iii). Si se logra obtener un corte, es decir, si z /∈ X, entonces
el flujo es óptimo. Si z ∈ X, entonces el flujo se puede mejorar, es decir, su
valor se puede aumentar.

Para facilitar la construcción de X se coloca a cada nodo, paso a paso, un
rótulo (etiqueta o marca). Este rótulo es sencillamente una pareja (πi, δi).
Los nodos que están en X son precisamente los que tienen rótulo. La cons-
trucción de X es entonces gradual, durante el algoritmo, X indica los
nodos que hasta ese momento han sido rotulados. Sólo al final de un
proceso de rotulación, X representa su verdadero significado.

El valor πi sirve para indicar el nodo que se utilizó para rotular el nodo
i. Además πi tiene un signo. Si πi > 0, entonces se utilizó el nodo πi e
i ∈ Γ+(πi). Si πi < 0, entonces se utilizó el nodo −πi e i ∈ Γ−(−πi).

El valor δi indica el valor en que se podŕıa modificar el flujo en un camino
para mejorar el valor del flujo. Más adelante está la definición precisa de δi.

Durante el proceso de rotulación se utiliza un conjunto o lista L, que
contiene todos los nodos que están rotulados y que no han sido
examinados. Examinar un nodo rotulado quiere decir estudiar sus vecinos
(sucesores o predecesores) no rotulados. Para que un nodo sea examinado
se requiere que ya esté rotulado.

Si i ∈ L, examinar i significa lo siguiente:
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para j ∈ Γ+(i)
si j /∈ X y xij < uij

πj ← i
δj ← min{δi, uij − xij}
j entra a X y a L

fin-si
fin-para
para j ∈ Γ−(i)

si j /∈ X y xji > 0
πj ← −i
δj ← min{δi, xji}
j entra a X y a L

fin-si
fin-para

Para empezar el algoritmo X ← ∅. En seguida se rotula la fuente con
πa ← 0, δa ← ∞, X ← {a} y L ← {a}. Mientras haya nodos en L se
examinan. Cuando no haya más nodos en L, hay dos posibilidades.

Si z /∈ X, entonces x es óptimo.

Si z ∈ X, entonces se puede mejorar el flujo.

Más adelante se verá cómo mejorar el flujo. Después de mejorar el flujo se
vuelve a empezar. El esquema del algoritmo es el siguiente:

xij ← 0 para todo arco (i, j)
hacer

(πa, δa)← (0, ∞)
X ← {a}, L← {a}
mientras L ̸= ∅ y z /∈ X

escoger i en L
examinar i
sacar i de L

fin-mientras
si z ∈ X ent mejorar el flujo
sino x es óptimo

mientras x no es óptimo

Cuando z ∈ X, el flujo se puede mejorar modificando, en algunos arcos
del grafo, el valor xij en una cantidad ε = δz. Se empieza en el nodo z y se
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3.3. FLUJO MÁXIMO 121

hace un regreso mediante los valores πi o −πi hasta llegar a a. De manera
más precisa, este es el esquema del procedimiento:

i← z
mientras i ̸= a

si πi > 0
j ← πi
xji ← xji + ε

sino
j ← −πi
xij ← xij − ε

fin-si
i← j

fin-mientras

Con este procedimiento se construye, desde el final hacia el comienzo,
una cadena aumentante o mejorable y al mismo tiempo se mejora el flujo,

Ejemplo 3.8. Hallar, en la red de la figura 3.13, el máximo flujo entre 1 y
6.

Cuando un nodo tenga rótulo, éste será la pareja (πi, δi). Esta pareja
aparece en el dibujo al lado del nodo. Junto a cada arco habrá dos valores.
El primero indicará xij , el segundo uij .

Se empieza con un flujo factible: xij ← 0 para todos los arcos. Se le
coloca rótulo a la fuente. Ver figura 3.14.

X = {1}, L = {1}. Se examina 1, se rotulan 2 y 3. Ver figura 3.15.

X = {1, 2, 3}, L = {2, 3}. Se examina 2, se rotulan 4 y 5. Ver figura 3.16.

X = {1, 2, 3, 4, 5}, L = {3, 4, 5}. Se examina 3, no se rotula nada.
X = {1, 2, 3, 4, 5}, L = {4, 5}. Se examina 4, se rotula 6. Ver figura 3.17.

X = {1, 2, 3, 4, 5, 6}, L = {5, 6}. Como z = 6 está en X, entonces el flujo
no es óptimo. Se modifica el flujo en la cantidad ε = δ6 = 3, en los arcos
determinados por los nodos 6, 4, 2, 1. Ver figura 3.18. La cadena (1, 2, 4, 6)
era una cadena aumentante.

Se borran todos los rótulos. Se rotula 1. Se examina 1, se rotula 3. Se examina
3, se rotula 4. Se examina 4, se rotulan 6 y 2 (π2 = −4). Ver figura 3.19.

Como z ∈ X = {1, 2, 3, 4, 5, 6, 7}, entonces el flujo no es óptimo. Se modifica
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el flujo en ε = δ6 = 1, en los arcos determinados por los nodos 6, 4, 3, 1. Ver
figura 3.20.

Se borran todos los rótulos. Se rotula 1. Se examina 1, se rotula 3. Se examina
3, se rotula 4. Se examina 4, se rotula 2 (π2 = −4). Se examina 2, se rotula
5. Se examina 5, se rotula 7. Se examina 7, se rotula 6. Ver figura 3.21.

X = {1, 2, 3, 4, 5, 6, 7}, luego el flujo no es óptimo. Se modifica el flujo en
ε = δ6 = 1, en los arcos determinados por los nodos 6, 7, 5, 2, 4, 3, 1.
Obsérvese que en el arco (2, 4) se hace al revés, es decir, se disminuye el
valor de x24. Ver figura 3.22.

Se borran todos los rótulos. Se rotula 1, X = {1}, L = {1}. Se examina 1, se
rotula 3, X = {1, 3}, L = {3}. Se examina 3, no se rotula nada, X = {1, 3},
L = ∅. Ver figura 3.23.

Como L = ∅ y z no está en X = {1, 3}, entonces el flujo es óptimo. Luego
el corte ( {1, 3} , {2, 4, 5, 6, 7} ) es un corte minimal. Su capacidad debe ser
igual al valor del flujo, es decir, 5. Ver figura 3.24.

123456736332445

Figura 3.13.
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12345670, 30, 60, 30, 30, 20, 40, 40, 5(0,∞)

Figura 3.14.

12345670, 30, 60, 30, 30, 20, 40, 40, 5(0,∞)(1, 3)(1, 6)

Figura 3.15.
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12345670, 30, 60, 30, 30, 20, 40, 40, 5(0,∞)(1, 3)(1, 6)(2, 3)(2, 3)

Figura 3.16.

12345670, 30, 60, 30, 30, 20, 40, 40, 5(0,∞)(1, 3)(1, 6)(2, 3)(2, 3)(4, 3)

Figura 3.17.
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12345673, 30, 63, 30, 30, 23, 40, 40, 5

Figura 3.18.

12345673, 30, 63, 30, 30, 23, 40, 40, 5(0,∞)(−4, 2)(1, 6)(3, 2)(4, 1)

Figura 3.19.
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12345673, 31, 63, 30, 31, 24, 40, 40, 5

Figura 3.20.

12345673, 31, 63, 30, 31, 24, 40, 40, 5(0,∞)(−4, 1)(1, 5)(3, 1)(2, 1)(7, 1)(5, 1)

Figura 3.21.

126



3.3. FLUJO MÁXIMO 127

12345673, 32, 62, 31, 32, 24, 41, 41, 5

Figura 3.22.

12345673, 32, 62, 31, 32, 24, 41, 41, 5(0,∞)(1, 4)

Figura 3.23.
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123456736332445

Figura 3.24.
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Ejemplo 3.9. El acueducto de un municipio tiene tres depósitos de agua:
A, B y C. Debe llevar agua a cuatro corregimientos: D, E, F y G. En la
siguiente tabla están las capacidades (en litros/segundo) de cada uno de
los depósitos, las necesidades (l/s) de cada corregimiento y las capacidades
de conducción (l/s) entre cada depósito y cada municipio. Entre algunos
depósitos y algunos corregimientos no hay posibilidad de enviar agua.

D E F G
15 5 10 15

A 22 5 7 10

B 12 10 2 7

C 10 5 5

Se desea conocer la distribución de agua que, respetando las capacidades de
los tanques y de la tubeŕıa existente, satisfaga de la mejor manera posible
las necesidades de los cuatro corregimientos.

Este problema se puede plantear como un problema de flujo máximo,
introduciendo dos nodos ficticios: una fuente denominada 1 y un sumidero
denominado 9. Los tanques serán los nodos 2, 3 y 4. Los corregimientos serán
5, 6, 7 y 8. Ver figura 3.25.

1234567892212105710 10 27 551551015

Figura 3.25.

En la octava iteración se obtiene un corte minimal

X = {1, 2, 6},
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X̄ = {3, 4, 5, 7, 8, 9},
u(1, 3) = 12,

u(1, 4) = 10,

u(2, 5) = 5,

u(2, 8) = 10,

u(6, 9) = 5,

u(X, X̄) = 42.

La solución está en la figura 3.26. En cada arco está el valor del flujo xij y
la capacidad u(i, j).

12345678920 ≤ 2212 ≤ 1210 ≤ 105 ≤ 55 ≤ 7 10 ≤ 1010 ≤ 10 0 ≤ 22 ≤ 75 ≤ 55 ≤ 515 ≤ 155 ≤ 57 ≤ 1015 ≤ 15

Figura 3.26.

3.4. Flujo de costo mı́nimo

Consideremos ahora una red R = (V,A, u, c), donde V es el conjunto
de nodos o vértices, A es el conjunto de arcos o flechas, u es la función de
capacidad de los arcos y c es la función de costo unitario de los arcos. Si (i, j)
es un arco, cij = c(i, j) indica el costo de llevar una unidad del producto
entre el nodo i y el nodo j.

Suponemos, por facilidad, que el grafo (A, V ) es antisimétrico. Si no es
aśı, cuando hay dos arcos (i, j) y (j, i), uno de los dos se puede cambiar por
dos arcos mediante un nodo ficticio.
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Si se tiene un flujo x, éste tiene un costo∑
(i,j)∈A

cijxij .

Dado un flujo admisible x con valor de flujo v, se desea obtener un flujo
también admisible y con el mismo valor v, pero que sea de costo mı́nimo.
En particular, si el flujo admisible considerado es un flujo máximo (de valor
máximo), entonces se tiene un problema de flujo máximo a costo mı́nimo.

A un flujo admisible x se le asocia una red R̃(x) = R̃ = (V, Ã, c̃) definida
por:

si (i, j) ∈ A y xij < uij , entonces (i, j) ∈ Ã, c̃ij = cij ,

si (i, j) ∈ A, y xij > 0 , entonces (j, i) ∈ Ã, c̃ji = −cij .

Los primeros arcos se llaman arcos normales, los segundos se llaman arcos
inversos.

El esquema del algoritmo para encontrar un flujo de valor v y costo
mı́nimo es bastante sencillo. Dado x admisible de valor v, se construye R̃(x).
Si R̃(x) tiene un circuito α de costo negativo, entonces se modifica el flujo
para obtener uno del mismo valor pero de menor costo. El proceso se repite
hasta que R̃(x) no tenga circuitos de costo negativo.

Para encontrar un circuito α de costo negativo en R̃(x), se puede usar
el agoritmo de Floyd-Warshall visto en el caṕıtulo 4.

Cuando se encuentra un circuito α, de costo negativo, en R̃, el flujo x
se modifica de la siguiente manera. Supongamos que por este circuito de R̃
se hace circular un flujo ε. Este flujo debe ser “superpuesto” al flujo x de
R teniendo en cuenta los arcos normales (también están en A) y los arcos
inversos (no están en A).

Sea (i, j) un arco de α. Aunque α no es un conjunto, diremos, abusando
del lenguaje, que (i, j) ∈ α. Sea x′ el flujo modificado de R.

si (i, j) ∈ A , entonces x′ij = xij + ε ;

si (i, j) /∈ A , entonces x′ji = xji − ε ;
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Es claro que a mayor valor de ε, mayor disminución en el costo. Pero si
ε es demasiado grande puede alterar la factibilidad del flujo en R. Entonces
ε debe tomar el mayor valor que no altere la factibilidad:

ε1 = min{uij − xij : (i, j) ∈ α , (i, j) ∈ A} ,
ε2 = min{xji : (i, j) ∈ α , (i, j) /∈ A} ,
ε = min{ε1 , ε2} .

Ejemplo 3.10. Consideremos la red del ejemplo 3.8 con su flujo máximo
y, adicionalmente, una función de costo. Utilicemos la misma convención
gráfica del ejemplo 3.8, es decir, al lado de cada arco hay dos valores, el
primero es el valor xij , el segundo es uij . Encima de ellos estará el costo cij .

12345673, 342, 622, 331, 312, 224, 451, 431, 52

Figura 3.27.

El valor de este flujo es 5 y su costo es 52. ¿Es este costo mı́nimo? Para
saberlo es necesario construir R̃.

Como x12 = 3 ≮ u12 = 3, entonces (1, 2) /∈ Ã.

Como x12 = 3 > 0, entonces (2, 1) ∈ Ã, c̃21 = −4.
Como x13 = 2 < u13 = 6, entonces (1, 3) ∈ Ã, c̃13 = 2.

Como x13 = 2 > 0, entonces (3, 1) ∈ Ã, c̃31 = −2.
...

Entonces se obtiene la red definida por la siguiente lista de arcos y costos:
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i j c̃ij
2 1 −4
1 3 2
3 1 −2
2 4 3
4 2 −3
2 5 1
5 2 −1
4 3 −2
6 4 −5
5 7 3
7 5 −3
7 6 2
6 7 −2

1234567−42−23−3−21−13−3−52−2

Figura 3.28.

A esta red se aplica el método de Floyd-Warshall y se obtiene un circuito
absorbente:

α = (7, 6, 4, 2, 5, 7) , c̃(α) = −2 .

El cálculo de la máxima modificación da:

ε1 = min{4, 2, 3}, ε2 = min{4, 2},
ε1 = 2 , ε2 =∞ ,

ε = 2 .
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Al superponer este flujo del circuito sobre el flujo x, se obtiene un flujo del
mismo valor, pero con costo = 52 + (−2)(2) = 48. Por ejemplo:

(7, 6) ∈ A ⇒ x′76 = x76 + ε = 1 + 2 = 3 ,

(6, 4) /∈ A ⇒ x′46 = x46 − ε = 4− 2 = 2 .

12345673, 342, 620, 333, 312, 222, 453, 433, 52

Figura 3.29.

De nuevo se construye otra red R̃. La lista de arcos y costos es:

i j c̃ij
2 1 −4
1 3 2
3 1 −2
2 4 3
5 2 −1
4 3 −2
4 6 5
6 4 −5
5 7 3
7 5 −3
7 6 2
6 7 −2

A esta red se aplica el algoritmo de Floyd-Warshall y no se obtiene

134



3.5. RUTA CŔITICA 135

1234567−42−23−2−13−35−52−2

Figura 3.30.

ningún circuito de costo negativo, entonces el flujo actual tiene costo mı́nimo.
3

3.5. Ruta cŕıtica

Este método, conocido como CPM (Critical Path Method), fue desa-
rrollado por la compañ́ıa Du Pont de Nemours y extendido por la compañ́ıa
Mauchly Associates. Junto con el método PERT (Project Evaluation and
Review Technique) desarrollado por la Marina de E.E.U.U., se utilizan para
la planeación y control de proyectos.

La diferencia principal consiste en que para CPM los tiempos de las acti-
vidades se suponen conocidos de manera determinista; en PERT los tiempos
tienen consideraciones probabilistas.

Para un proyecto dado se tiene la lista de actividades y el tiempo de
duración de cada actividad. Además se conocen las actividades que deben
ser realizadas antes de cada actividad. Es importante conocer las actividades
que al tener algún retraso producen también un retraso en la terminación
de todo el proyecto. Otras actividades pueden tener pequeños retrasos sin
afectar la terminación de todo el proyecto.

Ejemplo 3.11. Construcción de una casa (tomado de Hillier y Lieberman).
Inicialmente se hace una lista de las actividades necesarias para la realización
del proyecto.
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A1 Excavación
A2 Cimientos
A3 Muros y cerchas
A4 Techos
A5 Instalación eléctrica
A6 Plomeŕıa exterior
A7 Plomeŕıa interior
A8 Pañete interior
A9 Colocación de pisos
A10 Pintura interior
A11 Acabados interiores
A12 Pañete exterior
A13 Pintura exterior
A14 Acabados exteriores

Para cada actividad es necesario conocer el tiempo estimado y las acti-
vidades previas (deben haber terminado para poder empezar la actividad).

Actividad τ Actividades
previas

A1 Excavación 2

A2 Cimientos 4 A1

A3 Muros y cerchas 10 A2

A4 Techos 6 A3

A5 Instalación eléctrica 7 A3

A6 Plomeŕıa exterior 4 A3

A7 Plomeŕıa interior 5 A6

A8 Pañete interior 8 A5 , A7

A9 Colocación de pisos 4 A8

A10 Pintura interior 5 A8

A11 Acabados interiores 6 A9 , A10

A12 Pañete exterior 7 A4 , A6

A13 Pintura exterior 9 A12

A14 Acabados exteriores 2 A13

El proyecto se puede representar por medio de una red con las siguientes
caracteŕısticas:

Cada actividad se representa por un arco.
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Cada actividad tiene un conjunto (puede ser vaćıo) de actividades
previas, es decir, actividades que deben haber acabado antes de ella.

Cada actividad Ak tiene asociado un tiempo estimado de duración τk.
Si la actividad está representada por el arco (i, j), entonces el tiempo
estimado para la actividad se representa por τij .

Los nodos representan eventos en el tiempo, generalmente la termina-
ción de una o varias actividades o el comienzo de otras.

Si una actividad debe preceder a otra, entonces el evento final de la
primera es el evento inicial de la segunda o el evento final de la primera
es un ascendiente del evento inicial de la segunda.

No puede haber dos actividades distintas que tengan el mismo even-
to inicial y el mismo evento final. Si es necesario, se crea un evento
artificial y un arco artificial con tiempo de duración nulo.

El grafo de la red tiene una fuente y ráız, el inicio del proyecto, y un
sumidero, la terminación de todo el proyecto.

Para cada evento, es decir, cada nodo, se define el tiempo más pronto, de-
notado por ti . Es el tiempo en el que ocurrirá el evento si las actividades que
lo preceden acaban los más pronto posible. Para el nodo ráız, supongamos
que es el nodo a, ta = 0.

El proceso de cálculo de los ti se hace hacia adelante. Inicialmemte asig-
namos a todos los otros nodos ti = −1. Un valor negativo indica que no se
ha calculado el verdadero valor de ti.

Mientras sea posible es necesario hacer lo siguiente:

buscar j tal que

tj < 0,

ti ≥ 0 para todo i ∈ Γ−(j) .

A este nodo se le calcula el valor tj :

tj = max{ti + τij : i ∈ Γ−(j)}.

Para cada evento, es decir, cada nodo, se define el tiempo más tard́ıo,
denotado por Ti . Es el último momento en que puede ocurrir el evento sin
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138 CAṔITULO 3. OPTIMIZACIÓN EN GRAFOS

retrasar la terminación del proyecto. Para el nodo sumidero, supongamos
que es el nodo z, Tz = tz.

El proceso de cálculo de los Ti se hace hacia atrás. Inicialmemte asigna-
mos a todos los otros nodos Ti = ∞. El valor infinito indica que no se ha
calculado el verdadero valor de Ti.

Mientras sea posible es necesario hacer lo siguiente:

encontrar un nodo i tal que:

Ti =∞,

Tj <∞ para todo j ∈ Γ+(i) .

A este nodo se le calcula el valor Ti:

Ti = min{Tj − τij : j ∈ Γ+(i)}.

La holgura para un evento i es la diferencia entre el tiempo mas tard́ıo
y el tiempo más pronto:

hi = Ti − ti.

Indica cuanto retraso se puede tolerar para llegar a ese evento sin que se
retrase el proyecto.

La holgura para una actividad (i, j) se obtiene al sustraer del tiempo más
tard́ıo del evento j, el tiempo más pronto del evento i y el tiempo estimado
para la actividad (i, j):

hij = Tj − ti − τij .

Indica cuanto retraso se puede tolerar en la terminación de esa actividad sin
que se retrase el proyecto.

Una ruta cŕıtica es una ruta compuesta por actividades de holgura nula.

3.5.1. De la tabla de actividades a la red

A partir de la tabla de actividades es necesario construir la red asociada.
Este proceso conlleva varias etapas y se puede realizar de varias formas.
Unas más sencillas que pueden producir una red más grande, otras más
sofisticadas que pueden producir una red más pequeña. A continuación una
forma sencilla para construir la red.
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Paso 1. Colocar como nodo de inicio (o nodo ráız) el nodo 1.

Paso 2. Para cada actividad Ak sin actividades anteriores:

• Paso 2a Crear dos nodos nuevos, i y j, y asociar a Ak el arco
(i, j) con duración τij = τk .

• Paso 2b Crear el arco ficticio (1, i) con duración nula.

Paso 3. Considerar cada actividad Ak sin arco asociado, tal que todas
las actividades anteriores a ella tengan arco asociado.

• Paso 3a. Crear dos nodos nuevos, i y j, y asociar a Ak el arco
(i, j) con duración τij = τk.

• Paso 3b. Por cada actividad anterior a Ak , con arco (u, v), se
construye un arco ficticio (v, i) con duración τvi = 0.

El paso 3 se repite mientras sea necesario.

Paso 4a. Cuando el paso 3 se haya efectuado la veces necesarias, crear
un nodo nuevo, z, que será el sumidero o evento final del proyecto.

Paso 4b Para todos los nodos j sin sucesor (correspondientes a las
actividades que no son actividades previas de otras actividades) crear
un arco ficticio (j, z) con τjz = 0

Ejemplo 3.12. Considere la siguiente lista de actividades:

τ Actividades
anteriores

A1 6

A2 9

A3 8 A1 , A2

A4 7 A1 , A2

A5 10 A4

A6 12 A3 , A5

A7 5 A3 , A4

Paso 2.
A1: arco (2, 3), τ23 = 6; arco ficticio (1, 2), τ12 = 0.
A2: arco (4, 5), τ45 = 9; arco ficticio (1, 4), τ14 = 0.
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Paso 3.
A3: arco (6, 7), τ67 = 8; arco ficticio (3, 6), τ36 = 0, arco ficticio (5, 6),
τ56 = 0.
A4: arco (8, 9), τ89 = 7; arco ficticio (3, 8), τ38 = 0, arco ficticio (5, 8),
τ58 = 0.
A5: arco (10, 11), τ10,11 = 10; arco ficticio (9, 10), τ9,10 = 0.
A6: arco (12, 13), τ12,13 = 12; arco ficticio (7, 12), τ7,12 = 0, arco ficticio
(11, 12), τ11,12 = 0.
A7: arco (14, 15), τ14,15 = 5; arco ficticio (7, 14), τ7,14 = 0, arco ficticio
(9, 14), τ9,14 = 0.

Paso 4. z = 16; arcos ficticios (13, 16), (15, 16). Ver figura 3.31.

12345678910111213141516A1, 6A2, 9A3, 8A4, 7A5, 10A6, 12A7, 5

Figura 3.31.

Cálculo de los tj : t1 = 0; t2 = max{0 + 0} = 0; t3 = max{0 + 6} = 6;
t4 = max{0 + 0} = 0; t5 = max{0 + 9} = 9; t6 = max{6 + 0, 9 + 0} = 9;
. . . t16 = max{38 + 0, 22 + 0} = 38.

Cálculo de los Ti : T16 = 38; T15 = min{38−0} = 38; T14 = min{38−5} =
33; T13 = min{38−0} = 38; T12 = min{38−12} = 26; T11 = min{26−0} =
26; T10 = min{26 − 10} = 16; T9 = min{16 − 0, 33 − 0} = 16; . . .
T1 = min{3− 0, 0− 0} = 0.
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i ti Ti

1 0 0
2 0 3
3 6 9
4 0 0
5 9 9
6 9 18
7 17 26
8 9 9
9 16 16

10 16 16
11 26 26
12 26 26
13 38 38
14 17 33
15 22 38
16 38 38

Cálculo de las holguras de las actividades: h(A1) = h23 = T3 − t2 − τ23 =
9− 0− 6 = 3 ; h(A2) = h45 = T5 − t4 − τ45 = 9− 0− 9 = 0 ; . . .

Ak h(Ak)
A1 3
A2 0
A3 9
A4 0
A5 0
A6 0
A7 16

Las actividades A2, A4, A5 y A6 son cŕıticas. 3

3.5.2. Simplificación de una red

Una vez construida la red, es posible simplificarla, suprimiendo algunos
arcos ficticios.

Sea (u, i) un arco ficticio que precede al arco real (una actividad real)
(i, j). Si el nodo i no tiene otros predecesores diferentes de u y no
tiene otros sucesores diferentes de j, entonces se puede suprimir el
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arco ficticio (u, i) y el nodo i. En este caso el arco real (i, j) se cambia
por (u, j).

uijujAkAk

De manera análoga, sea (j, v) un arco ficticio precedido por el arco
real (una actividad real) (i, j). Si el nodo j no tiene otros predecesores
diferentes de i y no tiene otros sucesores diferentes de v, entonces se
puede suprimir el arco ficticio (j, v) y el nodo j. En este caso el arco
real (i, j) se cambia por (i, v).

ijvivAkAk

Puede ser útil renombrar los nodos para eliminar los nodos aislados
provenientes de las modificaciones anteriores.

Ejemplo 3.13. Simplificar la red del ejemplo anterior, calcular el tiempo
más pronto, y el tiempo más tard́ıo para cada nodo, y la holgura de cada
actividad.

remplazar por
(1, 2) (2, 3) (1, 3)
(1, 4) (4, 5) (1, 5)
(9, 10) (10, 11) (9, 11)
(9, 11) (11, 12) (9, 12)
(12, 13) (13, 16) (12, 16)
(14, 15) (15, 16) (14, 16)

La red después de las supresiones está en la figura 3.32. En la figura 3.33
está la red después de renombrar los nodos.

3.5.3. Preproceso de la lista de actividades previas

Antes de construir la red a partir de la lista de actividades previas es
necesario verificar que la lista no da lugar a un circuito y que no hay infor-
mación claramente redundante.
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12345678910111213141516A1, 6A2, 9A3, 8A4, 7A5, 10A6, 12A7, 5

Figura 3.32.

12345678910A1, 6A2, 9A3, 8A4, 7A5, 10A6, 12A7, 5

Figura 3.33.

Circuito de actividades

Ejemplo 3.14. Considere la siguiente lista de actividades:

τ Actividades
anteriores

A1 11

A2 13 A1 , A5

A3 17 A2

A4 19 A3 , A5

A5 23 A3

Es claro que la anterior lista de actividades previas no es adecuada. A2

es requisto para A3; A3 es requisito para A5 y A5 es requisito para A2. 3

En esta etapa de preproceso, a partir de la lista de actividades previas,
se construye un grafo donde a la actividad Ai se le hace corresponder el
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nodo i. Si Ai es un requisito para Aj , entonces (i, j) es un arco del grafo.
Este grafo no debe tener circuitos.

Para la lista de actividades del ejemplo, se obtiene el grafo de la figura 3.34.

12345

Figura 3.34.

El camino (2, 3, 5, 2) es un circuito. Esto se puede observar en la figura
o se puede obtener como resultado del algoritmo de detección de circuitos.
Al final de este algoritmo el diccionario de sucesores queda reducido a

1: 2
2: 3
3: 5
4:
5: 2

Actividades previas redundantes

Si la actividad Ai es un requisito para la actividad Aj que a su vez es
requisito para la actividad Ak, entonces, obviamente, Ai es un requisito para
Ak, pero es innecesario colocar a Ai como actividad anterior a Ak.

Sea (V,A) el grafo (sin bucles) obtenido a partir de la precedencia entre
las actividades (los nodos son las actividades), M ∈ Rn×n su matriz nodo-
nodo asociada y Mk la potencia k-ésima de M . El elemento mk

ij indica el
número de caminos de longitud k que van desde i hasta j (se supone que la
longitud de cada arco es 1). Obviamente si Mk = 0, entonces Mk+1 = 0.

Sea 2 ≤ k ≤ n− 1 (con Mk ̸= 0). Si

mij = 1 y mk
ij > 0

entonces es redundante decir que la actividad i es requisito para la actividad
j.
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Ejemplo 3.15. Considere la siguiente lista de actividades previas.

Actividades
anteriores

A1

A2

A3 A1 , A2

A4 A2

A5 A2 , A3 , A4

A6 A3

A7 A1 , A3 , A6

La matriz asociada al grafo y algunas de sus potencias son:

M =



0 0 1 0 0 0 1
0 0 1 1 1 0 0
0 0 0 0 1 1 1
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


, M2 =



0 0 0 0 1 1 1
0 0 0 0 2 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

M3 =



0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, M4 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Como m17 = 1 y m2
17 > 0, entonces A1 no es un requisito directo para

A7. De manera análoga, son redundantes los arcos (2, 5) y (3, 7). Entonces
la tabla de actividades previas es:
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Actividades
anteriores

A1

A2

A3 A1 , A2

A4 A2

A5 A3 , A4

A6 A3

A7 A6

3.6. Árbol generador minimal

Una red no dirigida es un grafo no dirigido con una función de costo (o
de longitud), o sea, es una tripla R = (V,E, c), donde G = (V,E) es un grafo
no dirigido y c es una función de costo, c : E → R. El costo de la arista
a = {i, j} se denota de varias maneras: c(a) = ca = c(i, j) = cij .

El costo de un grafo parcial o de un subgrafo es la suma del costo de
las aristas. Un árbol generador minimal o árbol generador mı́nimo, AGM,
(MST, minimal spanning tree) es un árbol T = (V,E′), generador de G, de
costo mı́nimo. Algunas veces se habla, de manera precisa, de árbol generador
de costo mı́nimo.

En un grafo no dirigidoG = (V,E), D ⊆ E es un conjunto desconectante
si (V,E ∖ D) no es conexo. Un conjunto desconectante D es un conjunto
corte si no tiene subconjuntos propios desconectantes. Sean X, Y , no vaćıos,
disyuntos, con X ∪ Y = V , EXY denota el conjunto de aristas con un
elemento en X y el otro en Y . Como Y es el complemento, no vaćıo, de
X ̸= ∅, con respecto a V , basta con denotar EXX̄ . Claramente EXX̄ es un
conjunto desconectante pero no necesariamente un conjunto corte.

Algunos resultados sobre árboles son los siguientes (ver [Bal95]):

Un grafo es conexo sssi tiene un arbol generador.

Sea G = (V,E) un grafo no dirigido y H = (V,E′) un subgrafo. Si
H cumple dos de las tres propiedades siguientes, entonces cumple la
tercera.

1. H es conexo.

2. H no tiene ciclos.

3. |E′| = n− 1.
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El conjunto desconectante EXY es un conjunto corte si (V,E ∖EXY )
tiene exactamente dos partes conexas.

Si e es una arista de T un árbol generador del grafo no dirigido G =
(V,E), entonces al suprimir e en T quedan determinados de manera
precisa dos conjuntos X, Y tales que EXY es un conjunto corte.

T es un AGM del grafo no dirigido con costo (V,E, c) si cada arista e
de T es de costo mı́nimo en el conjunto corte definido por e.

Ejemplo 3.16. Uno de los ejemplos t́ıpicos de AGM es análogo al siguiente.
En el campus de la Universidad Nacional hay n edificios y se desea conec-
tarlos con fibra óptica.

Para cada pareja de edificios (i, j), se sabe si la conexión directa entre los
dos edificios es viable o no. Cuando la conexión directa es viable, un estudio
técnico evaluó el costo de la conexión directa.

Se desea conocer cómo debe ser el tendido de la fibra óptica de costo
mı́nimo de tal forma que todos los edificios queden unidos. 3

3.6.1. Detección de un ciclo

Hay varios algoritmos para la detección de un ciclo en un grafo no diri-
gido. La versión presentada aqúı es una adaptación del método de búsqueda
a lo ancho BFS (breadth first search). La versión de BFS en [CLR90] sirve
para encontrar la componente conexa asociada a un nodo i.

Empezando con un nodo cualquiera, por ejemplo el nodo 1, se marcan
sus vecinos y después los vecinos de los nodos marcados. Se considera que
un nodo ha sido estudiado cuando se han marcado sus vecinos. Cuando se
estudian los vecinos del nodo u y v ∈ Γ(u) ya hab́ıa sido marcado antes y la
marcación de u no fue hecha desde v, entonces el grafo tiene un ciclo.

Un nodo puede tener tres estados: no marcado, marcado pero no estu-
diado y estudiado. Algunas veces se utilizan colores: blanco, gris y negro.
Aqúı se utilizan los valores 0, 1, 2.

c(i) =


0 : i no ha sido marcado,

1 : i fue marcado pero no estudiado,

2 : i fue estudiado.

También se requiere saber a partir de que nodo se marca otro. Aśı,
p(j) = i indica que j fue marcado como vecino del nodo i. Inicialmente se
asigna p(i) = 0 para todos los vértices.
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En el algoritmo, Q es la lista (conjunto) de nodos marcados no estudia-
dos. En la lista, los elementos están ordenados por orden de entrada.

datos: V , E, i0
c← 0, p← 0, Q← {i0}, c(i0)← 1
mientras Q ̸= ∅

u← Q1

para v ∈ Γ(u)
si c(v) = 0

c(v)← 1
p(v)← u
Q← Q ∪ {v}

sino
si v ̸= p(u)

hay un ciclo, parar
fin-si

fin-si
fin-para
c(u)← 2
Q← Q∖ {Q1}

fin-mientras
No hay ciclos.

El algoritmo anterior sirve para saber si la componente conexa en la cual
está el vértice i0 tiene o no tiene ciclos. Si al final, no hay ciclos, entonces los
vértices i tales que c(i) > 0 forman el conjunto que genera una componente
conexa (sin ciclos) de G.

Obviamente si G es conexo, al usar el algoritmo anterior una vez se
sabe si tiene o no tiene ciclos. Cuando G tiene varias componentes conexas
(generalmente, no se sabe por anticipado), es necesario utilizar el algoritmo
anterior varias veces, hasta detectar un ciclo o hasta asegurar que en todas
las componentes no hay ciclos.

Ejemplo 3.17. Averiguar si el grafo (V,E) tiene ciclos, donde E está com-
puesto por las aristas:
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{1, 3}
{2, 4}
{3, 4}
{3, 5}
{4, 6}
{5, 6}
{5, 7}
{6, 8}

El diccionario de vecinos es:

i Γ(i)

1 3
2 4
3 1, 4, 5
4 2, 3, 6
5 3, 6, 7
6 4, 5, 8
7 5
8 6

Estudio de u = 1. Nodo v = 3: c(3) = 1, p(3) = 1.

Estudio de u = 3. Nodo v = 1. Nodo v = 4: c(4) = 1, p(4) = 3. Nodo v = 5:
c(5) = 1, p(5) = 3.

Estudio de u = 4. Nodo v = 2: c(2) = 1, p(2) = 4. Nodo v = 3. Nodo v = 6:
c(6) = 1, p(6) = 4.

Estudio de u = 5. Nodo v = 3. Nodo v = 6. Hay un ciclo.

En el subgrafo definido por las aristas
{1, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 6}, {5, 6}

hay un ciclo. Ver figura 3.35.

Ejemplo 3.18. Averiguar si el grafo (V,E) tiene ciclos, donde E está com-
puesto por las aristas:

{5, 4}
{6, 2}
{9, 3}
{5, 8}
{3, 7}
{1, 5}
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17354628 Figura 3.35.

El diccionario de vecinos es:

i Γ(i)

1 5
2 6
3 9, 7
4 5
5 4, 8, 1
6 2
7 3
8 5
9 3

Estudio de u = 1. Nodo v = 5. c(5) = 1, p(5) = 1.
Estudio de u = 5. Nodo v = 4. c(4) = 1, p(4) = 5; nodo v = 8. c(8) = 1,
p(8) = 5; nodo v = 1.
Estudio de u = 4. Nodo v = 5.
Estudio de u = 8. Nodo v = 5.
No hay ciclo en la componente conexa generada por {1, 4, 5, 8}.
De manera análoga se obtiene la componente conexa generada por {2, 6},
que tampoco tiene ciclos.

Finalmente se obtiene la componente conexa generada por {3, 7, 9}, que
tampoco tiene ciclos. 3
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3.6.2. Algoritmo de Kruskal

Este algoritmo hace parte de los algoritmos voraces (“greedy”) para
obtener un AGM de un grafo no dirigido conexo G = (V,E). Su descripción
es muy sencilla. La buena, regular o mala eficiencia del método depende
fuertemente de la manera de implementar cada paso.

El AGM T se va construyendo iterativamente. Siempre T = (V, F ). Lo que
realmente se construye iterativamente es el conjunto de aristas F . Como el
conjunto de vértices de T es V , durante el proceso T se caracteriza simple-
mente por F . Por eso mismo se hablará de F como si fuera exactamente
T .

1. Ordenar las aristas por orden creciente de costo en una lista L. F ← ∅.

2. F ← F ∪ {L1}. L← L∖ {L1}

3. Si |F | = n− 1, entonces parar, ya que T es un árbol generador.

4. Si |L| = 0, entonces parar, G no es conexo.

5. Si F ∪ {L1} no tiene ciclos, entonces F ← F ∪ {L1}, L ← L ∖ {L1}
e ir al paso 3. Sino, L← L∖ {L1} e ir al paso 4.

Ejemplo 3.19. Construir un AGM del grafo no dirigido con costos, cuyas
aristas y costos son:

{1, 2}, 8
{1, 3}, 10
{1, 7}, 10
{2, 4}, 3
{2, 8}, 2
{3, 4}, 5
{3, 5}, 2
{4, 6}, 1
{5, 6}, 7
{5, 7}, 12
{6, 8}, 4
{7, 8}, 9

Al ordenar las aristas de menos a mayor costo se obtiene:
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{4, 6}
{2, 8}
{3, 5}
{2, 4}
{6, 8}
{3, 4}
{5, 6}
{1, 2}
{7, 8}
{1, 3}
{1, 7}
{5, 7}

El árbol empieza con la arista {4, 6}.
L1 = {2, 8} se agrega a T .
L1 = {3, 5} se agrega a T .
L1 = {2, 4} se agrega a T .
L1 = {6, 8} haŕıa ciclo.
L1 = {3, 4} se agrega a T .
L1 = {5, 6} haŕıa ciclo.
L1 = {1, 2} se agrega a T .
L1 = {7, 8} se agrega a T .
Ya hay 7 aristas, luego se tiene un AGM de costo 30. Figura 3.36

17354628810103252171249iiiiiiivvvivii Figura 3.36.
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3.6.3. Algoritmo de Prim

Este también es un algoritmo voraz para obtener un AGM de un grafo no
dirigido conexo G = (V,E). En este algoritmo se van escogiendo los vértices
de manera voraz. Recuérdese que en el algoritmo de Kruskal se escogen
iterativamente las aristas.

El algoritmo empieza con un nodo cualquiera que va a ser el primer
elemento de W . En cada iteración se busca la arista menos costosa entre
aquellas que van de vértices de W a vértices en V ∖W . Esa arista entra al
árbol y el vértice que no estaba en W entra a W . El algoritmo acaba cuando
T tiene n− 1 aristas, o sea, cuando W tiene n vértices.

El algoritmo se va guiando por el conjunto W y el árbol que se va cons-
truyendo se puede representar simplemente por su conjunto de aristas F .
Para facilitar la implementación es conveniente ordenar las aristas de menor
a mayor costo. De manera precisa el algoritmo es el siguiente:

datos: E, c, i0
W ← {i0}
F ← ∅
mientras |W | < n

escoger a = {i, j} ∈ E, i ∈W, j /∈W tal que:
c(a) = min{c(w, k) : {w, k} ∈ EWW̄ }

si EWW̄ = ∅ , ent G no es conexo.
W ←W ∪ {j}
F ← F ∪ {a}

fin-mientras

Ejemplo 3.20. Construir, a partir del nodo 1, un AGM del grafo no dirigido
del ejemplo anterior. Al ordenar las aristas de acuerdo al costo se tiene:
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{4, 6} 1
{2, 8} 2
{3, 5} 2
{2, 4} 3
{6, 8} 4
{3, 4} 5
{5, 6} 7
{1, 2} 8
{7, 8} 9
{1, 3} 10
{1, 7} 10
{5, 7} 12

W = {1}.

a = {1, 2}, c(a) = 8, W = {1, 2}, F = {{1, 2}}.

a = {2, 8}, c(a) = 2, W = {1, 2, 8}, F = {{1, 2}, {2, 8}}.

a = {2, 4}, c(a) = 3, W = {1, 2, 8, 4}, F = {{1, 2}, {2, 8}, {2, 4}}.

a = {4, 6}, c(a) = 1, W = {1, 2, 8, 4, 6}, F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}}.

a = {4, 3}, c(a) = 5, W = {1, 2, 8, 4, 6, 3},
F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}, {4, 3}}.

a = {3, 5}, c(a) = 2, W = {1, 2, 8, 4, 6, 3, 5},
F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}, {4, 3}, {3, 5}}.

a = {8, 7}, c(a) = 9, W = {1, 2, 8, 4, 6, 3, 5, 7},
F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}, {4, 3}, {3, 5}, {8, 7}}. Figura 3.37

Con implementaciones eficaces, el número de operaciones en el algoritmo
de Kruskal es O(m log(n)) y en el de Prim es O(n2). Ver [Pri90].

3.6.4. Versión matricial del algoritmo de Prim

La versión matricial se basa en la definición de una matriz D ∈ Rn×n

definida por

dij =

{
cij si {i, j} ∈ E o {j, i} ∈ E,

∞ en caso contrario.
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17354628810103252171249iiiiiiivvviviiviii Figura 3.37.

Por construcción, D es simétrica. Se utiliza además un sistema de marcas
para las filas de D. Esta marcación se simbolizará por un vector µ ∈ Rn×1

(realmente µ ∈ {0, 1}n×1),

µi =

{
1 si la fila i está marcada,

0 si la fila i no está marcada.

Para facilitar la presentación del algoritmo, utilizaremos una función π que,
a una matriz D y un vector columna µ, asigna la pareja (i, j), posición del
menor elemento de las filas marcadas de D:

(i, j) = π(D,µ) si dij = min{dks : µk = 1 , s = 1, ..., n}.

Si x es un vector y κ una constante, la notación x← κ indica simplemente,
xi ← κ para todo i.

Inicialmente ninguna fila está marcada. Sea i0 el nodo escogido. Se marca
la fila i0 y para la columna i0, a todos sus elementos se les asigna ∞.

Repetir hasta encontrar el AGM o hasta detectar que el grafo no es co-
nexo el siguiente proceso: obtener, por π, la pareja (i, j); la arista {i, j} hará
parte del AGM; marcar la fila j; para la columna j, a todos sus elementos
se les asigna ∞.
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datos: G = (E, c), i0
construir D
µ← 0
µi0 ← 1
D·i0 ←∞
F ← ∅
mientras |F | < n− 1

(i, j)← π(D,µ)
si dij =∞, ent G no es conexo, parar.
F ← F ∪ { {i, j} }
µj ← 1
D·j ←∞

fin-mientras

Ejemplo 3.21. Hallar un AGM para el grafo del ejemplo anterior.

D0 =



∞ 8 10 ∞ ∞ ∞ 10 ∞
8 ∞ ∞ 3 ∞ ∞ ∞ 2

10 ∞ ∞ 5 2 ∞ ∞ ∞
∞ 3 5 ∞ ∞ 1 ∞ ∞
∞ ∞ 2 ∞ ∞ 7 12 ∞
∞ ∞ ∞ 1 7 ∞ ∞ 4
10 ∞ ∞ ∞ 12 ∞ ∞ 9
∞ 2 ∞ ∞ ∞ 4 9 ∞



i0 = 1

D1 =



∞ 8 10 ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ 3 ∞ ∞ ∞ 2
∞ ∞ ∞ 5 2 ∞ ∞ ∞
∞ 3 5 ∞ ∞ 1 ∞ ∞
∞ ∞ 2 ∞ ∞ 7 12 ∞
∞ ∞ ∞ 1 7 ∞ ∞ 4
∞ ∞ ∞ ∞ 12 ∞ ∞ 9
∞ 2 ∞ ∞ ∞ 4 9 ∞



√

F = {{1, 2}}.
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D2 =



∞ ∞ 10 ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ 3 ∞ ∞ ∞ 2
∞ ∞ ∞ 5 2 ∞ ∞ ∞
∞ ∞ 5 ∞ ∞ 1 ∞ ∞
∞ ∞ 2 ∞ ∞ 7 12 ∞
∞ ∞ ∞ 1 7 ∞ ∞ 4
∞ ∞ ∞ ∞ 12 ∞ ∞ 9
∞ ∞ ∞ ∞ ∞ 4 9 ∞



√
√

F = {{1, 2}, {2, 8}}.

D3 =



∞ ∞ 10 ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ 3 ∞ ∞ ∞ ∞
∞ ∞ ∞ 5 2 ∞ ∞ ∞
∞ ∞ 5 ∞ ∞ 1 ∞ ∞
∞ ∞ 2 ∞ ∞ 7 12 ∞
∞ ∞ ∞ 1 7 ∞ ∞ ∞
∞ ∞ ∞ ∞ 12 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 4 9 ∞



√
√

√

F = {{1, 2}, {2, 8}, {2, 4}}.

D4 =



∞ ∞ 10 ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 2 ∞ ∞ ∞
∞ ∞ 5 ∞ ∞ 1 ∞ ∞
∞ ∞ 2 ∞ ∞ 7 12 ∞
∞ ∞ ∞ ∞ 7 ∞ ∞ ∞
∞ ∞ ∞ ∞ 12 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 4 9 ∞



√
√

√

√

F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}}.

D5 =



∞ ∞ 10 ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 2 ∞ ∞ ∞
∞ ∞ 5 ∞ ∞ ∞ ∞ ∞
∞ ∞ 2 ∞ ∞ ∞ 12 ∞
∞ ∞ ∞ ∞ 7 ∞ ∞ ∞
∞ ∞ ∞ ∞ 12 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 9 ∞



√
√

√

√

√
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F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}, {4, 3}}.

D6 =



∞ ∞ ∞ ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 2 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 12 ∞
∞ ∞ ∞ ∞ 7 ∞ ∞ ∞
∞ ∞ ∞ ∞ 12 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 9 ∞



√
√
√
√

√

√

F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}, {4, 3}, {3, 5}}.

D7 =



∞ ∞ ∞ ∞ ∞ ∞ 10 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 12 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 9 ∞



√
√
√
√
√
√

√

F = {{1, 2}, {2, 8}, {2, 4}, {4, 6}, {4, 3}, {3, 5}, {8, 7}}. 3

Ejercicios

3.1 Considere el grafo cuyos arcos son: (2, 1), (3, 5), (4, 2), (4, 10), (10, 3),
(1, 6), (5, 9), (6, 7), (9, 8), (7, 4), (8, 10). Halle los descendientes de 2,
de 3 y de 4.

Respuesta: 2 es ráız; los descendientes de 3 son 3, 5, 9, 8, 10; 4 es ráız.

3.2 Considere el grafo cuyos arcos son: (1, 2), (2, 4), (2, 7), (3, 1), (3, 6),
(4, 8), (5, 3), (5, 9), (6, 1), (6, 7), (7, 4), (7, 10), (9, 6), (9, 11), (10, 8),
(11, 7), (11, 12), (12, 10). Averigüe si tiene circuitos.

Respuesta: no tiene circuitos.

3.3 Considere el grafo cuyos arcos son: (1, 2), (2, 4), (2, 7), (3, 1), (3, 6),
(4, 8), (5, 3), (5, 9), (6, 1), (7, 4), (7, 10), (7, 6), (9, 6), (9, 11), (10, 8),
(11, 7), (11, 12), (12, 10). Averigüe si tiene circuitos.

Respuesta: (7, 6, 1, 2, 7) es un circuito.
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3.4 Halle el camino más corto y la menor distancia entre 1 y 5 en la red
con los siguientes arcos y costos:

(1, 2) 6
(1, 3) 16
(1, 4) 12
(2, 4) 4
(2, 5) 12
(3, 5) 2
(4, 3) 4
(4, 6) 14
(5, 6) 4

Respuesta: el camino más corto es (1, 2, 4, 3, 5) con longitud 16 .

3.5 Halle el flujo máximo y su valor en la red con los siguientes arcos y
capacidades:

(1, 2) 9
(1, 3) 5
(1, 4) 4
(2, 5) 2
(2, 6) 3
(2, 8) 4
(3, 5) 4
(3, 6) 1
(3, 7) 3
(4, 7) 2
(4, 8) 2
(5, 9) 6
(6, 9) 2
(7, 9) 4
(8, 9) 6

Respuesta: x12 = 8, x13 = 5, x14 = 4, x25 = 2, x26 = 2, x28 = 4,
x35 = 4, x36 = 0, x37 = 1, x47 = 2, x48 = 2, x59 = 6, x69 = 2, x79 = 3,
x89 = 6, v(x) = 17.

3.6 Halle un flujo de valor 3, de costo mı́nimo, en la red con los siguientes
arcos, capacidades, flujos y costos:
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(i, j) uij xij cij
(1, 2) 3 2 4
(1, 3) 2 1 1
(2, 4) 3 2 2
(2, 5) 2 1 1
(3, 2) 2 1 2
(3, 5) 1 0 2
(4, 6) 2 2 4
(5, 4) 1 0 2
(5, 6) 3 1 3

Respuesta: costo inicial = 27; flujo de costo mı́nimo: x12 = 1, x13 = 2,
x24 = 0, x25 = 2, x32 = 1, x35 = 1, x46 = 0, x54 = 0, x56 = 3; costo
mı́nimo = 21.

3.7 Halle el flujo máximo y su valor en la red con los siguientes arcos y
capacidades:

(1, 2) 3
(1, 3) 2
(2, 4) 3
(2, 5) 2
(3, 2) 2
(3, 5) 1
(4, 6) 2
(5, 4) 1
(5, 6) 3

Respuesta: x12 = 3, x13 = 2, x24 = 2, x25 = 2, x32 = 1, x35 = 1,
x46 = 2, x54 = 0, x56 = 3, v(x) = 5.

3.8 Halle un flujo de valor 5, de costo mı́nimo, en la red con los siguientes
arcos, capacidades, flujos y costos (resultado del ejercicio anterior):
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(i, j) uij xij cij
(1, 2) 3 3 4
(1, 3) 2 2 1
(2, 4) 3 2 2
(2, 5) 2 2 1
(3, 2) 2 1 2
(3, 5) 1 1 2
(4, 6) 2 2 4
(5, 4) 1 0 2
(5, 6) 3 3 3

Respuesta: el flujo es de costo mı́nimo.

3.9 Halle la duración del proyecto, las holguras y las actividades cŕıticas.

τ Actividades
anteriores

A1 4

A2 4 A1

A3 48 A2

A4 8 A3

A5 12 A4

A6 4 A5

A7 12 A4

A8 16 A4

A9 4 A8

A10 8 A9

A11 8 A6

A12 4 A11

A13 8 A7, A10 , A12

A14 4 A13

A15 8 A14

A16 4 A13

A17 4 A15

A18 4 A17

A19 8 A17

A20 2 A16

A21 1 A18 , A20

A22 0.5 A19 , A20

A23 2 A18 , A19
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Respuesta: el proyecto dura 126 d́ıas. Las únicas holguras no nulas son:
h7 = 16, h16 = 18, h18 = 4, h20 = 18, h21 = 5, h22 = 1.5.

3.10 Halle la duración del proyecto, las holguras y las actividades cŕıticas.

τ Actividades
anteriores

A1 64

A2 28 A1

A3 12 A1

A4 28 A1

A5 8 A3, A4 , A2

A6 16 A5

A7 4 A5

A8 4 A6

A9 8 A6

A10 2 A7

A11 1 A8 , A10

A12 0.5 A9, A10

A13 2 A8, A9

Respuesta: el proyecto dura 126 d́ıas. Las únicas holguras no nulas son:
h3 = 16, h7 = 18, h8 = 4, h10 = 18, h11 = 5, h12 = 1.5.

3.11 Halle la duración del proyecto, las holguras y las actividades cŕıticas.

τ Actividades
anteriores

A1 16 por lo menos 5 d́ıas después del comienzo

A2 14

A3 20 por lo menos 3 d́ıas después del comienzo

A4 8 A1, A2

A5 18 A2

A6 25 A2, A3

A7 15 A4, A5, A6

A8 17 A5, la primera mitad de A3

A9 10 A4, A5, A6

Respuesta: el proyecto dura 63 d́ıas. Las únicas holguras no nulas son:
h1 = 19, h2 = 9, h4 = 19, h5 = 14, h8 = 14, h9 = 5.
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3.12 Encuentre un árbol generador minimal, por los dos métodos, en el
grafo definido por las siguientes aristas y costos:

{6, 5}, 20
{5, 2}, 18
{8, 7}, 8
{6, 8}, 5
{4, 7}, 18
{3, 1}, 14
{7, 6}, 13
{7, 3}, 19
{4, 5}, 11
{1, 6}, 14
{8, 4}, 12
{5, 7}, 1
{3, 8}, 12
{5, 3}, 16

Respuesta: una arbol generador minimal está formado por las aristas
(1, 6), (2, 5), (3, 8), (4, 5), (5, 7), (6, 8), (7, 8). Su costos es 69.
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164 CAṔITULO 3. OPTIMIZACIÓN EN GRAFOS
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Caṕıtulo 4

Optimización no
diferenciable

4.1. Introducción

4.1.1. Ejemplos de problemas de OND

Ejemplo 4.1. Problema de localización. Sean a1, a2, ..., ap puntos conocidos
en Rn. Se desea encontrar un punto x en Rn tal que la suma de las distancias
de x a los puntos sea mı́nima.

min f(x) =

p∑
i=1

||x− ai||2 . 3

Ejemplo 4.2. Un sistema de tasa y sobretasa puede estar modelado por la
función

T (i) =

{
r0i si 0 ≤ i ≤ a,
r0a+ r1(i− a) si i > a,

donde r0 < r1 son la tasa y la sobretasa. Claramente T es continua pero
no es diferenciable en x = a. Un problema de optimización donde se use T
posiblemente sea un problema de OND. Por ejemplo, dados a0, a1, C, u1,
u2, v1, v2,

min f(x1, x2) = T (x1) + T (x2)

x1 + x2 = C

u1 ≤ x1 ≤ v1

u2 ≤ x2 ≤ v2 . 3
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Ejemplo 4.3. Sean f1, f2, ..., fm funciones convexas y diferenciables,

min f(x) = max{f1(x), f2(x), ..., fm(x)}.

La función f es convexa pero posiblemente no es diferenciable. 3

Ejemplo 4.4. Sean f1, f2, ..., fm funciones convexas y diferenciables,

min f(x) = ∥(f1(x), f2(x), ..., fm(x))∥1,
min f(x) = ∥(f1(x), f2(x), ..., fm(x))∥∞ 3

Ejemplo 4.5. Sea g : Rn → Rm×m diferenciable (con otras propiedades
adicionales),

min f(x) = ∥g(x)∥1,
min f(x) = ∥g(x)∥∞.

La norma euclideana tampoco es diferenciable, pero generalmente este
inconveniente se salta utilizando el cuadrado. 3

Ejemplo 4.6. Programación semidefinida, SDP. Dadas A0, A1, A2, ..., An

matrices simétricas p× p, se buscan escalares x1, x2, ..., xn para minimizar
una función lineal con la restricción de que una matriz sea semidefinida
positiva:

min c1x1 + c2x2 + ...+ cnxn

A0 + x1A1 + x2A2 + ...+ xnAn ⪰ 0 3

Ejemplo 4.7. La relajación lagrangiana es una de las fuentes más impor-
tantes de problemas de OND. Consideremos un problema de ONL

min f(x)

g(x) ≤ 0,

x ∈ X,
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donde f : Rn → R y g : Rn → Rp. Cuando hay restricciones “complicadas”,
éstas se pueden eliminar mediante la relajación pero se obtiene un problema
no diferenciable. Supongamos que las restricciones g son dif́ıciles y que las
que definen X son fáciles, entonces la relajación del problema anterior es

min f(x) + λTg(x)

x ∈ X.

Sea
ϕ(λ) = min{f(x) + λTg(x) : x ∈ X}.

El problema dual del problema inicial de ONL es:

max ϕ(λ)

λ ≥ 0,

equivalente a

min −ϕ(λ)
λ ≥ 0.

Este problema es convexo (la función es convexa y el conjunto admisible
también), generalmente no diferenciable y con frecuencia se puede resolver
más fácilmente. 3

Los métodos de descomposición están relacionados con la relajación la-
grangiana. Los problemas de gran tamaño poseen generalmente una estruc-
tura que permite considerar varios problemas pequeños. Los problemas pe-
queños no son completamente independientes, normalmente están relacio-
nados por algunas restricciones.

4.1.2. Algunos conceptos

Sea C un subconjunto de Rn (o de un espacio vectorial). Se dice que C
es convexo si al tomar dos puntos en C, entonces los puntos del segmento
que los une también están en C. Es decir, para todo x, y ∈ C y para todo
λ ∈ [0, 1],

(1− λ)x+ λy ∈ C.
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convexono convexo

Figura 4.1.

Si A ⊆ Rn, se denota por co(A) al convexo más pequeño que contiene a
A (o convexo generado por A o la envolvente convexa de A), es decir,

co(A) es convexo,

A ⊆ co(A),

A ⊆ C convexo ⇒ co(A) ⊆ C.

Este conjunto se puede caracterizar de dos maneras:

co(A) =
∩

A⊆C convexo

C

co(A) = {
k∑

i=1

λix
i : k ≥ 1 , xi ∈ A , λi ≥ 0 ,

k∑
i=1

λi = 1}

Se dice que una función f : C → R, con C convexo y no vaćıo, es convexa,
si al tomar dos puntos de la gráfica de f , los puntos del segmento que los
une quedan por encima o coinciden con los de la gráfica. Es decir, para todo
x, y ∈ C y para todo λ ∈ [0, 1],

f( (1− λ)x+ λy ) ≤ (1− λ)f(x) + λf(y) .

Un vector d ̸= 0 es dirección de descenso de f en x̄ si existe ε > 0 tal
que

f(x̄+ td) < f(x̄) para todo t ∈]0, ε[.

4.1.3. Formas generales

Un problema de OND se puede escribir en una de las formas siguientes:

min f(x) (4.1)
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convexaxf(x)no convexaxf(x)

Figura 4.2.

x ∈ Rn,

min f(x) (4.2)

x ∈ A,

min f(x)

g1(x) ≤ 0 (4.3)

g2(x) ≤ 0

...

gm(x) ≤ 0

min f(x) (4.4)

g(x) ≤ 0

donde A es convexo, las funciones f , g1, g2, ..., gm, g, de variable vectorial
y valor real, son convexas y por lo menos alguna de ellas no es diferenciable.
En realidad se trata de un problema de optimización convexa no dife-
renciable. La palabra convexa no se usa expĺıcitamente, pero se supone. En
general, A denotará el conjunto de puntos factibles, es decir, dependiendo
del problema, puede ser Rn, un conjunto convexo o el conjunto de puntos
que satisfacen todas las desigualdades gi(x) ≤ 0.

Un problema en la forma (4.4) es un caso particular de (4.3). A su vez,
un problema en la forma (4.3) se puede convertir en uno de la forma (4.4),
utilizando

g(x) = max{g1(x), g2(x), ..., gm(x)}.
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Usualmente f es C1 por pedazos, es decir, A se puede dividir en partes
tales que en el interior de cada una de ellas el gradiente f ′(x) existe y es
continuo.

El valor óptimo de f y el conjunto de puntos óptimos se denotarán por:

f∗ = min{f(x) : x ∈ A} si existe,

F ∗ = {x ∈ A : f(x) = f∗}.

4.1.4. Subgradiente, subdiferencial, optimalidad

En la definición de función convexa no hay nada relativo a continuidad.
Sin embargo se puede mostrar que toda función convexa f : C → R es
continua en el interior de C. En cambio la diferenciablilidad no se puede
garantizar. El ejemplo más sencillo es el de la función valor absoluto que es
convexa pero no es diferenciable en x = 0.

Ahora bien, si f es convexa y diferenciable en un punto x̄, entonces la
gráfica de p1, aproximación de primer orden de f alrededor de x̄, o aproxi-
mación af́ın, siempre queda por debajo o coincide con la gráfica de f , es
decir,

p1(x) = f(x̄) + f ′(x̄)T(x− x̄) ≤ f(x) ∀x ∈ C.

x̄y = f(x)y = p1(x)xy

Figura 4.3.

Más aún, si f es diferenciable y C es un convexo abierto, entonces el cum-
plimiento de la desigualdad anterior para todo x y x̄ en C es una condición
necesaria y suficiente para la convexidad de f .

Cuando f no es diferenciable en x̄, entonces no se tiene “la” aproximación
de primer orden de f . Si f es convexa y no diferenciable en x̄, puede haber
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varias aproximaciones de primer orden que pasan por (x̄, f(x̄) ) y quedan
por debajo de f .

y = f(x)x̄xy

Figura 4.4.

Un vector γ es subgradiente de la función convexa f en x̄ si

f(x̄) + γT(x− x̄) ≤ f(x), ∀x ∈ A.

El conjunto de todos los subgradientes de f en un punto x̄ se llama el
subdiferencial de f en x̄ y se denota por

∂f(x̄) = {γ : γ es subgradiente de f en x̄}.

Un punto x donde f no es diferenciable se llama un “kink” o “torcedura”.

Ejemplo 4.8.

f(x) =
1

2
(x− 1) + |x− 1|+ 2, Figura 4.5

∂f(−2) = {−1/2},
∂f(1) = [−1/2, 3/2],
∂f(2) = {3/2}. 3

Ejemplo 4.9.

f(x1, x2) =
1

2
(x1 − 1) + |x1 − 1|+ 2 + 3x2,

∂f(x1, x2) =


{(−1/2, 3)} si x1 < 1,

{(t, 3) : t ∈ [−1/2, 3/2]} si x1 = 1,

{(3/2, 3)} si x1 > 1.
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4.1.5. Algunos resultados

Una dirección d ̸= 0 es admisible en el punto x̄ ∈ A, si existe ε > 0 tal
que

x̄+ td ∈ A para todo t ∈ [0, ε].

Si el ĺımite existe, la derivada direccional de f en x̄ ∈ A, en la dirección
admisible d, está dada por

f ′(x̄, d) = lim
t→0+

f(x̄+ td)− f(x̄)

t
.

Un punto x es estacionario si 0 ∈ ∂f(x).

Si f : A → R es convexa, x̄ ∈ A y d es dirección admisible, entonces
f ′(x̄, d) existe.

Si f : Rn → R es convexa, entonces

∂f(x̄) ̸= ∅ ,
∂f(x̄) es convexo.

Si f : Rn → R es convexa y diferenciable en x̄,entonces

∂f(x̄) = {f ′(x̄)} .

Si f : Rn → R es convexa, entonces las tres afirmaciones siguientes
son equivalentes

0 1 2 3−1−2−3−4

1

2

3

4

xyy = f(x)

Figura 4.5.
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• x̄ ∈ F ∗,

• 0 ∈ ∂f(x̄),

• f ′(x̄; d) ≥ 0, para todo d ∈ Rn.

γ ∈ ∂f(x) sssi γTd ≤ f ′(x; d) para todo d ∈ Rn.

∂f(x) = co(S), donde

S = { lim
xk→x

f ′(xk) : f ′(xk) y el ĺımite existen}

Una función f : Rn → R convexa es diferenciable en casi todas partes
(el conjunto de “kinks” es de medida nula).

d ̸= 0 es dirección de descenso de f (convexa) en x sssi f ′(x; d) < 0.

Si f, g : Rn → R son convexas, entonces

∂(f + g)(x) = ∂f(x) + ∂g(x).

En otras palabras el segundo resultado dice que si f es convexa, entonces
para cada x̄ ∈ C existe por lo menos una aproximación de primer orden
(función af́ın cuya gráfica pasa por (x̄, f(x̄)) ) inferior o igual a f .

Para A y B subconjuntos de un espacio vectorial

A+B = {x+ y : x ∈ A , y ∈ B}.

4.2. Métodos de OND

En OND es usual suponer que se conoce una caja negra u oráculo que,
dado x, puede calcular f(x) y un subgradiente γ ∈ ∂f(x). El oráculo puede
estar dado por una función o por un programa. Figura (4.6)

La primera aproximación a la solución seŕıa utilizar los métodos para
optmización diferenciable (Newton, cuasiNewton, descenso más pendiente,
...), pero esto puede dar resultados catastróficos. En realidad hay dos clases
de métodos. Los métodos directos que tienen en cuenta la no diferenciabili-
dad y los métodos que tratan de suavizar el problema para aplicar métodos
de optimizacón diferenciable (este proceso se puede repetir varias veces).

Dentro de los métodos directos, el más simple es el método del sub-
gradiente, donde dado un punto xk se toma como dirección uno de los
subgradientes
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xf(x)γ ∈ ∂f(x)ORÁCULO

Figura 4.6.

dk = −γk, γk ∈ ∂f(xk),

xk+1 = xk + tkd
k.

El subgradiente utilizado (uno de los posibles), dado por el oráculo, puede
no ser una dirección de descenso. Además generalmente la convergencia es
muy lenta.

Otro de los métodos directos es elmétodo del elipsoide de Nemirovski,
Yudin, Levin, Shor. Generalmente su efectividad práctica es mediocre.

4.3. Método de planos cortantes

El método del plano cortante de Kelley, MPC, [Kel60] y Cheney Golds-
tein [ChG59] sirve para optimización convexa, no necesariamente diferencia-
ble.

min f(x)

gi(x) ≤ 0, i = 1, ...,m,

donde f , gi son convexas. Se usa el siguiente resultado [HiL93].

Sean f : Rn → R convexa y x ∈ Rn. Entonces

f(x) = max
y∈Rn
{f(y) + γT(x− y) : γ ∈ ∂f(y)}.

Sean x1, x2, ..., xk ∈ Rn,
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4.3. MÉTODO DE PLANOS CORTANTES 175

f̌(x) = max
1≤i≤k

{f(xi) + γi
T
(x− xi) : γi ∈ ∂f(xi)},

llamada aproximación af́ın (o “lineal”) por trozos y tangencial de f (figura
4.7). Obviamente

f̌(x) ≤ f(x).

y = f(x)y = f̌(x)xy

Figura 4.7.

4.3.1. Problema no restringido

Consideremos inicialmente el problema no restringido

min f(x) . (4.5)

Si éste se remplaza por
min f̌(x) (4.6)

se obtiene una relajación del problema. Sea v = f̌(x), entonces

v ≥ f(x1) + γ1
T
(x− x1),

...

v ≥ f(xk) + γk
T
(x− xk).

Una formulación equivalente a la relajación (4.6) es el siguiente problema
de OL

min
x,v

v
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176 CAṔITULO 4. OPTIMIZACIÓN NO DIFERENCIABLE

v ≥ f(x1) + γ1
T
(x− x1),

...

v ≥ f(xk) + γk
T
(x− xk).

Este problema se puede escribir de forma más convencional

min
x,v

0Tx+ v

γ1
T
x− v ≤ γ1

T
x1 − f(x1) (4.7)

...

γk
T
x− v ≤ γk

T
xk − f(xk).

Sea (xk+1, vk+1), solución del problema anterior. Si

vk+1 = f(xk+1)

entonces se tiene la solución del problema inicial. Sino, se agrega a la defi-
nición de f̌ otra función af́ın

x 7→ f(xk+1) + γk+1T
(x− xk+1).

Esto se traduce por otra restricción:

v ≥ f(xk+1) + γk+1T
(x− xk+1),

que también se puede escribir

γk+1T
x− v ≤ γk+1T

xk+1 − f(xk+1). (4.8)

Esta restricción recibe el nombre de corte de optimalidad. El método
anterior es convergente. Si f está definida por un número finito de partes
lineales (o afines), entonces el método acaba en un número finito de pasos.

Para garantizar que el problema (4.7) tenga solución finita, se agregan
restricciones de caja para x y cota inferior para v (no es necesario colocar
una cota superior para v).

u1 ≤ x1 ≤ w1

u2 ≤ x2 ≤ w2 (4.9)

...
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4.3. MÉTODO DE PLANOS CORTANTES 177

un ≤ xn ≤ wn

v ≤ v

Estas cotas deben ser suficientemente amplias pero es innecesario que lo sean
demasiado Es posible que después de un número suficiente de iteraciones,
las restricciones de caja no sean necesarias. En lo que sigue, B denotará
el conjunto de puntos (x, v) que satisfacen las restricciones de caja. Aśı el
problema de OL que se resuelve en cada iteración es

min
x,v

0Tx+ v

γ1
T
x− v ≤ γ1

T
x1 − f(x1) (4.10)

...

γk
T
x− v ≤ γk

T
xk − f(xk)

(x, v) ∈ B.

Si ξ = (x, v) ∈ Rn+1, el problema anterior se puede escribir de manera
compacta

min ξn+1

Mξ ≤ c.

En la primera iteración

M =



In 0

−In 0

0 −1
γ1

T −1


, c =



w

−u

−v
α


,

con α = γ1
T
x1− f(x1). El esquema general del algoritmo para el método de

planos de corte no restringido es:
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método de planos de corte NO restringido

datos: f , x1, u, w, v, ε, MAXIT , tales que u ≤ x1 ≤ w

las restricciones iniciales son las de caja
v1 ← −∞
para k = 1, ...,MAXIT

con xk el oráculo proporciona: f(xk), γ ∈ ∂(f, xk)
si f(xk)− vk ≤ ε , parar
α← γTxk − f(xk)
agregar el corte γTx− v ≤ α
obtener (xk+1, vk+1) solución de (4.10)

fin-para

Ejemplo 4.10. Aplicar el método de planos de corte al problema de loca-
lización con los puntos

a1 = (−4,−3),
a2 = (−1,−2),
a3 = (−2,−8),

y con los datos iniciales

x1 = (−1,−1) ,
u = (−8,−8) ,
w = (0, 0) ,

v = 1 ,

ε = 10−6 .

Sea a un punto de Rn y

φ(x) = ||x− a||2 =

(
n∑

i=1

(xi − ai)
2

)1/2

En los puntos donde φ es diferenciable, el único subgradiente es el gradiente.
Donde no es diferenciable se puede tomar el vector nulo.

γ(φ, x) =


x− a

φ(x)
si x ̸= a,

0 si x = a.

178
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Para

f(x) =

p∑
i=1

||x− ai||2

entonces

γ(f, x̄) =

p∑
i=1

γ(||x− ai||2 , x̄)

f(x1) = 11.6766 ,

γ1 = (0.9735, 2.5446) .

En la primera iteración

M =



1 0 0
0 1 0
−1 0 0
0 −1 0
0 0 −1
0.9735 2.5446 −1

 , c =



0
0
8
8
−1
−15.1947

 .

k xk
1 xk

2 vk f(xk) γ1 γ2 α
1 -1.0000 -1.0000 -1000000 11.6766 0.9735 2.5446 -15.1947

2 0.0000 -5.5783 1.0000 11.6151 1.7465 -0.7338 -7.5217

3 -8.0000 -2.5178 1.0000 19.1755 -2.7283 0.7204 0.8373

4 -2.8468 -3.0116 4.7599 8.3187 -0.0444 0.4954 -9.6841

5 -4.2835 -8.0000 5.9114 14.1312 -1.5367 -1.8756 7.4561

6 -2.6218 -5.5790 7.0369 9.3531 -0.1902 -0.8242 -4.2559

7 -1.5020 -3.9475 7.7953 8.7658 0.8074 -0.3305 -8.6740

8 -2.5311 -3.8339 7.8974 8.2779 0.1023 -0.2693 -7.5042

9 -4.1773 -3.6521 8.0606 9.1195 -1.5974 -0.5321 -0.5034

10 -3.5722 -3.5360 8.0912 8.4145 -0.5670 -0.3511 -5.1478

11 -3.1003 -3.4454 8.1151 8.2391 -0.1624 -0.0385 -7.6029

22 -2.7653 -3.4505 8.2123 8.2125 0.0009 0.0086 -8.2446

23 -2.7687 -3.4615 8.2124 8.2125 -0.0015 -0.0020 -8.2015

24 -2.7551 -3.4587 8.2125 8.2125 0.0053 0.0016 -8.2325

25 -2.7637 -3.4567 8.2125 8.2125 0.0013 0.0028 -8.2257

26 -2.7607 -3.4622 8.2125 8.2125 0.0023 -0.0021 -8.2116

27 -2.7647 -3.4600 8.2125 8.2125 0.0006 -0.0003 -8.2131

28 -2.7697 -3.4571 8.2125 8.2125 -0.0017 0.0020 -8.2150

29 -2.7679 -3.4592 8.2125 8.2125 -0.0009 0.0002 -8.2105

30 -2.7658 -3.4580 8.2125 8.2125 0.0002 0.0015 -8.2181
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En cada iteración, el corte que se agrega es γ1x1 + γ2x2 − v ≤ α.

La solución del problema de localización con tres puntos de R2 no ali-
neados tiene una propiedad geométrica interesante: la medida del ángulo
∡ aixaj , con i ̸= j, es de 120 grados. 3

4.3.2. Problema restringido

Muchos de los problemas de optimización (no lineal) diferenciable, se escri-
ben en la forma:

min f(x)

gi(x) ≤ 0, i = 1, ...,m,

donde las funciones f , gi son diferenciables. El problema anterior también
se escribe usualmente

min f(x)

g(x) ≤ 0,

donde g : Rn → Rm es diferenciable.

Consideremos un problema de OND en la forma 4.4, es decir, con una
sola restricción

min f(x) (4.11)

g(x) ≤ 0,

donde f y g son funciones (de variable vectorial y valor real) convexas.
Para resolver el problema anterior, éste se remplaza por una relajación, se
cambian f y g por aproximaciones afines por trozos,

min f̌(x) (4.12)

ǧ(x) ≤ 0.

De manera más precisa, sean x1, x2, ..., xk en Rn,

K = {1, 2, ..., k},
K = Ik ∪ Jk ,

Ik ∩ Jk = ∅ ,

f̌Jk(x) = max
i∈Jk
{f(xi) + γ(f, xi)

T
(x− xi)} ,
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ǧIk(x) = max
i∈Ik
{g(xi) + γ(g, xi)

T
(x− xi)} ,

entonces se va a encontrar la solución de

min f̌Jk(x) (4.13)

ǧIk(x) ≤ 0.

De nuevo, haciendo v = f̌JK (x), el problema anterior se convierte en

min
x,v

v

v ≥ f(xi) + γ(f, xi)
T
(x− xi), i ∈ Jk ,

0 ≥ g(xi) + γ(g, xi)
T
(x− xi), i ∈ Ik .

Escribiendo en la forma usual,

min
x,v

0Tx+ v

γ(f, xi)
T
x− v ≤ γ(f, xi)

T
xi − f(xi), i ∈ Jk , (4.14)

γ(g, xi)
T
x ≤ γ(g, xi)

T
xi − g(xi), i ∈ Ik .

Para garantizar la existencia de solución finita se utilizan las restricciones
de caja (4.9) y B denota el conjunto de puntos que las cumplen. Aśı el
problema de OL es

min
x,v

0Tx+ v

γ(f, xi)
T
x− v ≤ γ(f, xi)

T
xi − f(xi), i ∈ Jk , (4.15)

γ(g, xi)
T
x ≤ γ(g, xi)

T
xi − g(xi), i ∈ Ik ,

(x, v) ∈ B.

Para completar la descripción del método, es necesario precisar la construc-
ción de Ik y Jk. El conjunto Ik tiene los ı́ndices de los puntos no factibles y
Jk los ı́ndices de los puntos factibles,

Ik = {1 ≤ i ≤ k : g(xi) > 0},
Jk = {1 ≤ i ≤ k : g(xi) ≤ 0}.

Cuando xi no es factible, se tiene un “punto” de I (punto cuyo supeŕındice
está en I) y se construye un corte de factibilidad. Cuando xi es factible, se
tiene un “punto” de J (punto cuyo supeŕındice está en J) y se construye
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un corte de optimalidad. El oráculo sigue teniendo una entrada, pero ahora
tiene tres salidas: χF (x) (la función indicatriz de F indica si el punto está
en F o no), el valor g(x) o f(x) y un subgradiente de g o de f (figura 4.8).
De manera más precisa, el oráculo produce χF (x), h(x) y γ,

si g(x) > 0, entonces χF (x) = 0 ,

h(x) = g(x) ,

γ = γ(g, x) ,

si g(x) ≤ 0, entonces χF (x) = 1 ,

h(x) = f(x) ,

γ = γ(f, x) .

También se puede tener, en lugar de un solo oráculo, dos oráculos, uno para
f y otro para g.

xχF (x)h(x)γORÁCULO

Figura 4.8.

La interpretación geométrica de los cortes de factibilidad tiene que ver
con una aproximación exterior del conjunto factible

F = {x ∈ Rn : g(x) ≤ 0}.

Sea B̄ ⊆ Rn la restricción de B ⊆ Rn+1 a las variables xj , es decir,

B = B̄ × [ v, ∞ [ .

Si al problema relajado (4.13) se le agregan las restricciones de caja para x
se tiene

min f̌Jk(x) (4.16)

ǧIk(x) ≤ 0

x ∈ B̄,
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o también

min f̌Jk(x) (4.17)

x ∈ Fk,

donde
Fk = B̄ ∩ {x : ǧIk(x) ≤ 0}

Estos conjuntos están encajados y todos deben contener a F ,

B̄ = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fk ⊇ Fk+1 ⊇ · · · ⊇ F.

En términos de conjuntos, un corte C es simplemente un semiespacio definido
por medio de un hiperplano H que “corta”,

H = {x ∈ Rn : pTx = α},
C = {x ∈ Rn : pTx ≤ α}.

Si xk+1 ∈ Fk no es factible (g(xk+1) > 0), entonces el corte debe cumplir

xk+1 /∈ C

F ⊆ C,

aśı

Fk+1 = Fk ∩ C

Fk+1 ⊇ F,

xk+1 /∈ Fk+1

El corte definido por

γ(g, xk+1)Tx ≤ γ(g, xk+1)Txk+1 − g(xk+1)

cumple exactamente esas propiedades. Comprobemos (mientras no haya
ambigüedad γ = γ(g, xk+1). Un punto y ∈ C si y solamente si γTxk+1 −
g(xk+1)− γTy ≥ 0.

Veamos que F ⊆ C. Sea x ∈ F , entonces

g(x) ≤ 0.

Como g es convexa,

g(xk+1) + γT(x− xk+1) ≤ g(x)
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luego

g(xk+1) + γT(x− xk+1) ≤ 0.

Entonces

γTx ≤ γTxk+1 − g(xk+1),

es decir, x ∈ C. Veamos ahora que xk+1 /∈ C.

γTxk+1 − g(xk+1)− γTy = γTxk+1 − g(xk+1)− γTxk+1

= −g(xk+1) < 0,

puesto que xk+1 no es factible. Entonces xk+1 /∈ C.

FF0FkHk+1P1P2P3P4P5P6P7P8P9

Figura 4.9.

En la figura 4.9, F0 está determinado por P1P2P3P4, Fk por P1P5P6P7P4,
el corte es el semiespacio definido por el hiperplano Hk+1 en la dirección de
la flecha, el conjunto Fk+1 estará definido por P1P5P6P7P8P9 .

Los cortes pueden “tocar” el conjunto F o no tocarlo. La situación ideal
se tiene cuando los cortes tocan a F y lo envuelven adecuadamente (no
se concentran en una parte de la frontera de F . Esto requiere un manejo
sofisticado y no siempre se logra completamente.

El esquema general del algoritmo para el método de planos de corte
restringido es:
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método de planos de corte restringido

datos: f , g, x1 ∈ F , u, w, v, ε, MAXIT ,

las restricciones iniciales son las de caja
v1 ← −∞
para k = 1, ...,MAXIT

con xk el oráculo proporciona: χF (x
k), h(xk), γ(xk)

si χF (x
k) = 1

ρ← −1
si h(xk)− vk ≤ ε , parar

sino
ρ← 0

fin-si
α← γTxk − h(xk)
agregar el corte γTx+ ρv ≤ α
obtener (xk+1, vk+1) solución de (4.15)

fin-para

Ejemplo 4.11. Aplicar el método de planos de corte para minimizar

min f(x) =
3∑

i=1

||x− ai||2 .

con la restricción

max{−12 + 3(x1 + 4)2 − x2, 5 + 4(x1 + 5)2 + x2} ≤ 0,

con los puntos

a1 = (−4,−3),
a2 = (−1,−2),
a3 = (−2,−8),

y con los datos iniciales

x1 = (−4,−10) ,
u = (−20,−20) ,
w = (0, 0) ,

v = 1 ,

ε = 10−6 .
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Se puede suponer que g(x) = max{g1(x), g2(x)}. Una manera de cons-
truir un subgradiente es la siguiente:

γ(g, x) =

{
γ(g1, x) si g(x) = g1(x),

γ(g2, x) si g(x) = g2(x).

k xk
1 xk

2 vk χ
F

f(xk) γ1 γ2 ρ α
1 -4.0000 -10.0000 -100000 1 18.3724 -1.0582 -2.6434 -1 12.2948

2 0.0000 0.0000 1.0000 0 105.0000 40.0000 1.0000 0 -105.0000

3 -2.6250 0.0000 1.0000 0 27.5625 19.0000 1.0000 0 -77.4375

4 -4.0757 0.0000 1.0000 0 8.4176 7.3947 1.0000 0 -38.5561

5 -5.2140 0.0000 1.0000 0 5.1832 -1.7119 1.0000 0 3.7426

6 -4.6448 -4.2088 3.7462 0 1.2958 2.8414 1.0000 0 -18.7025

7 -4.9294 -4.6960 5.3351 0 0.3239 0.5648 1.0000 0 -7.8039

8 -5.0717 -4.9396 6.1296 0 0.0810 -0.5736 1.0000 0 -2.1117

9 -5.0005 -4.9798 6.1605 0 0.0202 -0.0044 1.0000 0 -4.9780

10 -4.9650 -4.9998 6.1760 0 0.0051 0.2802 1.0000 0 -6.3960

11 -4.9472 -5.0099 6.1837 0 0.0013 0.4225 1.0000 0 -7.1012

12 -4.9561 -5.0074 6.1866 0 0.0003 0.3513 1.0000 0 -6.7490

13 -4.9516 -5.0093 6.1868 0 0.0001 0.3869 1.0000 0 -6.9252

14 -4.9494 -5.0102 6.1870 0 0.0000 0.4047 1.0000 0 -7.0132

15 -4.9505 -5.0098 6.1870 0 0.0000 0.3958 1.0000 0 -6.9692

16 -4.9500 -5.0100 6.1870 0 0.0000 0.4002 1.0000 0 -6.9912

17 -4.9497 -5.0101 6.1870 1 11.3892 -1.9248 -0.7984 -1 2.1385

40 -4.7460 -5.2581 11.2228 0 0.0000 2.0321 1.0000 0 -14.9026

41 -4.7465 -5.2570 11.2228 0 0.0000 2.0277 1.0000 0 -14.8815

42 -4.7468 -5.2564 11.2228 1 11.2232 -1.7765 -0.8986 -1 1.9332

43 -4.7560 -5.2381 11.2231 0 0.0001 1.9521 1.0000 0 -14.5224

44 -4.7538 -5.2425 11.2231 0 0.0000 1.9699 1.0000 0 -14.6069

45 -4.7527 -5.2447 11.2231 0 0.0000 1.9788 1.0000 0 -14.6492

46 -4.7532 -5.2436 11.2231 0 0.0000 1.9743 1.0000 0 -14.6281

47 -4.7529 -5.2442 11.2231 1 11.2232 -1.7813 -0.8946 -1 1.9346

48 -4.7499 -5.2503 11.2231 0 0.0000 2.0011 1.0000 0 -14.7553

49 -4.7507 -5.2486 11.2231 0 0.0000 1.9944 1.0000 0 -14.7234

50 -4.7511 -5.2478 11.2231 1 11.2231 -1.7799 -0.8958 -1 1.9341

En programación lineal de gran tamaño, el método de descomposición
de Dantzig-Wolfe es “método dual” del método de planos de corte.

4.3.3. Método de haces penalizados

El método de planos cortantes funciona muy bien en algunos problemas,
en otros puede ser inestable, muy lento (ver ejemplo en [BoG97] p. 90) o
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la sucesión {f(xk)} puede no ser una sucesión de descenso. Se dice que un
método es de descenso si la sucesión {f(xk)} es de descenso, es decir,

f(xk+1) < f(xk) para todo k.

El método de planos de corte para

min f(x)

resuelve en la iteración k el problema relajado

min f̌(x)

u ≤ x ≤ w.

Introduciendo v = f̌(x) el anterior problema de convierte en (4.10), proble-
ma de OL. El método de haces penalizados introduce una penalización en
la función objetivo para evitar que haya demasiado movimiento entre xk y
xk+1

min f̌(x) +
1

2
µk||x− xk||22
u ≤ x ≤ w,

que utiliza el parámetro µk > 0. De nuevo introduciendo v = f̌(x) el proble-
ma anterior se convierte en un problema de optimización cuadrática (función
objetivo cuadrática con restricciones lineales)

min
x,v

0Tx+ v+
1

2
µk||x− xk||22

γ1
T
x− v ≤ γ1

T
x1 − f(x1) (4.18)

...

γk
T
x− v ≤ γk

T
xk − f(xk)

(x, v) ∈ B.

4.4. ACCPM

En el método de plano cortante el punto (xk+1, vk+1) se escoge como la
solución del problema relajado

min ξn+1
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Mξ ≤ c

donde ξ = (x, v). La matriz M y el vector columna c se construyen a partir
de las restricciones

x ≤ w,

−x ≤ −u, (4.19)

v ≤ v̄0,

−v ≤ −v 0,

γ(g, xi)Tx ≤ γ(g, xi)Txi − g(xi), i ∈ Ik,

γ(f, xi)Tx− v ≤ γ(f, xi)Txi − f(xi), i ∈ Jk .

La única diferencia con lo visto anteriormente está dada por la restricción
adicional v ≤ v̄0 que establece una cota superior para v. El conjunto

Lk = L = {ξ ∈ Rn+1 : Mξ ≤ c}

se llama el conjunto de localización. El sub́ındice k indica que el conjunto
de localización depende de k y cambia en cada iteración (la matriz M y
c también dependen de k). Se supone que en cualquier iteración, el punto
ξ∗ = (x∗, v∗) está en L. Aśı, el problema relajado que se resuelve en una
iteración del método de planos cortantes es

min ξn+1

ξ ∈ L.

Hay otras maneras de escoger ξk+1 . Una de ellas es el método de
los centros. El punto ξk+1 es simplemente el “centro” de L. Hay varias
definiciones de centro, una de ellas es el centro anaĺıtico. Usando este centro
se obtiene el ACCPM, Analytic Center Cutting Plane Method, [GoHV92],
un método eficiente de planos de corte para optimización convexa. Se puede
utilizar en los dos casos, no diferenciable o diferenciable. Generalmente para
problemas diferenciables hay métodos más eficientes.

4.4.1. Centro anaĺıtico

Sean A ∈ Rm×n, n > m, c ∈ Rn×1, Y = {y ∈ Rm×1 : ATy ≤ c}
acotado y de interior no vaćıo. Se define el centro anaĺıtico de Y , definido
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por AT y c, y denotado por ca(AT, c), al único punto y solución del
problema de optimización

ca(AT, c) = argmin

y∈
◦
Y

(
−

n∑
i=1

log(ci −AT
i· y)

)
.

Como se supone que
◦
Y = {y ∈ Rm×1 : ATy < c} ̸= ∅, entonces ci − AT

i· y
siempre es positivo y el logaritmo está bien definido. La función P (y) =
−
∑n

i=1 log(ci − AT
i· y) se llama la función potencial. No está definida para

puntos en la frontera de Y (para algún i, AT
i· y = ci). Cuando un punto

interior está cerca de la frontera, entonces ci−AT
i· y es positivo pero cercano

a cero y la función potencial tiene un valor grande. Como el centro anaĺıtico
minimiza la función potencial, debe estar “lo más alejado posible” de la
frontera.

Más adelante se verá que el centro anaĺıtico depende espećıficamente de
AT y de c pero no depende exactamente de Y . Es decir, puede haber dos
definiciones que den lugar al mismo conjunto Y pero den lugar a dos centros
anaĺıticos diferentes.

Condiciones de optimalidad

Sea s ∈ Rn×1 el vector de variables de holgura, es decir,

ATy + s = c.

En
◦
Y se cumple s > 0. Sea x ∈ Rn×1 definido por

xi =
1

si
.

Algunas veces, se denota simplemente x = s−1. Como s > 0, entonces x > 0.
Sea e el vector columna de unos de tamaño adecuado. En métodos de punto
interior es usual la siguiente notación: si x ∈ Rn×1, X es una matriz diagonal
cuyos elementos son los xi,

X =


x1 0 · · · 0
0 x2 · · · 0
...

. . .
...

0 0 · · · xn


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Aśı la definición de x se puede presentar como x = S−1e, o también,

Xs = e.

Cálculo del gradiente de la función potencial:

∂P

∂yj
(y) = −

n∑
i=1

1

ci −AT
i·y

(−1)AT
ij

∂P

∂yj
(y) =

n∑
i=1

1

si
AT

ij

∂P

∂yj
(y) =

n∑
i=1

xiA
T
ij

∂P

∂yj
(y) =

n∑
i=1

Ajixi

∂P

∂yj
(y) = Aj· x

P ′(y) = Ax.

Como el centro anaĺıtico (minimizador) es un punto interior, entonces su
gradiente debe ser nulo

Ax = 0.

Agrupando las condiciones de factibilidad y optimalidad, en las variables x,
y y s, se tienen m+ n+ n ecuaciones con n+m+ n incógnitas:

Ax = 0, x > 0, (4.20a)

ATy + s− c = 0, s > 0, (4.20b)

Xs− e = 0. (4.20c)

Se denotará con (xa, ya, sa) a la tripla que cumpla estas condiciones.
Realmente el centro anaĺıtico es ya. Para saber si un punto ȳ es el centro
anaĺıtico, se pueden seguir los siguientes pasos:

calcular s = c−ATȳ ,

verificar que s > 0 ,

calcular x = S−1e ,

verificar que Ax = 0.
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Supongamos ahora que se desea saber si a partir de un vector x̄ se puede
obtener el centro anaĺıtico. Dicho de otra forma, ¿ x̄ = xa ? Se pueden seguir
los siguientes pasos:

verificar que x̄ > 0 ,

verificar que Ax̄ = 0 ,

calcular s = X̄−1e ,

verificar que el sistema sobredeterminado ATy = c− s tiene solución.

La solución del sistema es el centro anaĺıtico.

Las condiciones (4.20) se parecen mucho a las condiciones de factibilidad
y optimalidad para el problema de OL min z = cTx sujeto a Ax = b, x ≥ 0,

Ax− b = 0, x ≥ 0,

ATy + s− c = 0, s ≥ 0,

Xs = 0.

En OL las variables principales o primales son las variables xj y las duales
son las variables yi. En la obtención del centro anaĺıtico sucede lo contra-
rio. Sin embargo, para guardar semejanza con OL, las ecuaciones (4.20a) se
llaman condiciones de factibilidad primal, las ecuaciones (4.20b) se llaman
condiciones de factibilidad dual y las ecuaciones (4.20c) se llaman condicio-
nes de complementariedad.

Ejemplo 4.12. Centro anaĺıtico del conjunto definido por las restricciones 2 1
−2 1
0 −1

 y ≤

 1
5
−1

 .

El conjunto Y es el triángulo con vértices (0, 1), (−2, 1) y (−1, 3). Sea ȳ =[
−1 5/3

]T
,

s = c−ATȳ,

s =
[
4/3 4/3 2/3

]T
,

x = S−1e,

x =
[
3/4 3/4 3/2

]T
,

Ax =
[
0 0

]T
.

Luego ȳ =
[
−1 5/3

]T
es el centro anaĺıtico. 3
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Ejemplo 4.13. Centro anaĺıtico del conjunto definido por las restricciones
2 1
−2 1
0 −1
0 1

 y ≤


1
5
−1
3

 .

De nuevo, el conjunto Y es el triángulo con vértices (0, 1), (−2, 1) y (−1, 3).
Sea ȳ =

[
−1 3/2

]T
,

s = c−ATȳ,

s =
[
3/2 3/2 1/2 3/2

]T
,

x = S−1e,

x =
[
2/3 2/3 2 2/3

]T
,

Ax =
[
0 0

]T
.

Luego ȳ =
[
−1 3/2

]T
es el centro anaĺıtico. En estos dos ejemplos, el con-

junto Y es el mismo, las restricciones son diferentes y los centros anaĺıticos
también. 3

4.4.2. Métodos de punto interior

La mayoŕıa de los métodos para calcular el centro anaĺıtico son métodos
de punto interior. Estos están basados en el método de Newton en varias
variables.

A continuación está el método de Newton y el esquema de una adaptación
“general”. En otras subsecciones hay versiones sofisticadas de métodos de
puntos interior.

Método de Newton

Cuando se tiene un sistema de p ecuaciones no lineales con p incógnitas,
éste se puede escribir como la ecuación

Φ(ζ) = 0,

donde Φ : Rp → Rp. La versión más sencilla del método de Newton empie-
za con una aproximación ζ0. En cada iteración se resuelve un sistema de
ecuaciones lineales y se actualiza ζ:

Φ′(ζk) ∆ζ = −Φ(ζk),
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ζk+1 = ζk +∆ζ.

En el sistema de ecuaciones lineales, la matriz Φ′(ζk) es la matriz jacobia-
na, −Φ(ζk) es el vector columna de términos independientes y ∆ζ, llamado
frecuentemente la dirección, es el vector columna de incógnitas. En condicio-
nes adecuadas el método converge y cerca a la solución tiene convergencia
cuadrática, lo cual es muy bueno. El proceso se detiene cuando

||Φ(ζk)|| ≤ ε.

Método de Newton adaptado para puntos interiores

Consideremos ahora un sistema de ecuaciones donde además algunas de
las variables deben ser positivas, por ejemplo ζ̄ = (ζ1, ..., ζq) > 0, con q < p,

Φ(ζ) = 0,

ζ̄ > 0,

El esquema simplificado del método de Newton puede ser: empezar con ζ0

una aproximación inicial tal que ζ̄0 > 0, y en cada iteración:

Φ′(ζk) ∆ζ = −Φ(ζk),
tmax = max{t : ζ̄k + t∆ζ̄ ≥ 0},

t̄ = min{0.99 tmax , 1},
tk = argmin

0≤t≤t̄

Φ(ζk + t∆ζ),

ζk+1 = ζk + tk∆ζ.

El cálculo de t̄ sirve para dos cosas:

con tmax se tendŕıa un punto tal que ζk + tmax∆ζ ≥ 0, pero que no es
punto interior. Al tomar 0.99tmax se obtiene un punto interior.

al hacer que t̄ ≤ 1, se busca que el método sea muy semejante al méto-
do de Newton puro (en él, tk = 1) y aśı buscar que la convergencia,
cerca a la solución, sea cuadrática.
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Notación

Es usual introducir vectores residuo (o resto) primal, dual y de comple-
mentariedad

rp = Ax,

rd = ATy + s− c, (4.21)

rc = Xs− e,

y números asociados a ellos, que dan una medida relativa de su tamaño o
norma

ρp =
||rp||

max{1, ||A||, ||x||}

ρd =
||rd||

max{1, ||A||, ||c||}
(4.22)

ρc =
||rc||

max{1, ||x||, ||s||}

Cuando se tiene una tripla de vectores (x, y, s), tales que x > 0 y s > 0,
entonces y es el centro anaĺıtico sssi los tres residuos son nulos, es decir, sssi

ρp = ρd = ρc = 0.

Lo anterior, en cálculos numéricos, casi nunca es posible. Para efectos prácti-
cos, para tener el centro anaĺıtico, basta con que estos números sean sufi-
cientemente pequeños:

ρp ≤ εp , ρd ≤ εd , ρc ≤ εc .

Las igualdades de las condiciones de factibilidad y optimalidad (4.20) se
pueden considerar como una ecuación Φ(ζ) = 0, donde Φ : Rm+2n → Rm+2n.
El valor de Φ se puede expresar con los residuos:

Φ(x, y, s) =

rprd
rc

 .

El jacobiano de Φ está dado por:

Φ′(x, y, s) =

A 0 0
0 AT In
S 0 X

 .

Las filas están agrupadas en bloques de m, n y n filas. Las columnas están
agrupadas en bloques de n, m y n columnas.
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4.4.3. Método de Newton primal factible

Este método, tomado de [Ye97], permite obtener el centro anaĺıtico par-
tiendo de un punto interior primal x0 “cercano” a xa. De manera más precisa

x0 > 0 ,

Ax0 = 0 , (4.23)

ηp(x
0) < 1,

donde ηp indica “una distancia” de un punto a xa,

ηp(x)
2 = (Xc− e)T

(
In −XAT(AX2AT)−1AX

)
(Xc− e).

Si x > 0, Ax = 0, y ηp(x) = 0, entonces x = xa.

Premultiplicando por X−1 la tercera igualdad de las condiciones de fac-
tibilidad y optimalidad (4.20) se obtiene

Ax = 0,

ATy + s− c = 0,

s−X−1e = 0.

Al aplicar el método de Newton se tiene A 0 0
0 AT I

X−2 0 I

∆x
∆y
∆s

 = −

 Ax
ATy + s− c
s−X−1e


Como x es factible primal, entonces Ax = 0. Además, para cualquier y se
puede calcular s para que ATy + s− c = 0. A 0 0

0 AT I
X−2 0 I

∆x
∆y
∆s

 =

 0
0

X−1e− s

 (4.24)

Es decir,

A∆x = 0, (4.25)

AT∆y +∆s = 0, (4.26)

X−2∆x+∆s = X−1e− s. (4.27)
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Multiplicando la tercera igualdad por AX2,

AX2X−2∆x+AX2∆s = AX2X−1e−AX2s,

A∆x+AX2∆s = AXe−AX2s.

Como A∆x = 0

AX2∆s = AXe−AX2s

AX2∆s = AX(e−Xs)

A partir de (4.26)

AT∆y = −∆s

AX2AT∆y = −AX2∆s

AX2AT∆y = AX(Xs− e)

∆y = (AX2AT)−1AX(Xs− e)

De nuevo, a partir de (4.26)

∆s = −AT∆y

∆s = −AT(AX2AT)−1AX(Xs− e)

A partir de (4.27)

X−2∆x = −∆s+X−1e− s,

∆x = −X2∆s+X2X−1e−X2s,

∆x = −X(X∆s− e+Xs),

∆x = −X
(
−XAT(AX2AT)−1AX(Xs− e)− e+Xs

)
,

∆x = −X
(
−XAT(AX2AT)−1AX + I

)
(Xs− e),

∆x = −X
(
−XAT(AX2AT)−1AX + I

)(
X(c−ATy)− e

)
,

∆x = −X
(
I −XAT(AX2AT)−1AX

)(
Xc− e−XATy

)
,

∆x = −X
(
I −XAT(AX2AT)−1AX

)(
Xc− e

)
+X

(
I −XAT(AX2AT)−1AX

)
XATy
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∆x = −X
(
I −XAT(AX2AT)−1AX

)(
Xc− e

)
+X

(
XAT −XAT(AX2AT)−1AXXAT

)
y

∆x = −X
(
I −XAT(AX2AT)−1AX

)(
Xc− e

)
+X

(
XAT −XAT

)
y

Entonces

∆x = −X
(
I −XAT(AX2AT)−1AX

)(
Xc− e

)
Si se define

p =
(
I −XAT(AX2AT)−1AX

)(
Xc− e

)
(4.28)

entonces

∆x = −Xp (4.29)

y se puede mostrar que

ηp(x) = ||p|| (4.30)

La expresión para calcular ∆x no utiliza ni y ni s.

método de Newton primal factible

datos: AT, c, x0 que cumpla (4.23), ε, MAXIT
para k = 0, ...,MAXIT

calcular p según (4.28) o (4.31)
η ← ||p||
si η ≤ ε parar
∆x← −Xp
xk+1 ← xk +∆x

fin-para

Con el x obtenido se calcula s = X−1e y se resuelve el sistema sobredeter-
minado ATy = c− s. Este sistema debe tener solución en el sentido estricto,
no se trata de seudosolución o solución por mı́nimos cuadrados. Sin embar-
go, una de las maneras de resolverlo es por mı́nimos cuadrados, en particular
usando la ecuación normal

(AAT)y = A(s− c) .
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Si las primeras m filas de AT son independientes, también se puede resolver
el sistema cuadrado

AT(1 : m, :) y = s(1 : m, 1)− c(1 : m, 1) .

Se puede mostrar que
ηp(x

k+1) ≤
(
ηp(x

k)
)2

lo cual garantiza la convergencia cuadrática.

El algoritmo es muy sencillo, pero su eficiencia depende en un porcentaje
important́ısimo de una buena implementación de (4.28) para el cálculo de
p. Algunas consideraciones útiles son las siguientes:

El cálculo de p se puede descomponer en los siguientes pasos:

π = Xc− e ,

Ã = AX , (4.31)

resolver (ÃÃT)σ = Ãπ,

p = π − ÃTσ.

Casi nunca es necesario calcular expĺıcitamente una inversa. Por eso
en lugar de tomar directamente de (4.28), σ = (ÃÃT)−1Ãπ, es mejor
resolver el sistema (ÃÃT)σ = Ãπ.

En la solución del sistema de ecuaciones se debeŕıa tener en cuenta
que la matriz ÃÃT es definida positiva (si las columnas de AT son
independientes) y utilizar el método de Cholesky.

No es necesario contruir expĺıcitamente la matriz diagonal X, basta
con saber lo que pasa al multilicar por X.

Ejemplo 4.14. Hallar el centro anaĺıtico del conjunto definido por las res-
tricciones 

−10 −1 0
−2 −10 0
−1 −2 −10
4 5 6
1 1 1

 y ≤


−20
−30
−40
50
8

 .

partiendo de x0 =
[
0.8089796 0.7951020 1.12 0.2 10.

]T
.

Se puede verificar que Ax0 = 0 , x0 > 0, y ηp(x
0) = 0.8362, entonces se

puede aplicar el método.
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k xk1 xk2 xk3 xk4 xk5
p1 p2 p3 p4 p5 η

0 0.8090 0.7951 1.1200 0.2000 10.0000

-0.1509 -0.1289 -0.1107 0.7749 -0.2170 0.836182

1 0.9311 0.8976 1.2440 0.0450 12.1699

-0.0248 -0.0275 -0.0298 -0.5999 -0.0172 0.601986

2 0.9542 0.9223 1.2811 0.0720 12.3792

-0.0007 -0.0033 -0.0056 -0.3596 0.0068 0.359723

3 0.9548 0.9254 1.2883 0.0979 12.2952

-0.0001 -0.0014 -0.0024 -0.1291 0.0036 0.129231

4 0.9549 0.9266 1.2914 0.1106 12.2509

-0.0000 -0.0002 -0.0004 -0.0167 0.0005 0.016666

5 0.9549 0.9268 1.2919 0.1124 12.2445

-0.0000 -0.0000 -0.0000 -0.0003 0.0000 0.000277

6 0.9549 0.9268 1.2919 0.1124 12.2444

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.000000

Entonces s =
[
1.047267 1.078990 0.774051 8.892908 0.081670

]T
. Es

necesario resolver
−10 −1 0
−2 −10 0
−1 −2 −10
4 5 6
1 1 1

 y =


−21.047267
−31.078990
−40.774051
41.107092
7.918330

 .

ya =
[
1.8305478 2.7417895 3.3459924

]
. 3

4.4.4. Algoritmo potencial af́ın

Dado un punto inicial tal que

Ax0 = 0 , (4.32)

x0 > 0 ,

se obtiene un punto x tal que

Ax = 0 ,

x > 0 , (4.33)
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ηp(x) < 1 ,

es decir, un punto que sirva como punto inicial para el método de Newton
primal factible.

Una de las formas de obtener un punto que cumpla (4.32) consiste en
resolver el siguiente problema de OL:

min z = 0Tx

Ax = 0 ,

x ≥ δe.

Una vez obtenido un punto que cumpla (4.32), antes de empezar las
iteraciones, es necesario modificar x0 para que

cTx0 = n.

El paso importante en cada iteración corresponde al cálculo de p según
(4.28). Dado un valor α ∈]0, 1[, el esquema del algoritmo es el siguiente:

Algoritmo potencial af́ın

datos: AT, c, x0 que cumpla (4.32), α, MAXIT

x0 ← n

cTx0
x0

para k = 0, ...,MAXIT
calcular p según (4.28) o (4.31)
η ← ||p||
si η < 1 parar

∆x← −α

η
Xp

xk+1 ← xk +∆x
fin-para

Una manera, no muy eficiente, para encontrar un punto que cumpla
(4.32) consiste en resolver el siguiente problema de OL:

min z = 0Tx

Ax = 0

xi ≥ ε ∀i.
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Ejemplo 4.15. Encontrar un punto que cumpla (4.33) en el problema de
centro anaĺıtico del conjunto definido por las restricciones

−10 −1 0
−2 −10 0
−1 −2 −10
4 5 6
1 1 1

 y ≤


−20
−30
−40
50
8

 .

partiendo de x0 =
[
0.1 0.1054 0.1568 0.1 0.9676

]T
, con α = 0.9 .

Se puede verificar que Ax0 = 0 , x0 > 0, entonces se puede aplicar el
método.

k xk1 xk2 xk3 xk4 xk5
p1 p2 p3 p4 p5 η

0 0.3822 0.4029 0.5992 0.3822 3.6983

-0.4357 -0.2126 -0.0499 2.0507 -1.3525 2.504421

1 0.4421 0.4337 0.6099 0.1005 5.4959

-0.5364 -0.5269 -0.5191 -0.1072 -0.5644 1.079284

2 0.6398 0.6242 0.8740 0.1095 8.0824

-0.3298 -0.3247 -0.3205 -0.0263 -0.3445 0.660519

4.4.5. Método primal-dual factible

Es posiblemente el método más popular para obtener el centro anaĺıtico,
debido a su gran eficiencia. Permite obtener la tripla (xa, ya, sa) (una muy
buena aproximación de), partiendo de x0 y y0 tales que

Ax0 = 0,

x0 > 0, (4.34)

s0 = s(y0) = c−ATy0 > 0,

ηc(x
0, s0) < 1,

donde

ηc(x, s) = ||rc|| = ||Xs− e|| .

es decir, la tripla (x0, y0, s0) cumple con la factibilidad primal y la dual.
Se desa obtener, iterativamente, un punto que siga cumpliendo factibilidad
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202 CAṔITULO 4. OPTIMIZACIÓN NO DIFERENCIABLE

primal y dual, pero que también cumpla con las condiciones de complemen-
tariedad, es decir, se busca que ηc(x, s) = 0.

El sistema Φ′(ζ)∆ζ = −Φ(ζ) que debe ser resuelto en cada iteración del
método de Newton para la solución del sistema de ecuaciones (4.20) es

A 0 0
0 AT In
S 0 X

∆x
∆y
∆s

 =

−rp−rd
−rc

 .

Como se supone que se cumple la factibilidad primal y la dual,

A 0 0
0 AT In
S 0 X

∆x
∆y
∆s

 =

 0
0
−rc

 . (4.35)

Aunque se puede resolver directamente el sistema anterior de ecuaciones
lineales de tamaño (2n + m) × (2n + m), es más eficiente, en tiempo y en
precisión, realizar despejes semejantes a los del método de Newton primal
factible hasta obtener

Q = AXS−1AT (4.36a)

∆x = −S−1
(
rc −XATQ−1AS−1rc

)
(4.36b)

∆y = −Q−1AS−1e (4.36c)

∆s = −AT∆y. (4.36d)

Obsérvese que, como aparece en algunos libros, también se puede escribir
Q = AS−1XAT ya que las matrices X y S−1 son diagonales.

Una consideración adicional relativa a la eficiencia es la siguiente:

Para calcular ∆y es necesario resolver un sistema de ecuaciones con
matriz Q. Uno de los pasos para calcular ∆x consiste en resolver el
sistema de ecuaciones Qτ = AS−1rc. Luego la primera factorización
de Cholesky de Q sirve para el segundo sistema.
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método primal-dual factible

datos: AT, c, x0 y y0 que cumplan (4.34), ε, MAXIT
para k = 0, ...,MAXIT

rc ← Xs− e
η ← ||rc||
si η ≤ ε parar
calcular ∆x, ∆y, ∆s según (4.36)
xk+1 ← xk +∆x
yk+1 ← yk +∆y
sk+1 ← sk +∆s

fin-para

En este método no es indispensable calcular en cada iteración yk+1. Sim-
plemente muestra el proceso del cálculo del centro anaĺıtico. Si no se hace,
una vez que η = ηc(x, s) ≤ ε, es necesario resolver ATy = c− s.

Se puede mostrar que si ηc(x
0, s0) < 2/3, entonces la convergencia es

cuadrática.

Ejemplo 4.16. Calcular el centro anaĺıtico del conjunto definido por las
restricciones 

−10 −1 0
−2 −10 0
−1 −2 −10
4 5 6
1 1 1

 y ≤


−20
−30
−40
50
8

 .

partiendo de x0 =
[
0.8575510 0.8322449 1.16 0.1 11

]T
y y0 =

[
1.8 2.8 3.3

]T
.

Para los puntos iniciales, x0 > 0 , Ax0 = 0 , s0 =
[
0.8 1.6 0.4 9. 0.1

]T
>

0 , rc =
[
−0.3139592 0.3315918 −0.536 −0.1 0.1

]T
, η = 0.7182, es de-

cir, se cumple (4.34).
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k xk
1 xk

2 xk
3 xk

4 xk
5 yk1 yk2 yk3

sk1 sk2 sk3 sk4 sk5 η
∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆y1 ∆y2 ∆y3
∆s1 ∆s2 ∆s3 ∆s4 ∆s5

0 0.8576 0.8322 1.1600 0.1000 11.0000 1.8000 2.8000 3.3000

0.8000 1.6000 0.4000 9.0000 0.1000 0.7182

0.0973 0.0946 0.1319 0.0124 1.2448 0.0340 -0.0648 0.0512

0.2753 -0.5802 0.4166 -0.1192 -0.0204

1 0.9549 0.9268 1.2919 0.1124 12.2448 1.8340 2.7352 3.3512

1.0753 1.0198 0.8166 8.8808 0.0796 0.0860

-0.0000 -0.0000 -0.0000 0.0000 -0.0004 -0.0035 0.0066 -0.0052

-0.0280 0.0592 -0.0425 0.0122 0.0021

2 0.9549 0.9268 1.2919 0.1124 12.2444 1.8305 2.7418 3.3460

1.0473 1.0790 0.7741 8.8929 0.0817 0.0000

4.4.6. Algoritmo potencial primal-dual

Dados dos puntos x0, y0 tales que

Ax0 = 0 , (4.37)

x0 > 0 ,

s0 = s(y0) = c−ATy0 > 0,

se obtienen dos puntos x, y tales que

Ax = 0 ,

x > 0 , (4.38)

s = s(y) = c−ATy > 0,

ηc(x, s) < 1.

es decir, una pareja de puntos que sirvan para empezar el método primal-
dual factible.

Una de las formas de obtener los puntos que cumplen (4.37) consiste en
resolver dos problemas de OL:

min z = 0Tx

Ax = 0 ,

x ≥ δ1e.

min z = 0Ty
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ATy ≤ c− δ2e .

Una vez obtenida la pareja que cumpla (4.37), antes de empezar las
iteraciones, es necesario modificar x0 para que

s0
T
x0 = n.

En cada iteración las direcciones ∆x, ∆y y ∆s se calculan como en el
método primal-dual (4.36), pero en lugar de efectuar un paso de Newton
puro, xk+1 = xk +∆x, se controla el paso,

xk+1 = xk + θ∆x ,

donde

θ =
α
√
min(Xs)

||(XS)−1/2(Xs− e)||
, (4.39)

y α ∈]0, 1[. Si u es un vector, minu = min{u1, u2, ...}. Si D es una matriz
diagonal positiva, D−1/2 =

√
D−1. El uso de θ sirve para garantizar que

xk+1 > 0 y sk+1 > 0.

algoritmo potencial primal-dual

datos: AT, c, x0 y y0 que cumplan (4.37), MAXIT
s0 ← c−ATy0

x0 ← n

x0Ts0
x0

para k = 0, ...,MAXIT
rc ← Xs− e
η ← ||rc||
si η < 1 parar
calcular θ según (4.39)
calcular ∆x, ∆y, ∆s según (4.36)
xk+1 ← xk + θ∆x
yk+1 ← yk + θ∆y
sk+1 ← sk + θ∆s

fin-para
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Ejemplo 4.17. Encontrar x , y que cumplan (4.34) en el problema de centro
anaĺıtico del conjunto definido por las restricciones

−10 −1 0
−2 −10 0
−1 −2 −10
4 5 6
1 1 1

 y ≤


−20
−30
−40
50
8

 .

partiendo de x0 =
[
0.1 0.1054054 0.1567568 0.1 0.9675676

]T
y y0 =[

1.7530612 2.6693878 3.3108163
]T

.

Para los puntos iniciales,

x0 > 0

Ax0 = 0

s0 =


0.2
0.2
0.2
9.7759184
0.2667347

 > 0 ,

es decir, se cumple (4.37). Los resultados están en la tabla 4.1 al final del
caṕıtulo.

4.4.7. Restricción adicional en el método primal

El cálculo del centro anaĺıtico se va a usar en el ACCPM, una modi-
ficación del método de planos cortantes, en el cual se van agregando res-
tricciones, es decir, en una iteración es necesario calcular el centro anaĺıtico
de

ATy ≤ c (4.40)

y en la siguiente se debe calcular el centro anaĺıtico de

ÂTy ≤ ĉ (4.41)

donde hay una restriccion adicional, es decir,

ÂT =

[
AT

ωT

]
, ĉ =

[
c
α

]
.
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Al calcular el centro anaĺıtico de (4.40) se obtiene x̃ ∈ Rn, aproximación de
xa, que, en particular, cumple

Ax̃ = 0, (4.42)

x̃ > 0.

Para empezar el método primal para (4.41) se requiere un x̂ = (x, xω) ∈
Rn+1 tal que

Âx̂ = 0, (4.43)

x̂ > 0,

es decir,

Ax+ xωω = 0,

x > 0,

xω > 0.

Se sabe que se puede obtener un x̂ que cumpla las dos condiciones (4.43)
resolviendo un problema de OL, pero, ¿habrá otra forma? Aśı, la pregunta
natural es: ¿cómo obtener x̂, a partir de x̃? Una de las maneras de hacerlo
es la siguiente.

Si x̂ cumple (4.43) y β > 0, entonces βx̂ también cumple (4.43). Enton-
ces, dado δ > 0, las condiciones (4.43) se pueden remplazar por condiciones
de factibilidad en OL,

Âx̂ = 0,

xω = δ,

x̂ ≥ 0.

Usando la fórmula de Sherman-Morrison-Woodbury (ver [GoVa96], p. 50),

(C + UV T)−1 = C−1 − C−1U(I + V TC−1U)−1V TC−1

en [DuM95] están los cálculos para llegar a

d = (AX̃2AT)−1ω (4.44a)

σ = ωTd (4.44b)

δ =
δ0

1 + σδ20
(4.44c)
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∆x = −δX̃2ATd (4.44d)

x̂ =

[
x̃+∆x

δ

]
(4.44e)

con δ0 > 0 suficientemente pequeño.

Ejemplo 4.18. Para las restricciones 2 1
−2 1
0 −1

 y ≤

 1
5
−1

 ,

el centro anaĺıtico es ya = (−1, 5/3) y xa = (3/4, 3/4, 3/2). Dado x̃ =
(1.2, 1.2, 2.4), que cumple (4.42), encontrar x̂, un punto inicial primal, es
decir, que cumpla (4.43), para las restricciones

2 1
−2 1
0 −1
3 4

 y ≤


1
5
−1
6

 .

d =
[
0.2604167 0.4629630

]T
σ = 2.6331019,

δ0 = 0.1 ,

δ = 0.0974345,

∆x =
[
−0.1380321 0.0081195 0.2598252

]T
x̂ =

[
1.0619679 1.2081195 2.6598252 0.0974345

]T
.

Este punto cumple (4.43). 3

4.4.8. Algoritmo ACCPM

La versión de ACCPM presentada aqúı es una versión simplificada. Una
versión muy eficiente está en la tesis doctoral [DuM95]. Bastante información
se puede encontrar en la página del laboratorio Logilab de la Universidad
de Ginebra:

http://blogs.unige.ch/hec/logilab/templeet.php/rapport.fr.html
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Para evitar confusiones se utilizará el vector y ∈ Rm como variable del
problema de optimización. ACCPM se utiliza para el problema convexo
(4.11):

min f(y)

g(y) ≤ 0.

Además de f y g (o del oráculo), los datos inciales son: u, w, v̄0, v 0 . No
se requiere un punto inicial.

Para las 2m+ 2 restricciones de caja, el centro anaĺıtico es

yi =
ui + wi

2
,

v =
v 0 + v̄0

2
.

Además

si = si+m =
wi − ui

2
, i = 1, ...,m,

s2m+1 = s2m+2 =
v̄0 − v 0

2
,

xj = 1/sj , j = 1, ..., 2m+ 1.

De manera análoga al método simplex en OL, hay dos fases, fase I y fase
II. La fase II empieza cuando se obtiene el primer y factible y el primer corte
de optimalidad.

En la fase I, todos los cortes son de factibilidad. Sirven para ir aproxi-
mando, cada vez mejor, el conjunto factible. Cuando se trata de un problema
no restringido, todos los puntos son factibles, no hay fase I, se empieza di-
rectamente con la fase II.

Los cortes en la fase II pueden ser de factibilidad o de optimalidad.
Cuando el punto yk es factible, corte de optimalidad, se utilizan los valores
v̄ y v, cotas superior e inferior actualizadas para v, es decir, para f(y).

v̄ = min{f(yi) : i ∈ Jk}. (4.45)

La manera de obtener el valor v o una aproximación es un poco más
compleja. En realidad hay varias formas, unas mejores que otras, unas más
fáciles que otras. Los cálculos están en [DuM95].
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El proceso iterativo ACCPM acaba, en la fase II, cuando para un punto
factible, v̄ − v, el salto o brecha (“gap”) de dualidad, es suficientemente
pequeño. De manera relativa,

v̄ − v

max{1, |v̄|}
≤ ε. (4.46)

En esta versión simplificada de ACPPM se utilizará un criterio de parada
menos preciso. El proceso iterativo se detiene cuando dos vectores factibles
consecutivos son casi iguales o cuando el valor f en ellos es casi el mismo.
Sea yk un punto factible y y′ el anterior punto factible.

||yk − y′||
max{1, ||yk||}

≤ εy . (4.47)

|f(yk)− f(y′)|
max{1, |f(yk)|}

≤ εf . (4.48)

Cuando se obtiene el primer punto factible, la restricción v ≤ v̄0 se
remplaza por v ≤ v̄. Con los otros puntos factibles, la restricción se actualiza
al nuevo valor de v̄.

También, con el primer punto factible, la retricción −v ≤ −v 0 se puede
suprimir. En la fase I se necesitaba para asegurar que el conjunto definido
por las restricciones de caja fuera acotado y aśı garantizar la existencia del
centro anaĺıtico.

Algunos refinamientos son convenientes o algunas veces indispensables.
Según lo visto hasta ahora, en cada punto yk se calcula únicamente un
subgradiente. Si g(yk) > 0, se pueden calcular varios subgradientes de g
y se introducen varios cortes de factibilidad. Por ejemplo, cuando g(y) =
max{g1(y), ..., gp(y)}, se puede pensar en tomar un corte de factibilidad cada
vez que gi(y

k) > 0.

A medida que aumentan las iteraciones, el número de cortes (el número
de filas de la matriz) puede volverse inmanejable. Se hace indispensable
quitar restricciones innecesarias mediante el uso de elipsoides: un plano que
no corta el elipsoide es superfluo y se puede eliminar.
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ACCPM

datos: f , g, u, w, v 0, v̄0, MAXIT
construir M y c con restricciones de caja
y0 ← (u+ w)/2
v̄ ← v̄0
para k = 0, ...,MAXIT

con yk el oráculo proporciona: χF (y
k), h(yk), γ(yk)

si χF (y
k) = 1

si h(yk) < v̄
v̄ ← h(yk)
c2n+1 ← v̄

fin-si
si (4.46) o (4.47) o (4.48) parar
ρ← −1

sino
ρ← 0

fin-si
α← γTyk − h(yk)
agregar el corte γTy + ρv ≤ α
obtener (yk+1, vk+1) centro anaĺıtico de My ≤ c

fin-para

Ejemplo 4.19. Aplicar ACCPM para minimizar

min f(x) =

3∑
i=1

||x− ai||2 .

con la restricción

max{−12 + 3(x1 + 4)2 − x2, 5 + 4(x1 + 5)2 + x2} ≤ 0,

con los puntos

a1 = (−4,−3),
a2 = (−1,−2),
a3 = (−2,−8),

y con los datos iniciales

u = (−13,−20) ,
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w = (−3,−5) ,
v 0 = 0 ,

v̄0 = 20.

k yk
1 yk

2 vk χF h(yk) γ1 γ2 ρ α
0 -8.0000 -12.5000 10.0000 0 48.5000 -24.0000 -1.0000 0 156.0000

1 -4.3742 -11.7900 10.0000 0 0.2095 -2.2451 -1.0000 0 21.4000

2 -3.9420 -8.0697 11.0000 0 1.4077 8.4640 1.0000 0 -42.8430

3 -4.9200 -7.8064 11.0000 1 14.8260 -1.7454 -1.7448 -1 7.3821

4 -4.9027 -5.8825 13.1320 1 12.1190 -1.8157 -1.0702 -1 3.0788

5 -4.6387 -5.3797 11.6890 0 0.1426 2.8908 1.0000 0 -18.9320

6 -4.8796 -5.3669 11.8540 1 11.5640 -1.8416 -0.9180 -1 2.3490

7 -4.8081 -5.2057 11.4670 1 11.2880 -1.8179 -0.8776 -1 2.0207

8 -4.8054 -5.0911 11.2570 0 0.0603 1.5564 1.0000 0 -12.6310

9 -4.7406 -5.2813 11.2720 1 11.2350 -1.7704 -0.9063 -1 1.9449

10 -4.7294 -5.2792 11.2290 0 0.0136 2.1647 1.0000 0 -15.5300

11 -4.7594 -5.2329 11.2320 1 11.2250 -1.7863 -0.8907 -1 1.9380

12 -4.7636 -5.2203 11.2240 0 0.0032 1.8912 1.0000 0 -14.2320

13 -4.7480 -5.2540 11.2240 0 5.E-05 2.0162 1.0000 0 -14.8270

14 -4.7509 -5.2489 11.2240 1 11.2240 -1.7797 -0.8961 -1 1.9347

15 -4.7527 -5.2447 11.2240 1 11.2230 -1.7811 -0.8947 -1 1.9347

16 -4.7545 -5.2411 11.2230 0 0.0001 1.9644 1.0000 0 -14.5810

17 -4.7510 -5.2479 11.2230 1 11.2230 -1.7799 -0.8958 -1 1.9341

Ejercicios

4.1 Sea C un convexo, g1, g2 : C → R funciones convexas, α > 0,
f = g1 + g2, h = αg1, x̄ ∈ C, γ1 subgradiente de g1 en x̄, γ2

subgradiente de g2 en x̄. Muestre que γ1 + γ2 es subgradiente de f en
x̄ y αγ1 es subgradiente de h en x̄.

4.2 Sea C un convexo, g1, g2, g3 : C → R funciones convexas, g(x) =
max{g1(x), g2(x), g3(x)}, x̄ ∈ C, g2(x̄), g3(x̄) < g1(x̄) = g(x̄). Mues-
tre que γ1 es un subgradiente de g en x̄.

4.3 Sea C un convexo, g1, g2, g3 : C → R funciones convexas, g(x) =
max{g1(x), g2(x), g3(x)}, x̄ ∈ C, g3(x̄) < g1(x̄) = g2(x̄) = g(x̄). De
una expresion para un subgradiente de g en x̄.

4.4 Considere

AT =

−1 −2
−3 1
5 1

 , c =

−24
10

 , x =

4/359/70
1/10

 .
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Muestre que la dirección ∆x obtenida usando (4.24) (tome cualquier
y y s = c−ATy) coincide con la obtenida usando (4.28) y (4.29).

Respuesta: ∆x = (0.065306, 0.073469, 0.057143).

4.5 Considere

AT =

−1 −2
−3 1
5 1

 , c =

−24
10

 , x0 =

 2/35
9/140
1/20

 .

Aplique el método potencial af́ın y el método de Newton primal factible
para obtener el centro anaĺıtico.

Respuesta: y = (0.63095, 2.55952).

4.6 Considere

AT =

−1 −2
−3 1
5 1

 , c =

−24
10

 , x0 =

 2/35
9/140
1/20

 , y0 =

[
−0.5
1.5

]
.

Aplique el método potencial primal-dual y el método de Newton primal-
dual factible para obtener el centro anaĺıtico.

Respuesta: y = (0.63095, 2.55952).

4.7 Resuelva por el método de planos de corte el siguiente problema:

min f(x) = 1.4||x− a1||2 + 1.5||x− a2||2

||x− a3||1 ≤ 3,

donde

a1 = (2, 8),

a2 = (10, 1),

a3 = (−5,−4),

||y||p =

(
n∑
1

|yi|p
)1/p

.

Solución: x ≈ (−2.23,−3.77).

4.8 Resuelva por ACCPM el problema anterior.
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k xk
1 xk

2 xk
3 xk

4 xk
5 yk1 yk2 yk3

sk1 sk2 sk3 sk4 sk5 η θ
∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆y1 ∆y2 ∆y3
∆s1 ∆s2 ∆s3 ∆s4 ∆s5

0 0.3822 0.4029 0.5992 0.3822 3.6983 1.7531 2.6694 3.3108

0.2000 0.2000 0.2000 9.7759 0.2667 3.1563 0.0453

0.4191 0.3834 0.5070 -0.1974 6.2542 0.2028 0.1686 0.0760

2.1969 2.0917 1.2997 -2.1102 -0.4474

1 0.4012 0.4203 0.6222 0.3733 3.9819 1.7623 2.6770 3.3143

0.2996 0.2948 0.2589 9.6802 0.2464 3.0126 0.0718

0.4235 0.3875 0.5124 -0.1995 6.3210 0.1730 0.1467 0.0669

1.8764 1.8127 1.1351 -1.8265 -0.3865

2 0.4316 0.4481 0.6589 0.3590 4.4357 1.7747 2.6876 3.3191

0.4343 0.4250 0.3404 9.5491 0.2187 2.7950 0.1156

0.4241 0.3881 0.5131 -0.1998 6.3300 0.1339 0.1171 0.0544

1.4556 1.4386 0.9121 -1.4473 -0.3053

3 0.4807 0.4930 0.7183 0.3359 5.1674 1.7901 2.7011 3.3254

0.6026 0.5913 0.4459 9.3818 0.1834 2.4694 0.1918

0.4114 0.3764 0.4977 -0.1938 6.1402 0.0881 0.0810 0.0387

0.9621 0.9858 0.6374 -0.9897 -0.2078

4 0.5596 0.5651 0.8137 0.2987 6.3450 1.8070 2.7166 3.3328

0.7871 0.7803 0.5681 9.1920 0.1435 1.9923 0.3558

0.3667 0.3355 0.4436 -0.1728 5.4731 0.0440 0.0438 0.0220

0.4841 0.5258 0.3511 -0.5267 -0.1098

5 0.6827 0.6778 0.9627 0.2407 8.1830 1.8218 2.7313 3.3402

0.9497 0.9569 0.6860 9.0151 0.1067 1.3215 0.6603

0.2654 0.2428 0.3211 -0.1250 3.9611 0.0131 0.0149 0.0081

0.1458 0.1756 0.1239 -0.1756 -0.0361

6 0.8580 0.8382 1.1747 0.1581 10.7985 1.8305 2.7412 3.3455

1.0460 1.0729 0.7678 8.8991 0.0828 0.4549

Tabla 4.1. Ejemplo 4.17
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grammation linéaire structurée de grande taille , Tesis doctoral, U.
Ginebra, 1995.

[Flo62] Floyd R. W., Algorithm 97, Shortest Path, Commun. ACM, 1962,
5, pág. 345.

[EiS00] Eiselt H.A., Sandblom C.-L., Integer Programming and Networks
Models, Springer, Berlin, 2000.

[Eva92] Evans James R., Minieka Edward,Optimization Algorithms for Net-
works and Graphs, 2 ed., Marcel Dekker, New York, 1992.

[GoHV92] Goffin J.L., Haurie A., Vial J.Ph., Decomposition and nondif-
ferentiable optimization with the projective algorithm, Management
Science, 38 (1992), pp. 284-302.

[GoHV93] Goffin J.L., Haurie A., Vial J.Ph., Zhu D.L., Using central prices
in the decomposition of linear programs, European J. of Operational
Research, 64 (1993), pp. 393-409.

[GoVi90] Goffin J.L., Vial J.Ph., Cutting planes and column generation
techniques with the projective algorithm, J. Optimization Theory and
Appl., 65 (1990), pp. 409-429.

[GoVa96] Golub G.H., Van Loan C.F., Matrix Computations, 3rd ed., Johns
Hopkins U. Press, Baltimore, 1996.
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[Nor80] Norel G., Iniatiation aux modèles de gestion, U. Paris IX Dauphine,
Paris, 1980.

[Pri94] Prins Christian, Algorithmes de graphes, Eyrolles, Paris, 1994.

[Rar98] Rardin Ronald L. Optimization in Operations Research, Prentice
Hall, Upper Sadle River, 1998.
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