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Prodlogo

Este libro presenta algunos temas de optimizaciéon que, aunque son muy
importantes, generalmente no se ven en un primer curso de Optimizacion.
Puede servir para un curso de un semestre para estudiantes avanzados de
pregrado o para uno de posgrado.

En el primer capitulo hay dos temas de Optimizacién Lineal, el método
simplex acotado y el método de descomposiciéon de Dantzig y Wolfe.

El segundo capitulo trata sobre Optimizacién Entera. Esta el método
de cortes de Gomory y el método de bifurcacién y acotamiento (branch and
bound) con varios criterios.

El tercer capitulo se refiere a Optimizacién en Grafos. Los temas tratados
son los clasicos: ruta mas corta, flujo maximo, flujo de costo minimo, ruta
critica y arbol generador de costo minimo.

El ultimo capitulo tiene dos temas de Optimizacion No Diferenciable:
método de planos de corte y ACCPM (analytic center cutting plane method).
También hay una parte dedicada a métodos de punto interior para el calculo
del centro analitico.

Hay algunos conocimientos o conceptos necesarios para la buena com-
prension de algunos temas. Ellos son: conjuntos convexos, puntos y direc-
ciones extremas, teorema de representacién (de conjuntos poliédricos) en
Optimizacion Lineal, método simplex con obtencién de direcciones extre-
mas cuando hay éptimo no acotado y método simplex revisado. También
es necesario disponer y saber utilizar un software para Optimizacién Li-
neal que, preferiblemente, dé direcciones extremas cuando hay éptimo no
acotado.

En las péginas electrénicas del autor, se encontrard una fe de erratas

vil



CAPITULO 0. PROLOGO

del libro, que se ird completando a medida que los errores sean detectados.
Actualmente las direcciones son:

www.matematicas.unal.edu.co/ hmora/

Wwww.geocities.com/hectormora

El autor estara muy agradecido por los comentarios, sugerencias y co-
rrecciones enviados a:

hmmorae@unal.edu.co

hectormora@yahoo.com

Quiero agradecer especialmente al profesor Jaime Malpica del Depar-
tamento de Ingenieria de Sistemas e Industrial y a todos los estudiantes
del curso Optimizacién de la Carrera de Matematicas y de las Maestrias
de Matemaéticas y de Matemaéticas Aplicadas, en particular a Jhon Jaiver
Rodriguez, Biviana Sudrez y Diana Martinez. Las sugerencias, comentarios
y correcciones de todos ellos fueron muy utiles.

Muchas gracias al profesor Gustavo Rubiano, Director de la Oficina de
Publicaciones de la Facultad de Ciencias por su eficiencia y continuo apoyo
durante varios anos.

Deseo agradecer a la Universidad Nacional por haberme permitido des-
tinar un semestre sabatico a esta obra, este tiempo fue una parte muy im-
portante del necesario para la realizacién del libro.
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Notacion

R = conjunto de ntmeros reales.
Ry = {z eR:z >0}

7Z = conjunto de niimeros enteros.
Ly = {zx€Z:xz>0}.

N ={1,2,...,n}

M(m,n) = R™*"™ = conjunto de matrices reales m x n, o sea, de m filas y n
columnas. Si A € M(m,n), entonces A es de la forma:

aill a9 e QA1n

asy a9 e aon
A=

aml1 Qm2 ... Amn

a;; = elemento o entrada de la matriz A, en la fila ¢ y en la columna j.
M(n,1) = R™! = { matrices columna de n componentes }.
M(1,n) = RY™" = { matrices fila de n componentes }.
RIXI — R
A" = transpuesta de la matriz A.
R" = { (z1,22,...,2p ): xj € R Vj}.
R" := M(n,1) = R™*!, es decir:

x1

Z2
r=(21,22,...,0n ) = :

Tn
xT:[azl To ... a:n]

R? = {zr € R": z > 0}.



X Notacién

7" = 7™ = conjunto de matrices n x 1 con entradas (elementos) enteras.
7 = {x € Z" : x > 0}.
A;. = fila i-ésima de la matriz A = [ail aiz ... am].

a1j

a2;
A.; = columna j-ésima de la matriz A =

amj
AF = A®) = matriz A en la iteracién k, k=0,1,2...
n = nuamero de variables.
m = numero de restricciones.
p = n—m = numero de variables libres (problemas en la forma estandar).

z= 'z = c1x1 +coxo+. ..+ cpxy, = funcién objetivo o funcién econémica
(generalmente para minimizacién).

c= (c1,¢2,...,¢p) = [cl cy ... cn]T = vector de costos.
z es acotado < z es acotado inferiormente (problema de minimizacién).
Aix = apnx1 + ainxs + ... + apry, = lado izquierdo de la restriccion i.
b; = término independiente o lado derecho de la restriccion 1.
min z := minimizar z.
max z := maximizar z.
r >y & x; > y; para todo i.

x > 0 < xz; > 0 para todo .

min z =cTz

min z =cTz )
sujeto a

Az =D <—

2> 0. Axr =10

z > 0.

|S| = ndmero de elementos del conjunto S.



Notacién xi

conjunto admisible o factible de un problema de optimizacién.

valor éptimo de z, cuando existe.

= S} =Argmin f(z) ={z € S: f(Z) < f(z), Yz € S}.
zesS

solucién o minimizador, cuando existe, de un problema de optimiza-
cién.

#(C) = cardinal del conjunto C.

{A: A C X} = conjunto de subconjuntos de X.

{A:ACX, |Al =k}

Pr(X) U ps(X).

Cuando haya graficas con sistema de coordenadas, el eje horizontal
es para w1, el vertical es para xo, el horizontal es positivo hacia la
derecha, el vertical es positivo hacia arriba.

En la escritura de niimeros decimales, los enteros estan separados de
los decimales por medio de un punto. No se usa la notacion espanola
(los enteros estédn separados de los decimales por una coma). No se
utiliza un simbolo para separar las unidades de mil de las centenas.

xi






Capitulo 1

Métodos de optimizacion
lineal

1.1. Meétodo simplex acotado

Este método, una adaptacién del simplex, se aplica eficientemente a pro-
blemas de OL que se pueden expresar de la siguiente manera:

min z =c'x
Az <b;, i€ M CM={1,2,..,m},
Ajx=0b;, 1€ MyC M~ M,
Ajx > by, i€ Msg=M~ (M UDM,),

Uj SJ}]‘SU]', jzl,,n

Los datos son: ¢ € R™1 A e R™™ p e R™* ¢ e R™¥ ¢ e RP¥L
Se supone que para todo j

U < Uy,
v; € RZRU{—FOO}.
Las restricciones u; < x; < vj, llamadas restricciones de caja, se pueden

considerar como restricciones “normales”. Esto hace agregar filas a la matriz
A. Dependiendo de los valores u;, vj, pueden ser hasta 2n filas mas. Como

1



2 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

usualmente se convierte el problema a la forma estandar, entonces hay 2n
variables de holgura adicionales. Ademaés las restricciones x; > u; dan origen
a n variables artificiales. Pero todas estas filas adicionales estdn compuestas
casi exclusivamente por ceros. En cada una de esas filas, ademaés de los ceros,
hay un 1 o un —1.

El objetivo del método simplex acotado, MSA, es trabajar Uinicamente
con las restricciones originales y adaptar el simplex para considerar implici-
tamente las restricciones de caja. Asi se evita trabajar con una matriz mucho
mas grande.

Por ejemplo, para el problema

min z =c'x
Ax >b
u<zx<v
x>0

al convertir las restricciones de caja en restricciones normales, se tendria una
primera fase con una matriz de tamano (m-+2n) x (n+m+2n+m+n), ya que
hay n variables originales, m variables de holgura por Az > b, 2n holguras
por las restricciones de caja, m variables artificiales para Ax > by n variables
artificiales para las desigualdades x; > v;. En resumen, (m+2n) x (2m+4n).
Si las restricciones de caja se consideran implicitamente, se tiene una primera
fase con una matriz de tamano m x (n+2m). Supongamos que m = 10, n =
20. En el primer caso la matriz tendria 5000 entradas, en el caso implicito
400.

La primera simplificacién, muy ttil, consiste en considerar unicamente
varaibles no negativas con cotas superiores. Para esto basta con hacer un
cambio de variable (en realidad n)

/ — . — .
T; = Tj — Uy,
entonces  wu; —uj; < —u; < vj— Uy,

/

IN
C\

donde z; = x; — uj, v;=v; — u;. Asi el problema

min z =c'x



1.1. METODO SIMPLEX ACOTADO 3

Ai..’L‘ 0, bi, 1= 1,...,m,
u<x <o,
x>0,

donde O; € {<, =, >}, se convierte en

min 2’ = ¢t

A2’ O; b,
<,
z' >0,
donde
2=7Z+K
K =—c"u
n
b; = bz — Zujaij
j=1
b, =b; — Aju
n
osea, b =b— ZujA.j
j=1
bV =b— Au
vV =v—u.

Después de obtener los valores 6ptimos de ' y 2/, es necesario regresar a las
variables iniciales:

x:a:’—i—u
2= +K.

Ejemplo 1.1. El problema

max ¢ = 5§ + 7€ + 4&3
§1+ & +&3 <40
§1+26+ & <58

3



4 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

se convierte en

min z = —bx; — Txo — 4x3
1+ 2o+ 23 <31
1+ 2z + 23 <49
T < 26
xo < 15
r3 < 400
x> 0. &

1.1.1. Una fase

El MSA, en el caso de una sola fase, requiere, lo mismo que el simplex,
un problema en la forma estdndar, tener la matriz identidad y términos
independientes no negativos:

min z =c'x
Ax =
0<z <,

donde

1
ce R,
A c Rmxn’

be Rmxl
vE Rnxl
b>0,

existe € N™ tal que



1.1. METODO SIMPLEX ACOTADO 5

con N ={1,2,...,n}. A lo largo de este documento se utiliza ampliamente
la notacién de Matlab y Scilab. Asi A(:, 3) es la matriz obtenida al tomar
de A las columnas correspondientes a los valores del vector 5. Sea A € NP,
con p =n — m, el vector con los indices de las variables libres o no bésicas.

En el simplex usual, la solucién bésica obtenida
rp = I’(/B) =0,

xp=x(\) =0

es factible. En el MSA, se requiere adicionalmente que, el anterior vector z
cumpla con las cotas superiores, o sea, se debe cumplir que

xp=b<wvp=uv(p).

En resumen, el problema que se va a resolver es

min z =c'x

Az = (PA)
0<z <,
con las siguientes condiciones:
b >0,
A(:7 B) = Im 9
b<wvp

Ejemplo 1.2. En el siguiente problema

min z = 10x7 — 11xg + 1223 — 1424

T + dSx3+ x4= 6
2x1 + xo 4+ 3x3 = 4
I S 10
T2 S 5
T4 S 3
x> 0.



6 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

la solucién bésica inicial, z = (0,4, 0,6), no cumple con las cotas superiores.
Esto quiere decir que la cuarta columna no sirve para formar la identidad.
Se requiere introducir una variable artificial no acotada o con cota superior
mayor que 6. <

El MSA trabaja en realidad con 2n variables, las variables =1, 9, ...,
Zn y sus holguras correspondientes hi, hg, ..., hy,, donde z; + h; = vj.
Aunque hay 2n variables, en cada iteracion, solamente una variable de cada
pareja x;, h; es explicita. Obsérvese que la cota v; es al mismo tiempo cota
para x; y para hj;. Por notacién, supondremos que siempre las n variables
son ti, ta,..., ty, donde t; es z; o hj. Se denotard por compl(t;) la variable
“complementaria” a t; .

Asi por ejemplo, en una iteracién estan las variables x1, xo, x3, x4; en
otra iteracion estdn x1, hs, x3, x4 ; en otra iteracién estdn hq, hs, x3, 4.

En el MSA, como en el simplex, hay variables bésicas, variables libres,
costos reducidos, variable que entra, variable que sale, pivoteo.

El manejo (y cdlculo) de variables bésicas, variables libres, costos redu-
cidos, criterio de optimalidad y variable que entra es el mismo que se hace
en el simplex.

Costos reducidos:

1T
c— ATB™ ¢p
c— ATcp

C, =¢C, — LTCB

™
Il

™
Il

Criterio de optimalidad: Si
5L > 07
entonces la solucién factible béasica actual es 6ptima.
Usualmente se escoge t. la variable que entra por:
¢e =min{é; : ¢; <0, t; es libre}.

Depués de haber escogido la variable que entra empiezan los cambios
con respecto al simplex. En el simplex cuando la variable que entra, pasa
de cero a un valor positivo, inicamente hay que controlar que no se vuelva

6



1.1. METODO SIMPLEX ACOTADO 7

negativa ninguna de las variables basicas. Esto se presenta cuando a;e > 0.
Para esto se calcula

+00 siAde<0
wy = bs . b; .
~ =min{ — : @i >0} en caso contrario.
Agie Aje

En el MSA hay dos controles adicionales. Ninguna de las variables bésicas
puede sobrepasar la cota superior. Esto se presenta cuando a;. < 0. Entonces
se calcula

+00 siAe>0
- b<72 v, —b;

. 8; .
=min{ ——— : a;e <0} en caso contrario.

—Ugye Qe
El tercer control, simplemente impide que la variable que entra sobrepase
su propia cota superior.
w3 = Ve .

De los tres controles, se escoge el mas restrictivo:

w = min{wl, w2, ’U}3}.

Si w = +o00, el 6ptimo es no acotado. Se puede obtener una direccién a
lo largo de la cual z disminuye indefinidamente.

Si w = wy el tratamiento es exactamente el mismo del simplex. La va-
riable t., entra a la base, la variable t8,, sale de la base, se pivotea toda la
matriz aumentada sobre el elemento ay,e.

Siw = wy, entra a la base t y sale compl(tg,, ) :
" by, — Vg, boy

» Ls,. = —Ls,. Se cambia el signo de todas las entradas de variables
libres en la fila o9 de la matriz A.

= tg,, < compl(tg, ), es decir, xg, <> hg, . Sise estaba trabajando
con xg,, , ahora se trabajara con hg,, y viceversa.

» Pivoteo sobre el elemento ag,e -

7



8 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

Si w = ws, se va a usar la variable compl(t.):

» to < compl(t.)
m b b—v.A,

L] A.e — —A.e

B 24 —2— Colp
m Co ¢ —Ce

Ejemplo 1.3.

min z = —4xr1 — 2x9 —
2r1 + a2 —

2x3 + 14
5x3 + x4 +

x1 + 1/2x9 + 1/223 + x5
3x1 + 2x9 + 4dxs + x¢
X1
x2
€3
T4
T
Matriz aumentada:
r1 1) r3 T4 Ts Te b
T4 1 -5 1 0O 0110
5 1 1/2 1/2 0 1 0] 6
T 3 2 4 0 O 1120
-4 -2 =2 1 0O 0| O
Con costos reducidos:
r1 x2 r3 T4 T g b
T4 2 1 -5 1 0 0 10
Ts 1 1/2 1/2 0 1 0 6
g 3 2 4 0 O 1 20
—z -6 -3 3 0 0 0]-10
Iteracién 1:
Te = T

[
—_
D O

IV AN IAIAINA I
)



1.1. METODO SIMPLEX ACOTADO

wy; = min{5, 6, 20/3} =5
wo = +00
w3 = 4

w=w3 =4

10 2 2
b= 6| —-4|1|={2
20 3 8

Nueva tabla:

h1 Ty T3 T4 Ty g b
T4y @ —2 1 -5 1 0 0] 2
xs -1 1/2 1/2 0 1 0] 2
T —3 2 4 0 0 1| 8
—z 6 -3 3 0 0 0|14
Iteracién 2:
Te = T2
wy = min{2, 4, 4} =2
wp = +00
w3 = 3
w=w =2
T, =Tg =T4.
Pivoteo usual sobre el elemento ais:
hi a2 x3 T4 x5 xg| b
r9 -2 1 -5 1 0 0] 2
Ts 0 O 3 —-1/2 1 0] 1
T6 1 0 14 -2 0 1] 4
—z 0 0 -12 3 0 0120



10 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

Iteracién 3:

Te = T3

wy =min{1/3, 2/7} =2/7
3—-2

wg = min{ 5}:1/5

W3:2

W = Wy = 1/5

xﬁag = xﬁl =Z2.

bp=3-2=1
Li.=—1L,.
To <> hg
hi hy a3 x4y ®5 w6 | b
ho 2 1 5 -1 0 0| 1
Ts 0 O 3 —-1/2 1 0] 1
Tg 1 0 14 -2 0 1] 4
—z 0 0 -—12 3 0 0]20
Pivoteo sobre el elemento ais3:
hi ha x3 T4 Tz Tg b
T3 2/5 /5 1 -1/5 0 0 1/5
s -6/5 -=3/5 0 1/10 1 0 2/5
g —23/5 —=14/5 0 4/5 0 1 6/5
—z 24/5 12/5 0 3/5 0 0]112/5

La tabla es 6ptima,

h1:0, hQZO, :B3:1/5, x4:0, 1‘5:2/5, .%'6:6/5, Z:—112/5,
x1=4, x90=3, x3=1/5, 4=0, x5=2/5, x6=06/5 2z=—-112/5.

1.1.2. Dos fases

En un problema de OL donde, fuera de las restricciones de caja, hay
desigualdades, es necesario introducir variables de holgura para llevarlo a la

10



1.1. METODO SIMPLEX ACOTADO 11

forma estandar. Facilmente se obtiene que b > 0. Si no se tienen las condi-
ciones A(:,8) = I, vy b < vp, entonces es necesario introducir variables
artificiales y empezar con la primera fase como en un problema usual de OL.

Tanto las variables de holgura como las artificiales tendran cota inferior
nula y cota superior igual a +oo0.

Al empezar la primera fase, salvo casos muy especiales, para todas las
variables t; = x;. Supongamos que al acabar la primera fase, se obtuvo un
punto factible. Al empezar la segunda fase, para algunas variables originales
puede suceder que t; = hj. Dado que h; = v; — x;, entonces es necesario
tener en cuenta que el costo de h; es el inverso aditivo del costo de z; :

c(hj) = —c(zj) .

Ademaés por cada una de estas variables es necesario modificar z de la si-
guiente manera;:
—Z — —z +1)j0(hj).

Ejemplo 1.4.
min ¢ = 10&; + 3&
§1+26 > 4
51 + 28 > 12
0< & <3/2
1< &< 4
Cambio de variable para obtener cotas inferiores nulas: 1 = £,
xo =& — 1.
min z = 10x1 + 3x9
1 + 229 > 2
5x1 + 2x9 > 10
x1 < 3/2
xI9 S 3
z > 0.
Variables de holgura:
min z = 10z + 3x9
T + 229 — 3 = 2
5x1 + 219 — x4 = 10
T S 3/2
i) S 3
x> 0.

11



12 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

Primera fase con variables de artificiales:

min z, = T5 + X¢
1 + 229 — X3 + x5 = 2
5r1 + 219 — Iy + 26 = 10
x1 < 3/2
X9 S 3
z> 0
Tr1 T2 T3 T4 T5 Te b
T5 1 2 -1 0 1 0] 2
6 5 2 0O -1 0 1710
0O O 0 0 1 11 0
Calculo de costos reducidos:
1 T2 X3 X4 X5 T b
T5 1 2 -1 0 1 0 2
T 2 0 -1 0 1 10
-z —6 -4 1 1 0 0] —12
Iteracién 1:
Te = X1
wy = min{2, 2} =2
w2 = +00
w3 = 3/2
W = w3 = 3/2
Cambios en la tabla:
hi 22 ®3 x4 =5 6 b
T5 -1 2 -1 0 1 0]1/2
T -5 2 0 -1 o0 11]5/2
-z 6 —4 1 1 0 0] -3

Iteracién 2:

12



1.1. METODO SIMPLEX ACOTADO 13

Te = T2

wp =min{1/4, 5/4} =1/4
wo = 400

w3z =3

w=w =1/4

rg, = Tp = Ts.

Pivoteo usual sobre el elemento ais:

hl T2 T3 T4 T b
g —1/2 1 -1/2 0 0|1/4
6 -4 0 1 -1 1] 2
—z 4 0 -1 1 0] -2

Tteracién 3:

Te = I3
wp = min{2} =2
3—1/4
wg = min{ 1/2/ }=11/2

hi xy w3 4 b
2 —5/2 1 0 —1/2|5/4
w3 -4 0 1 -1] 2
—z 0 0 0 0] 0

Fin de la primera fase con la obtencién de un punto factible. Ahora se
construye la matriz aumentada con los costos originales.

h1 T2 I3 T4 b
s —5/2 1 0 —1/2|5/4
3 -4 0 1 1] 2
100 3 0 0] 0

13



14 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

Modificacién de la matriz por las variables h;. Cambio de signo del primer
costo: ¢(hy) = —10. Ademads

2 04 (3/2)(—10) = —15

hi xy 3 T4 b

x9 —5H/2 1 0 -1/2| 5/4

T3 4 0 1 -1 2

-10 3 0 0]-15

Célculo de costos reducidos:

hi xy w3 T4 b
T —5/2 1 0 —1/2 5/4
T3 -4 0 1 -1 2
-z -5/2 0 0 3/2]-75/4

Iteracién 4:

Te = hy
wp = 0
3—-5/4
wy = min{ 5/ , 00} =7/10
w3:3/2
u_):w2:7/10

rg,, =Tp = T2.

La variable bdsica x2 llega a su cota superior: by < 3 —5/4 = 7/4,
Ll. — —Ll., To < hg,

hl h2 I3 Ty b
Ry 5/2 1 0 1/2 7/4
T3 -4 0 1 -1 2
-z —5/2 0 0 3/2|-75/4

Pivoteo sobre el elemento a1 :

14
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h1 hQ T3 Ty b
hy 1 2/5 0 1/5|7/10
z3 0 8/5 1 —1/5|24/5
-z 0 1 0 2| —17

La tabla es éptima.

hl e 7/10, h2 = 0, xr3 = 24/5, T4 = O, z = 17,
x1 =4/5, Ty = 3, x3 = 24/5, x4 =0, z =17,
£1:4/57 52:47 C:20 <&

1.2. Meétodo de descomposiciéon de Dantzig y Wol-
fe

Este método, MD, sirve para resolver eficientemente problemas de OL
que se pueden plantear en la forma

min z =c'x
Az =b (1.1)
e X,
donde el conjunto X estd definido por desigualdades, igualdades lineales

(o afines) y variables no negativas de tal forma que para cualquier vector
d € R"*!, se puede resolver ficilmente el siguiente problema de OL:

min d'z (1.2)
r e X.

El ejemplo usual se tiene cuando X se define por medio de una matriz
diagonal por bloques y por restriciones de no negatividad:

X =A{x:Azx=0b, x >0},
Al
A2
A =
AP

15



16 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

bl

es decir, A es una matriz diagonal por bloques, pero estos bloques diagona-
les no son necesariamente cuadrados. Obviamente debe haber concordancia
entre el nimero de filas de A7 y el de b/. Las restricciones Az = b se llaman
restricciones de acople.

Aqui, por facilidad, se supuso que las restricciones son todas igualdades,
pero, sin ninguna pérdida de generalidad, también puede haber, indis-
tintamente, desigualdades e igualdades.

Si el vector de incognitas también se decompone por bloques de acuerdo
al nimero de columnas de cada matriz A7,

entonces Ax = b, x > 0, se separa en p bloques

AJ;‘] = b]’ j = 1?""p7
¥ > 0.
En estas condiciones el problema de OL (1.2) se llama separable vy, se

dice que el conjunto X es “separable”.

Resolver (1.2) equivale a resolver p problemas pequenos:

min djT;j
A =7, (1.3)
' > 0.

Si se define

X ={¢ : MY =1, ¢/ >0},

16
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entonces
X=X"xX?x-xXP
y (1.3) se puede escribir

min djT;j
e XV,

Ejemplo 1.5. Problema de produccién y almacenamiento. Una compania
fabrica 2 productos no perecederos diferentes. El gerente desea planificar la
politica de produccién y almacenamiento para los 4 trimestres del ano. Las
restricciones para la produccién son la capacidad de trabajo y la capacidad
de almacenamiento de cada trimestre. Sean

d;; = la previsién de demanda del producto i en el periodo j. Estas pre-
visiones de demanda deben ser satisfechas al final de cada trimes-
tre. La produccién sobrante puede ser almacenada para el periodo

siguiente.
t; = numero de horas de trabajo requeridas para elaborar una unidad
del producto <.
cij = costo de una hora de trabajo dedicada al producto ¢ en el periodo
j-
wj = namero de horas de trabajo disponibles en el trimestre j.
v; = volumen, en m?, de cada unidad del producto i.
u;j = costo de almacenamiento de una unidad del producto ¢ durante el
trimestre j o durante parte de él.
aj = capacidad de almacenamiento, en m?, en el trimestre j.

Las variables de cada periodo, correspondientes a las actividades de cada
periodo, pueden ser:

x;; = numero de unidades del producto ¢ elaboradas en el trimestre j.
y;j = numero de unidades del producto i almacenadas al final del perio-
do j para ser utilizadas a partir del periodo j + 1.

Para el periodo j se tiene:

min cy;t1w1j + cojtoxa; + uy1j + U2iY2;

17



18 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

t1z1; + toxo; + hyj = wj
v1Y15 + v2y2; + haj = a;
Y11+ &1 — Y15 = di
Y2,j—1 + w25 — Y25 = daj,
donde h,,; es la holgura con respecto a la capacidad de trabajo en el periodo

J, es decir, la capacidad de trabajo no utilizada en el periodo j. De manera
andloga, hy; es la capacidad de almacenamiento no utilizada en el periodo

j.
La porcién de la matriz de restricciones, correspondiente a las restric-
ciones del periodo 7, tiene el siguiente esquema:

Yij-1 Y25-1 | Ty T2y Y15 Y25 Nwj  haj
tl tQ 1 = wj
vl U2 1 = aq
1 1 -1 = dy
1 1 -1 = dy
Cljtl ngtz U1j U2;

Suponiendo que fueran 5 periodos, la matriz general de restricciones
presenta el siguiente aspecto:

La matriz tiene una diagonal de bloques y bloques subdiagonales. Los
bloques diagonales corresponden a las variables del periodo j; los bloques
subdiagonales estan relacionados con actividades del periodo anterior. Fre-
cuentemente se dice que esta matriz tiene forma de escalera.

Consideremos el siguiente reordenamiento: primero todas las restric-
ciones relacionadas con las previsiones de demanda; enseguida las restric-
ciones, periodo por periodo, relacionadas con la capacidad de trabajo o con

18



1.2. METODO DE DESCOMPOSICION DE DANTZIG Y WOLFE 19

la capacidad de almacenamiento. La matriz de restricciones tendra el si-
guiente aspecto:

De una matriz con este aspecto se dice que tiene forma angular. Es-
te tipo de matriz permite la aplicacién de manera eficiente del método de
descomposiciéon. Las primeras restricciones, las que tienen que ver con de-
mandas, y que involucran variables de mas de un periodo, corresponden a
Az = b. Las otras restricciones permiten definir el conjunto X.

Este tipo de matrices es tipico de problemas o modelos dindmicos donde
hay asignacién de recursos en el tiempo. Un ejemplo importante es el modelo
dindamico de Leontief. Ver [Las70].

1.2.1. Conjunto acotado

Supongamos inicialmente que el conjunto X # () es acotado. Como se
habia dicho antes X estd definido por igualdades, desigualdades y variables
no negativas. En estas condiciones, X tiene puntos extremos y se puede
expresar como combinacién convexa de ellos. Sean !, 22, ..., z* los puntos
extremos de X,

X—{Zj:mi © )\ >0, Zj:)\,-—l}.

Asi el problema (1.1) se puede reescribir

S
min z = E Y
1

19



20 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

iAq;jAj =b
1

ZAjzl

1

A>0
y de manera mas compacta
min z = '\
DX=g (1.4)
A>0,
donde
f_chj’ ]_17 787
1
f — f2 c RSXI
Js
D Azl Az? Ax? c RmHD)xs
|1 1 1
s
g= D e gmx
bm,
|1

El MD utiliza el método simplex revisado para el problema (1.4). La
matriz de trabajo del MSR tiene la forma

m —Zz fe
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donde
DE = D7D,
' = —fED5!
T = [m Ty o T 7Tm+1]
' = 7T Tt

Tl =[m m - )
—z = —fEDgilgo.
El valor —z se puede obtener de dos maneras
—z=7"g"
—2=—ft 4"
Los costos reducidos para el problema (1.4) se calculan por la férmula
JET —7TD + fT'

En particular

f5=0,

fi=7"Dr+ f].

Para saber si el punto actual es 6ptimo se busca el menor costo reducido,

Como fB =0

Si fe = 0, entonces la solucién actual es éptima. Sino, la variable A, entra a
la base. El calculo explicito de cada uno de los costos reducidos da:

Az
1

fj =cTrd + [ﬁT 7Tm+1] [

21
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fj =(c"+7"A) 2+ Tm+1 -

Obtener directamente fe = min{ fj} es muy dispendioso, pues requiere
conocer explicitamente todos los puntos extremos de X y s puede ser muy
grande. Sin embargo, f. se puede obtener de otra manera. Sea

YT =c"+7TA.

Consideremos ¢ el valor éptimo del problema

min v z+7mm41 (1.5)
reX.

Como (1.5) es un problema de OL, si tiene éptimo finito, éste se obtiene
siempre en un punto extremo. Luego fe = . Esto quiere decir que fe se
puede obtener mediante la solucién de (1.5) y, se ha supuesto, que este
problema se puede resolver facilmente.

ook W

ALGORITMO DE DESCOMPOSICION

. Encontrar una solucién bésica inicial de (1.4).

Obtener la matriz del MSR calculando Dgl, gF, —z, «".
Obtener fe, costo minimo reducido de las variables de holgura libres.

Si f. < 0, entrar esta variable de holgura libre a la base y completar
la iteracién.

Calcular 4T = ¢" + 7T A.

Hallar ¢ = min{y"z : z € X} y x° punto éptimo.
f~e =@+ Tm+1

Si fe = 0, la solucién es 6ptima. Parar.

La variable A\, entra a la base. Calcular

Axe
k _
D'e:DBl[l ]

22
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8. Escoger la variable basica que sale y pivotear.

9. Ir al paso 3.
En el algoritmo anterior hay pasos que es necesario aclarar poco a poco:

» la introduccion de variables de holgura cuando, en las restricciones de
acople, hay desigualdades.

= la obtencion de una solucién bésica inicial.
s la introduccién de variables artificiales.
= cdlculo de los costos reducidos de las variables de holgura libres.

= escogencia de la variable que entra cuando también hay variables de
holgura libres.

A lo largo de la descripcién detallada del método se utilizaran los si-
guientes resultados:

» Bl conjunto X = X' x X2 x --- x XP es acotado sssi cada conjunto

X7 es acotado.

= El punto x = (x',...,zP) es punto extremo de X sssi cada punto t/ es
punto extremo de X7.

» FEl conjunto X es vacio sssi algin conjunto X; es vacio.
En las restricciones de acople las variables de holgura se introducen como
en cualquier problema de OL. Supongamos que las variables x,41, Tnt2, ...,

Zn, son las variables de holgura para las restricciones de acople. El problema
depende ahora de

yT:[/\1 Xo o A Tpgr - xm]

y el problema (1.4) se reescribe

min z = fly
Dy=g (1.6)
y=>0.

23
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Aqui hay una ambiguedad en la notaciéon que no perjudica la presentaciéon
del algoritmo y que el lector benevolente no objetard. La matriz D de (1.4)
corresponde tinicamente a variables \; . La matriz D de (1.6) corresponde a
variables \; y a variables de holgura. La misma observacion es valida para

f.

Para una variable A;,
fj=ca,
Axd
e[t

Para una variable de holgura por defecto,

0
0

donde e? € R™*! y p indica la restricciéon para la cual fue introducida esa
variable de holgura. Para una variable de holgura por exceso,

fi=0,
e
__pP _
p;=| ="
0 0
_O_

Para las variables \;, el menor costo reducido se obtiene, como esta
expresado en el algoritmo, por medio de

fe:¢+7rm+1-

Como se esta utizando el simplex revisado, el costo reducido para una
variable de holgura por defecto se obtiene por

24
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fi=—-mp
Ejemplo 1.6.
min z = —10x; — 8x9 — 223 — b1y

1 + 3 < 3

x1+ x99+ a3+ x4 < 4

2x1 + w9 < 5

x3 + 214 < 8

3r3 + 2x4 < 18

x> 0.

Las dos primeras restricciones son las de acople. Las tres siguientes y
las de no negatividad definen el conjunto X. Es claro que es facil resolver
un problema de OL en X, pues resulta un problema separable. X se puede
definir por medio de dos bloques, el primero con una restriccion y dos varia-
bles no negativas z1 y 2, el segundo con dos restricciones y dos variables
no negativas x3 y x4.

Es necesario introducir dos variables de holgura, x5 y xg, para las res-
tricciones de acople.

x1 + x3 + x5 =3
1+ X2 + x3 + 24 + x5 =4

La matriz D tendrd tres filas. Entonces, para empezar, se requieren tres
variables basicas. Pueden ser x5, xg v A1, correspondiente a un punto extre-
mo de X. Este puede ser

zt = (0, 0, 0, 0).
La columna de D correspondiente a x5 es simplemente

25
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1
Ds=10
0
La correspondiente a xg es
0
Dg=|1

La columna correspondiente a A; es

1 0 1 00
D= |0 ol, Dg'=101 0
0 1 00 1

o, S = O

Como x5 y xe son variables de holgura, su costo f; es 0. Para A\

fi=czl=[-10 -8 -2 -5]

coc oo
I
o

' =—fgDp'=—[0 0 0] D!

T =[0 0 0]
—z=7a"g"=100 0 0]d°
—z=0.

La tabla o matriz R del simplex revisado para el método de descomposicion
es:

zs (1 0 0 3
z¢ |0 1 0 4
A |00 1 1
-z |0 0 0 O

26
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Tteracién 1:

El punto actual es simplemente z = A\jz! = 12! = (0, 0, 0, 0). Como no
hay variables de holgura libres, se procede a resolver un problema de OL en
X:

,YT — CT _i_ﬁ_TA
=[-10 -8 -2 —5]+[0 0]4
7"=[-10 -8 -2 -—5].

Al minimizar vz con x € X, se obtiene

2?2 =z*=(0, 5, 0, 4),
95: _60a
fe:@+7rm+1

= —60+0 = —60.

Se deduce que el punto actual no es éptimo y que Ao entra a la base.

0
2
Dy = [Af } 9
1
0
D 'Dy= |9
1

Ahora hay que agregar, a la tabla del simplex revisado, la columna
Dp~'D.; y el valor f, .

zs [1 0 0 3 0
A (00 1T 1 1
-z |0 00 0 —60

Para escoger la variable que sale es necesario considerar los cocientes 4/9
y 1/1. La variable bésica que sale es la segunda, o sea, xg. Ahora se pivotea
sobre el elemento Ros .

27
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x5 [1 00 3
X |0 1/9 0 4/9
A |0 -1/9 1 5/9
—z |0 20/3 0 80/3

Iteracion 2:

El punto actual es z = Az +Xoa® = 5/9 2 +4/9 2* = (0, 20/9, 0, 16/9).
La variable de holgura z¢ es libre y f(z6) = m2 = 20/3 > 0. Se procede a
resolver un problema de OL en X:

,VT — CT+7—rTA
=[-10 -8 —2 —5]+[0 20/3] A
" =[-10/3 —4/3 14/3 5/3].

Al minimizar v"z con x € X, se obtiene

=z =(5/2, 0, 0, 0),

—25/340 = —25/3.

Se deduce que el punto actual no es éptimo y que A3 entra a la base.

5/2
3
D= [Ax} = |5/2
1
1
5/2
Dp~'D3=|5/18
13/18

Ahora hay que agregar, a la tabla del simplex revisado, la columna
Dp~'Das y el valor f..

a5 [1 00 3 5/2
X2 |0 1/9 0 4/9 5/18
A |0 —1/9 1 5/9 13/18
—z |0 20/3 0 80/3 —25/3
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Para escoger la variable que sale es necesario considerar los cocientes
3/(5/2) = 6/5, (4/9)/(5/18) = 8/5 y (5/9)/(13/18) = 10/13. La variable
basica que sale es la tercera, o sea, A\1. Ahora se pivotea sobre el elemento
Rss5 .

xs [1 5/13 —45/13  14/13
X |0 2/13 —5/13  3/13
A3 |0 —2/13  18/13  10/13
—z |0 70/13 150/13 430/13

Iteracién 3:

El punto actual es = = (3/13) 2* + (10/13) 2 = (25/13, 15/13, 0, 12/13).
La variable de holgura z¢ es libre y f(xg) = mo = 70/13 > 0. Se procede a
resolver un problema de OL en X:

,YT =T +7—I_TA
=[-10 -8 -2 —5/+[0 70/13] A
7" =[-60/13 —34/13 44/13 5/13].

Al minimizar vz con x € X, se obtiene

at =2* = (0, 5, 0, 0),
= —170/13,

@
fe =@+ Tm+1
= —170/13 -+ 150/13 = —20/13.

Se deduce que el punto actual no es 6ptimo y que A4 entra a la base.

0
4
D= [Af } = |5
1
—20/13
Dp~'D, = 5/13
8/13

29
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Ahora hay que agregar, a la tabla del simplex revisado, la columna
Dp~'D. y el valor f..

x5 [1 5/13 —45/13  14/13 —20/13
X2 |0 2/13 —5/13  3/13  5/13
A3 |0 —2/13  18/13  10/13  8/13
—z |0 70/13 150/13 430/13 —20/13

Para escoger la variable que sale es necesario considerar los cocientes
(3/13)/(5/13) = 3/5y (10/13)/(8/13) = 5/4. La variable basica que sale es
la segunda, o sea, As. Ahora se pivotea sobre el elemento Ros .

zs [1 1 -5 2
Ao|00 2/5 -1 3/5
A3 |0 —2/5 2 2/5
—z |o 6 10 34

Iteracién 4:

El punto actual es = = (2/5)z* + (3/5)z* = (1, 3, 0, 0). La variable de
holgura x¢ es libre y f(zg) = m2 = 6 > 0. Se procede a resolver un problema
de OL en X:

AT =c"+7TA
=[-10 -8 -2 —5]+[0 6]4
V=[-4 -2 4 1].

Al minimizar "2 con x € X, se obtiene

=z =(5/2, 0, 0, 0),
35 = _10a
fe =@+ Tm+1
=-104+10=0.
Se deduce que el punto actual, z = (1, 3, 0, 0), es 6ptimo y z* = —34. Al
remplazar este punto en las dos restricciones de acople, se obtiene que la

primera holgura es 2, lo cual coincide con x5 = 2; en la segunda restriccién
la holgura es nula, concordando con zg = 0. <
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Ejemplo 1.7. Para resolver el mismo problema del ejemplo anterior, se
puede empezar directamente con variables artificiales. Para este caso las
columnas de las variables de holgura x5 y zg sirven para conformar la matriz
I3 . Se requiere una tercera columna, o sea, una variable artificial: 7. En la
primera fase se debe minimizar la suma de las variables artificiales. En este
caso,

min z, = Ty
100 100
Dg=10 1 0|, Dg't=1(010
001 00 1

Como z5 y zg son variables de holgura, su costo f; es 0. Para z7, el costo
es fr =1.
Para A\

™ =—fgDpt=—-[0 0 1] D!
al = [0 0 —1]
—za=1[0 0 —1]¢"

—2¢=—1.

La tabla o matriz R del simplex revisado para el método de descomposicién
es:

zs (1 0 0 3
z¢ [0 1 0 4
z7 [0 0 1 1
-2z, |0 0 =1 -1

Tteracién 1:

Como no hay variables de holgura libres, se procede a resolver un problema
de OL en X:

’)/T:CT+7T'TA
=0 0 0 0]+[0 0]A
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7"=1[0 0 0 0].

Al minimizar v"z con x € X, se obtiene

' =z* = (0, 0, 0, 0),

¢ =0,
fe:¢+77m+1
=0+ —1=-1.

Este ltimo problema de OL tienes muchas soluciones (cualquier punto fac-
tible). Se deduce que la tabla no es éptima y que \; entra a la base.

i 0
1
D= Af — o
L 1
0
D~ 'D.y= |0
1

Ahora hay que agregar, a la tabla del simplex revisado, la columna
D~ 'D4 y el valor f..

zs (1 0 0 3 O
z¢ [0 1 0 4 O
z7 |0 0O 1 1 1
-z, [0 0 =1 0 -1

La variable que sale es necesariamente x7. Ahora se pivotea sobre el
elemento Rss .

zs |1 0 0 3
z¢ |0 1 0 4
A |0 01 1
-2z |00 0 O

Iteracién 2:

El punto actual es x = Azt = (0, 0, 0, 0). No hay variables de holgura
libres. Se procede a resolver un problema de OL en X:
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AT =c"+7TA
=000 0+[0 0]A
vT=[0 0 0 0].

Al minimizar vz con x € X, se obtiene

22 =2*=(0, 0, 0, 0),

p =0,
fNe:Sb"i‘ﬂ—m—&—l
=0+0=0.

Se deduce la tabla actual es 6ptima para la primera fase. Como z, = 0, se
prosigue con la segunda fase. Al pasar a la segunda fase cambian los costos
y es necesario recalcular fp, 77 y —z. La segunda fase ya se realizd en el
ejemplo anterior. <

1.2.2. Conjunto no acotado

Si el conjunto X # ) no es acotado, entonces se puede expresar en

funcién de sus puntos extremos y direcciones extremas. Sean z!, 22, ..., z°

los puntos extremos de X y d', d?, ..., d* sus direcciones extremas, entonces

S t s
X={z=) Na'+> pd, X, >0Vi, Y \i=1, pu; >0Vj}.
i=1 j=1 i=1

Asi el problema (1.1) se puede reescribir

S S
min z = E "'\ + E ' d
i=1 j=1

s t
> ArN 4+ Adip;=b
i=1 j=1

dai=1

=1
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A >0
y de manera mas compacta
A
min z = f7* [ ]
! H
A
D = 1.7
L (17)
A, =0,
donde
fT: [Cngl cee TS Cle CTdt]
fe R(s+t)x1
D_ Azl - Ax® Ad' - Ad € ROMHDX(s+)
| 1 1 0 0
o
g= D] e gOmxL
bm,
| 1

Cuando X es separable, o sea, cuando X se puede definir por medio de
una matriz diagonal por bloques, las direcciones estdn relacionadas por el
siguiente resultado.

Si oF es una direccion extrema de X*, entonces
k
d=1(0, ..., 0, 9%, 0, ..., 0)
es direccion extrema de X.

Los cambios que se presentan ante la presencia de direcciones extremas de
X son los siguientes:

» Las variables, en el caso general, seran: \;, u;, las variables de holgura
y las variables artificiales.
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= Para problemas separables, se trabaja con una direccién extrema de
X cuando en uno de los subproblemas se tiene 6ptimo no acotado y
una direccién de descenso 9%, permitiendo construir d’ una direccién
extrema de X.

= En las condiciones anteriores, fe = 7Td < 0. Es el mismo valor del
costo reducido del subproblema. Recuérdese que para puntos extremos,

fo=7"2 4+ Tyt .

= La columna de D correspondiente a ji; es:

.-

0

La escogencia de la variable basica que sale y el pivoteo se hacen como
en el caso acotado.

= Se puede presentar que

D~ 'D.. <0.

FEn este caso, no se puede escoger la variable bésica que sale, el proble-
ma general tiene 6ptimo no acotado y se puede construir una direccién
de descenso. La direccién se construye de manera analoga a como se
hace en el simplex cuando en la columna de la variable que entra no
hay elementos positivos.

d=d =Yy d,
1=1

donde y = D~ 'D.. y el simbolo # indica que la suma se hace tni-
camente con los indices de las variables basicas correspondientes a di-
recciones. La direccién d¥ es la direccién correspondiente a la i-ésima
variable bdsica.
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Ejemplo 1.8.

min z =4x; + x3 — 223 + x4

T1+ 29 +2x3 —3x4 < 5
1+ 229 — 234+ x4 < 8
21 + w9 >3
1+ T2 > 2
(L‘4§2

T3 — T4 > 2

xz > 0.

Las dos primeras restricciones son las de acople. Las cuatro siguientes y
las de no negatividad definen el conjunto X, en el cual es facil resolver un
problema de OL.

Es necesario introducir dos variables de holgura, x5 y xg, para las res-
tricciones de acople.

1 + X9 + 223 — 314 + T5 =95
1+ 2w — X3+ T4 +x6 =8

Para empezar, se requieren tres variables béasicas. Ademaés de x5 y g, la
tercera puede ser x7, variable artificial para la tercera fila (A; +Ao+- -+ Ag =

1).
1 00 1 00
Dg=10 1 0|, Dgt=1(01 0
00 1 00 1

Como x5 y g son variables de holgura, su costo f; es 0. Para x7, el costo
artificial es 1.

" =—fgDp'=—-[0 0 1]Dg7!
=100 0 —1]
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1.2. METODO DE DESCOMPOSICION DE DANTZIG Y WOLFE 37

La tabla o matriz R del simplex revisado para el método de descomposicién
es:

T5 1 0 0 )
ze [0 1 0 8
z7 |0 0 1 1
-z |00 -1 -1

Tteracién 1-1:

Como no hay variables de holgura libres, se procede a resolver un problema
de OL en X:

Fr=c"+7"A
=0 00 0]+ 0]A
vT=[0 0 0 0].

En X hay muchos puntos factibles, luego muchos puntos éptimos para este
problema. Al minimizar vTx con x € X, se obtiene, por ejemplo

t=(1,1, 2, 0),

¢ =0,
fe:@+ﬂ'm+1
—0+ —1=-1.

Se deduce que la tabla actual no es 6ptima y que A1 entra a la base.

6
1
D. = [Alx } = |1
1
6
D~ 'Dy= |1
1

Ahora hay que agregar, a la tabla del simplex revisado, la columna
D~ 'D, y el valor f..
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38 CAPITULO 1. METODOS DE OPTIMIZACION LINEAL

zs |1 0 0 5 6
e [0 1 0 8 1
z7 |0 0 1 1 1
-z (00 -1 -1 -1

Para escoger la variable que sale es necesario considerar los cocientes
5/6, 8/1 y 1/1. La variable bésica que sale es la primera, o sea, x3. Ahora
se pivotea sobre el elemento Rys .

M [ 1/6 0 0 5/6
ze |—1/6 1 0 43/6
ar | =1/6 0 1 1/6
—z | 1/6 0 -1 —1/6

Tteracion 1-2:

La variable de holgura por defecto x5 es libre, su costo reducido es m =
1/6 > 0. Entonces se procede a resolver un problema de OL en X:

7"=[0 0 0 0]+[1/6 0] A
v'=[1/6 1/6 1/3 —1/2].

Al minimizar "2 con x € X, se obtiene,

2= (1, 1, 4, 2),

@:2/37

fe=@+ Tmt1
=2/3+ —1=-1/3.

Se deduce que la tabla actual no es 6ptima y que A9 entra a la base.

- - 4
2

Dy = Af = |1

- - 1
_2/3_
DBilD.QZ 1/3
[1/3]
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Ahora hay que agregar, a la tabla del simplex revisado, la columna
Dp~'D., y el valor f..

M [ 16 0 0 5/6 2/3
ze |—1/6 1 0 43/6 1/3
oy |-1/6 0 1  1/6 1/3
—z | 1/6 0 -1 -1/6 —1/3

Para escoger la variable que sale es necesario considerar los cocientes
(5/6)/(2/3), (43/6)/(1/3) v (1/6)/(1/3). La variable bésica que sale es la
tercera, o sea, x7. Ahora se pivotea sobre el elemento Rss .

M O[ 12 0 =2 1)2
T 01 -1 7
Ao |-1/2 0 3 12
—z 00 O 0

Como ya se anuld la tinica variable artificial que habia, se tiene el 6ptimo
de la primera fase. No es necesario calcular 7 ni resolver un problema de OL
para obtener f..

Segunda fase:

De la ultima tabla, inicamente es necesario recalcular 7" y —z utilizando
los costos reales.

fl_ch,l
1
1
=41 =2 1],
0
=1
fQZCTxQ
1
1
=41 =2 1],
2
=-1

Para la variable zg el costo es 0.
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WT:—fBDB_l
/2 0 -2
=—[1 0 —1] 01 -1
-1/2 0 3
=[-1 0 5]
_z:WTgo
5
=[-10 5|8
1
= 0.
A /2 0 -2 1/2
T6 01 -1 7
A | —1/2 0 3 1/2
—z -1 0 5 0

Iteracién 2-1:
El punto actual es z = Azt + Aox? = (1, 1, 3, 1). El costo reducido de

variable de holgura por defecto x5 es fe = m = —1. Luego z5 entra a la
base.
1
D..= |0
10
[ 1/2 0 -27 [1
Dp~'D.. = 01 —1| |0
| -1/2 0 3] [0
[ 1/2
= 0
| —1/2

Ahora hay que agregar, a la tabla del simplex revisado, la columna
Dp~'D.. y el valor f..
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MO 1/2 0 =2 1/2  1/2
6 01 -1 7 0
X | =1/2 0 3 1/2 —1/2
—z | =10 5 0 -1

Sale la primera variable bésica, o sea, A\;. Al pivotear sobre Ri5 se ob-
tiene:

Is5 1 0 —4 1
z¢ [0 1 -1 7
A2 |0 O 1 1
—z |0 0 1

Tteracién 2-2:

El punto actual es # = A\yz? = (1, 1, 4, 2). No hay variables de holgura
libres. Entonces se procede a resolver un problema de OL en X:

=41 -2 1]+[0 0] A
V=041 -2 1].

Ahora se minimiza y*x con x € X. En X se obtiene ' = (0,3). En X,
resulta 6ptimo no acotato con la direccién de descenso (1,0). Entonces para
el problema en X,

d'=(0, 0, 1, 0)

es una direccién extrema de descenso y f. = ¢Td} = —2

- 2

1
P I
- 0

57

D 'D.= | -1

0_

Ahora hay que agregar, a la tabla del simplex revisado, la columna
D7 'D.. y el valor f..
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zs [1 0 —4 1 2
z¢ |01 -1 7 -1
A2 |0 0 1 1 0
-z |0 0 1 1 -2

Necesariamente sale la primera variable bésica, o sea, x5. Al pivotear
sobre R15 se obtiene:

p [1/2 0 =2 172
z6 |1/2 1 —3 15/2
X | 00 1 1
—z | 10 -3 2

Iteraciéon 2-3:

El punto actual es = pu1d* + Moz = (1, 1, 9/2, 2). La variable x5 es de
holgura por defecto libre. Su costo reducido es w1 = 1. Entonces se procede
a resolver un problema de OL en X.

Y'=[4 1 -2 1]+[1 0]A
Y= 20 —2|.

Al minimizar "2 con x € X, se obtiene,

z® = (0, 3, 4, 2),

p=2,
fe =@+ Tmt1
—24 —3=-1.

Se deduce que la tabla actual no es 6ptima y que Az entra a la base.

5[5
3

Df:% = |4

. 1
1/2]
D 'D..= |7/2
1
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Ahora hay que agregar, a la tabla del simplex revisado, la columna
Dp~'D.. y el valor f..

p [1/2 0 =2 1/2 1/2
ze |1/2 1 —3 15/2 7/2
X | 00 1 11
—= | 10 -3 2 -1

Para escoger la variable que sale es necesario considerar los cocientes
(1/2)/(1/2), (15/2)/(7/2) y 1/1. La variable bésica que sale es la primera,
o sea, i1. Ahora se pivotea sobre el elemento Ris .

A3 1 0 -4 1
ze |—3 1 11 4
A |-1 0 5 0
—z 2 0 =7 3

Tteracién 2-4:

El punto actual es x = A3x® + Xox? = (0, 3, 4, 2). La variable x5 es de
holgura por defecto libre. Su costo reducido es m; = 2. Entonces se procede
a resolver un problema de OL en X.

V=41 -2 1]+[2 0]4
v'=16 3 2 —5].

Al minimizar v"x con x € X, se obtiene,

zt=(1, 1, 4, 2),

¢=",
fe:@+77m+1
—74 —7=0.

Se deduce que la tabla actual es 6ptima y que

*

T = Tactual
x* = (07 37 4’ 2)
ZF=-3. <
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Ejemplo 1.9.

min z = —3x1 + 4x9 — 10x3 — 614
—x1+ 9o — x3+ x4> 4
2.%'1— ) 23
Tr1 — T2 §5
Ty < 2
T3 — T4 > 2
x>0

Es necesario introducir x5, variable de holgura por exceso y xg, 7, variables
artificiales, que seran las variables bésicas.

10

Dp = |:O 1:| , DB_IZDB.

" =—fgDp ' =—[1 1]Dp~!

" =[-1 -1]
—z=n"g"=[-1 —1] m
—z=-5.

La tabla o matriz R del simplex revisado para el método de descomposicion
es:

Iteraciéon 1-1:

Para x5, variable de holgura por exceso, el costo reducido es —m; = — —1 =
1. Entonces:

AT =c"+7TA
=[0 0 0 0]+[-1]4
V=01 -1 1 —1]
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Al minimizar vz con = € X, en X; se obtiene éptimo no acotado con
direccién de descenso (1/2, 1). Entonces se construye una direccién extrema
de descenso para X

d'=(1/2, 1, 0, 0),
]Ee = ’Yle
=—1/2.

Se deduce que la tabla actual no es éptima y que p1 entra a la base.

)[4

Sale xg.
M1 2 0 8
T 0 1 1
-z |0 -1 -1
Iteracion 1-2:
Para x5, variable de holgura por exceso, el costo reducido es —m; = 0.
Entonces:
’YT — CT + 'ﬁ'TA
=[0 0 0 0]+[0]A
7"=1[0 0 0 0

a' = (3/2, 0, 2, 0),

45
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fe = 'YTxl + Tm+1
=0+4+-1=-1.

La tabla actual no es éptima y A; entra a la base.

oo ][

w (2 0 8 -7
x7 |0 1 1 1
-z |0 -1 -1 -1
Sale x7.
w (2 7 15
A (0011
-z |0 0 O

Como las variables artificiales son nulas, se puede afirmar que la tabla
anterior es éptima, sin minimizar vTx con x € X.

Segunda fase:

-[52]-[.7

" =—fEDp =[5 7]

—z=7"¢"=-13
M1 27 15
A1 0 1 1
-z | =5 7 -—13

Iteracién 2-1:

El punto actual es x = pyd! + Ml = 15d" + 2! = (9, 15, 2, 0) y z = 13.
Para x5, variable de holgura por exceso, el costo reducido es —m; = 5.
Entonces:
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7T — CT + 7?_T14
=[-3 4 —-10 —6]+[-5]4
V=2 -1 -5 -11].

Al minimizar v*x para x € X, en X5 se obtiene éptimo no acotado y la
direccién de descenso (1,0). Entonces para X,

=0 0 1 0]

es direccién de descenso.

w [ 27 15 =2
Ml o1 10
—z | -5 7 —13 =5

Como Dp~'D.. < 0, entonces el problema completo tiene éptimo no
acotado. Se puede construir una direcciéon de descenso:

d=d?—(-2)d*
=0 0 10" "+2[1/2 1 0 0]
=[1 21 0

c'd=-5. <
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Ejercicios

1.1 Resuelva utilizando el método simplex acotado

min z = 3x1 — 4x9
T, + 229 < 10
4z + 3x9 < 20
1 <21 <10
2 < x9 <4,

Respuesta: z = (1, 4), z = —13.
1.2 Resuelva utilizando el método simplex acotado

min z = —5x1 — 229
5x1 + 2x9 > 40
4dz1 4 9z9 > 50
3<z; <10
4 < x9 < 20.

Respuesta: z = (10, 20), z = —90.
1.3 Resuelva utilizando el método simplex acotado

min z = —5x1 — 2x9
5x1 + 2x9 > 40
421 + 9292 > 50
3<z1 <5
4 < x9 <5b.

Respuesta: no hay puntos factibles.
1.4 Resuelva utilizando el método simplex acotado

min z = —5x1] — 2x9
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51 + 2x9 > 40

4x1 4+ 92 > 50
2<z21 <5
3 < a9

Respuesta: éptimo no acotado.

1.5 Resuelva utilizando el método simplex acotado

min z = 9.5x1 + 7Txo
1+ 229 > 11
3x1 + 220 > 19
0<z <7/2
1<29<5h

Respuesta: z = (7/2, 17/4), z = 63.

1.6 Resuelva por el método de descomposiciéon de Dantzig y Wolfe:

min z = —10x7 — 1029 — 1223 — 8x4
211 + 3 < 4
1+ w2+ w3+ x4 <12
2z1 + 3z9 < 6
T3 + 224 < 11
3rs + x4 < 8
x> 0.

Para empezar utilice las variables basicas x5, xg y A1 correspondiente
azt=(0,0,0,0).

Respuesta: x = (3/2, 1, 1, 5) obtenido con A\ = 1/2, 22 = (3,0, 1,5),
A =1/2, 2% =(0,2,1,5), 2 = —77.
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1.7 Resuelva por el método de descomposicién de Dantzig y Wolfe:

min z = —10x; — 10zy — 1223 — 8xy4
221 + x3 <10
T1+ a2+ w3+ x4 <15

21 + 3z9
T3 + 214
3x3 + x4
T

VIV IV IV
S 9ne o

Para empezar utilice las variables béasicas x5, g y A1 correspondiente
azt=(0,2,21).

Respuesta: = (0, 5, 10, 0) obtenido con ps = 6, d> = (0,0,1,0),
p1=9,d =(0,1/3,0,0), Ao = 1, 22 = (0,2,4,0), z = —170.

1.8 Resuelva por el método de descomposicién de Dantzig y Wolfe:

min z = 6x1 + Txo + 8x3 — 924
1+ T + x4> 3
1+ w2+ w3+ w4 <10

T1 + 219
3x1 + 212
2x3 + x4

IV IV IV IA
S e ot w

Respuesta: x = (5/3, 0, 0, 25/3) obtenido con A\; = 1, 2! = (5/3,0,0,4),
w1 =13/3, d' = (0,0,0,1), z = —65.

1.9 Resuelva por el método de descomposicién de Dantzig y Wolfe:

min z = 6x1 + Txo + 8x3 — 924

1+ T + x4 > 3
r1+ o+ 3+ 4> 10
r1 + 279 < 3
3r1 + 2192 > 5
203 + x4 > 4

x>0

Respuesta: 6ptimo no acotado.
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1.10 Resuelva por el método de descomposicion de Dantzig y Wolfe:

min z = 6x1 + 7Txo + 8x3 — 924

T+ X2 + 4> 3
1+ 22+ w3+ x4 2> 10
1 + 229 < 3
3z + 229 < 5
223 + x4 < 4

x> 0.

Respuesta: no hay puntos factibles.
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Capitulo 2

Optimizacion entera

Un problema de OL con variables no negativas se puede expresar asi:

min z =c'x
Apz>bi, i€ M CM={1,..,m),
Ajx=0b;, 1€ My=M~ M (B)
z e R,

donde R = {z € R™ : > 0}. Relacionado con este problema, se tiene un
problema de optimizacién entera, OE, objeto de estudio del capitulo:

min z =c'x
Ajx>b;, 1€ M
Apz=bi, i€ M (P,)
r e,

donde Z} = {x € Z™ : x > 0}. En la préctica, sin pérdida de generalidad, se
puede suponer que todos los valores c;, a;; y b; son racionales. Esto impli-
ca que se puede obtener una formulacién equivalente de los dos problemas
donde todos los coeficientes c;, a;; y b; son enteros.

Algunos problemas, por su misma naturaleza, son problemas de OE,
pero se supone o acepta que si se resuelven como un problema de OL el
error cometido es muy pequeno y despreciable. Esto quiere decir que al
obtener la solucién de R, si ésta no es entera, se puede aproximar por un
punto entero cercano cometiendo un error despreciable.
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Si en la solucién por OL de un problema de OE resulta que mensualmente
hay que fabricar 8765.4 zapatos, no se comete un error muy grande al decir
que hay que fabricar 8765 zapatos.

Sin embargo, en otros problemas, necesariamente se debe considerar que
la solucién debe ser entera. Como se vera mas adelante, no siempre la solu-
cién entera esté cerca de la solucién real.

Si en la solucién por OL de un problema de OE resulta que hay que
construir 4.56 centrales hidroeléctricas, no se puede decir alegremente que
la solucién 6ptima consiste en construir 5 centrales.

En otros problemas, de ninguna manera se puede considerar que una
variable entera pueda tomar valores no enteros.

Ejemplo 2.1. Problema de secuenciacién. Un taller tiene n contratos de
trabajo pero solamente puede hacer uno a la vez. Para cada contrato hay una
fecha prevista de entrega g; . La duracién o tiempo requerido para efectuar
el trabajo correspondiente al contrato i es d; (entero positivo). La multa por
cada dia de retraso en la terminacién del contrato es p; . ;Cudl debe ser el
orden de secuenciacién para minimizar la multa?

Para el planteamiento de este problema se supone que si se empieza un
trabajo el dia j, y éste dura t dias, entonces podra ser entregado al comienzo
del dia j + t, pero no podra ser entregado al final del dia j 4+ ¢ — 1.

La programacién se debe hacer sobre el nimero de dias necesarios, T =
>, di. El dltimo trabajo realizado se entregara al comienzo del dia 7"+ 1.

Las variables para este problema pueden ser:

{1 si el contrato ¢ empieza el dia j,
Ti5 =

0 sino,

coni=1,...n, j=1,....fi =T —d; + 1. Por ejemplo, si T'= 30 y dy = 5,
entonces fy = 26, o sea, el segundo contrato puede empezar, a mas tardar,
el dia 26.

Como cada contrato empieza una y solamente una vez, entonces

i
Z(Ei]‘ = 1, 1= 1,...,n.
j=1

Para considerar que cada dia hay un solo contrato en ejecucién, se in-
troduce una variable intermedia, dependiente de x, que sirve para saber si
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el trabajo ¢ estd en ejecucion el dia j:

min{j, f; }

Yij = Z Tik

k=max{1,j—d;+1}

donde i = 1,...,n, j = 1,...,T. Obviamente esta variable debe cumplir
yij < 1. Si y;; = 0, entonces el dia j el trabajo ¢ no estd en ejecucion.
Si y;; = 1, entonces el dia j el trabajo i estd en ejecucién. Si y;; > 1, se
tendria que en los dias previos a j el trabajo ¢ empezo varias veces. Hay una
restriccién mas fuerte que incluye la anterior. En cualquier dia hay un tnico
trabajo en ejecucion.

n
yg=1, j=1,.,T
=1

A partir de los datos, independiente de x, se pueden construir los valores
m;; que facilitan la expresién de la funcién objetivo:

0 si j+di < g
mij; = < . .
JH+di—gi st j4di > g
Este valor m;; indica el nimero de dias de multa si el trabajo i empieza
eldia j,coni=1,...n, j=1,..., f;. De manera mas sencilla

mi; = max{0, j+d; — g;}.

La funcién objetivo es simplemente

n fi
min z = E Di E m;jxij. <
i=1  j=1

Ejemplo 2.2. Problema de inversiéon. El Ministerio de Desarrollo Econémi-
co proyecta invertir en n sectores y para cada sector hay m; alternativas de
inversién. En cada sector es necesario llevar a cabo por lo menos n; alterna-
tivas. La planeacién se hard a lo largo de T anos. Para cada sector i y cada
alternativa j, se conoce el flujo de inversién, es decir, se conocen los valores
fijk » monto de la inversién en el ano k. Cada alternativa j del sector i ge-
nera e;; empleos y produce un beneficio econémico b;;, pero la capacidad de
inversion de cada ano es ci. Por razones econdmicas y politicas, es necesario
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generar por lo menos F empleos durante estos 17" anos. ; Qué alternativas de
cada sector se deben escoger para maximizar el beneficio?

Con las variables

1  si para el sector i se escoge la alternativa j,
Tij = .
0 en caso contrario,

con i =1,...,n, j=1,...,m;, sepuede plantear el problema de la siguiente
manera:

n mg

max 2 = E E bijl'ij

i=1 j=1

n m;

ZZfijkxij <cr, k=1,..,T,

i=1 j=1

m;
g Tij >ng, 1=1,...,n,
j=1

n  m;
ZZ%%]‘ > b,

i=1 j=1
Tij € {0, 1}. &

Ejemplo 2.3. Problema del agente viajero (TSP “traveling salesman pro-
blem”). Saliendo de una ciudad, él debe visitar otras n—1 ciudades diferentes
y regresar a la ciudad inicial sin repetir trayectos ni ciudades. Se conoce una
matriz C' € R"*", donde c¢;; indica el costo correspondiente a ir de la ciudad
i a la ciudad j. No necesariamente c;; = cj;. Se desea encontrar el orden en
que el agente viajero debe hacer la visita para que el costo se minimo.

Sea

1  si, después de la ciudad i, él visita la ciudad j,
Tij = .
0 en caso contrario,

dondet=1,...n, j=1,..,i—1i+1, ., n.

Planteamiento:
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n o n
min z = E E Cijij

i=1 j=1
J#i

n
E J?Z'jzl, izl,...,n,

J=1
JF#i

n
=1, j=1,...n,

i=1
i#]
Y w1, SCN,2<|S|<n-2,
i€S,j¢S
Tij € {O, 1}.

El tercer grupo de restricciones evita la presencia de subciclos indepen-
dientes, por ejemplo, no debe estar permitido el esquema de la figura. Alli,
T13 = T3] = To4 = x49 = 1, las demads variables son nulas. Estos valores de
x;; cumplen los dos primeros grupos de restricciones.

La idea subyacente en el tercer grupo de restricciones es la siguiente: si
S y T son subconjuntos de N no vacios y disyuntos, entonces debe haber
por lo menos un viaje de S a T o uno de T" a .S; basta con considerar como
posibles conjuntos S y S; los conjuntos de cardinal 1 y los de n — 1 estén
considerados en los dos primeras grupos de restricciones <

En lo que sigue se utilizara la siguiente notacién:
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CAPITULO 2. OPTIMIZACION ENTERA

Fy={xeR": Ajx>b;, i € My, A,.x=b; i €My}, conjunto de
puntos que cumplen las desigualdades e igualdades.

F. = F4NRY , conjunto de puntos factibles para el problema de OL
o problema real.

E* . conjunto de puntos 6ptimos para el problema real.

z» @ valor 6ptimo de z para el problema real. Se utiliza la siguiente

convencion:
z¥ = 400 indica que no hay puntos factibles (F, = 0).

zy = —oo indica que se tiene éptimo no acotado.

Fo=FaNZY = F.NZ"T = F.NZ", conjunto de puntos factibles para
el problema de OE o problema entero.

F? . conjunto de puntos 6ptimos para el problema entero.

z} : valor 6ptimo de z para el problema entero.

Algunos resultados son inmediatos:

» Puede suceder que F,. #0 y F. =0.

Ejemplo 2.4.

min z = 3x1 + 4x9
1+ 929 <6
—x1 + 929 > 3
x>0
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Para estas restricciones, F). es la regiéon sombreada. En cambio F, = (. <

Ejemplo 2.5. Considere los problemas de OL y OE definidos por las si-
guientes restricciones:

min z = —15z1 — 14x9
229 < 11
1221 + 11z < 65
T S 5
x> 0
Los puntos extremos de F,. son
(5, 5/11) z=—895/11
(3/8, 11/2) z=—661/8
(5, 0 z=-175
(0, 11/2) z=-=T7
(07 0) z = O

Como F;. es acotado, simplemente se escoge el mejor punto extremo, o
sea que para el problema P, .
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60 CAPITULO 2. OPTIMIZACION ENTERA

ot = (3/8, 11/2).

@a&f@%

F, esta formado por los puntos enteros de Fy., es decir, por (0,0), (0,1), ...,
(0,5) (1,0), (1,1), ..., (1,4), ..., (4,0), (4,1), (5,0). De ellos, el mejor es
xz; = (5, 0), =z =-T75.

Obsérvese que el punto 6ptimo para el problema P. estd muy alejado del
punto 6ptimo del problema B.. <

Definicion 2.1. Sean P; y P> dos problemas de optimizacién cuyos conjun-
tos admisibles son F; y F5. Se dice que P es una relajacion de P; si los dos
problemas tienen la misma funcién objetivo y Fy C Fy. Se dice P» es una
relajacion lineal si P, ademas de ser una relajacién de P;, es un problema
de OL.

En lo que sigue, mientras no se diga lo contrario, cuando se mencione una
relajacién se supone que se trata de una relajacion lineal. De todas maneras
algunas veces se enfatizard que se trata de una relajacién lineal.

El problema B es una relajaciéon lineal del problema P.. En general,
los métodos de OE buscan obtener, de manera iterativa, un problema P’,
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2.1. CORTES DE GOMORY 61
relajacién lineal de P, , tal que la (una) solucién de P’ sea también solucién
de P, .

Para el problema de OE del ejemplo anterior, una relajacién muy buena es
la siguiente:

min z = —15x7 — 1429
1+ 22< b
r € Rl

Definicion 2.2. Un corte o plano cortante es simplemente una restriccion
adicional de la forma g™z < ¢ (o de la forma ¢"z > ¢).

En una parte importante de los métodos de OE, se arranca con la relaja-
cién natural de P, es decir con Py =E.. De manera iterativa se construyen,
mediante cortes, relajaciones lineales mas estrictas que las anteriores, es
decir, los conjuntos admisibles deben ser subconjuntos propios de los an-
teriores. Obviamente estas relajaciones no pueden quitar puntos factibles
enteros. El proceso acaba cuando la solucién de una relajaciéon es un punto
entero.

Py=k
Fy=F,
para £k=0,1,2, ...
obtener z* solucién de P
si ¥ € Z", ent parar
obtener un corte adecuado ngx < pk
Fep1=Fpen{z:g" 2 < g1}
fin-para

En el problema P, hay que minimizar ¢*z con x € Fj. Un corte es adecuado
si:

Frp1 & Fi,
Fiy1 2 Fe.
2.1. Cortes de Gomory
Este método se aplica a problemas de OE escritos en la forma estandar.
Esta dentro de los descritos anteriormente. Tiene las siguientes caracteristi-

cas adicionales:
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62 CAPITULO 2. OPTIMIZACION ENTERA

» El proceso es finito.

= Kl punto éptimo de problema actual no cumple el corte.

Sea [t]| la parte entera inferior y {t} la parte fraccionaria de un real, es
decir, {t} = ¢t — |t]. Cuando en un problema P, el punto éptimo no es
entero, el corte de Gomory se escoge de la siguiente manera:

{br} = max {b;} (2.1)
> Aanjtay > {0}, (2.2)

z; libre
donde los valores b; y a,; se toman de la tltima tabla.

Este corte (o restriccién adicional) resulta de las siquiente consideraciones.
La restriccion r es:
n
E arjxj = br .
=1

Separando en columnas bésicas y libres:
E Arj%j + E ArjXj = b, .
x; bésica z; libre

Para las columnas basicas, todos los coeficientes son nulos salvo uno:

xg, + Z arjT; = by .

x; libre

Separando parte entera y fraccionaria:

vs, + Y Aarry+ > lar]z; = {b} + [br).

z; libre z; libre

Agrupando:

(b} = Y Aajtey =ws, + D lar)a; — b

x; libre x; libre

Como z debe ser entero:

(b} — Y Aarlz; € L. (2.3)

x; libre

62



2.1. CORTES DE GOMORY 63

Como {b,} <1 y Z {arj}z; > 0, entonces

x; libre

(b} = > {ar}z; <0.

x; libre

La anterior desigualdad es el corte de Gomory. Si para todas las colum-
nas libres {a,;} = 0, entonces habria una contradiccién en (2.3). Se puede
mostrar que el punto z* obtenido no satisface el corte, es decir, ¥ ¢ Py 1.

Una manera eficiente de implementar el método de cortes de Gomory
consiste en utilizar el simplex dual, ya que al agregar un corte que no es
cumplido por el punto éptimo actual, esta restriccién se puede agregar a
la ultima tabla, los costos reducidos (no negativos) no van a cambiar y se
tendra un término independiente negativo. Sin embargo, en la practica, el
método de cortes de Gomory no es muy eficiente.

Ejemplo 2.6.
min z = —11x; — 12z9
1 + 229 < 10

3r1 + 2x9 < 13
x €LY

Para la relajacion inicial se quita la restricciéon de integralidad. Al re-
solver ese problema de OL se obtiene la siguiente tabla o matriz ampliada
optima.

9 3/4 —1/4 17/4

0 1
x |10 —-1/2 1/2  3/2
00 7/2 5/2 135/2

—Zz

x, = [3/2 17/4 0 0]"
{br} = {b2} = 1/2

Corte:
(1/2) x5+ (1/2) x4 > 1/2
Variable de holgura:
(1/2) 23+ (1/2) 24 — x5 = 1/2
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64 CAPITULO 2. OPTIMIZACION ENTERA

Al agregar esta nueva restriccién a las 2 igualdades de la tabla 6ptima
se tiene:

zo [0 1 3/4 —1/4 0 17/4
z [1 0 —=1/2 1/2 0  3/2

00 1/2 1/2 -1 1/2
-z |00 7/2 5/2 0 135/2

Para aplicar el simplex dual se requiere la matriz identidad. Esta se
puede obtener multiplicando la tercera igualdad por —1.

o [0 1 3/4 —1/4 0 17/4
x |10 —1/2 1/2 0 3/2
s |0 0 —1/2 —-1/2 1 —1/2
—z [0 0 7/2 5/2 0 135/2

Sale la variable xg, = x5 y entra x4. Se pivotea sobre el elemento asy .

z [0 1 1 0 —1/2 9/2
z |10 -1 0 11
z |00 11 -2 1
-z 00 10 5 65

Esta tabla, ademas de tener costos reducidos no negativos, es factible, luego

a*=[19/2 0 1 0]".

Pero este punto no es entero, luego se crea un nuevo corte, a partir de los
elementos de la primera fila

(1/2) x5 > 1/2.
Al agregar este corte al problema anterior se obtiene
=050 3 1 0],
punto entero. Luego, para el problema original de OE
z*=[0 5]". ©
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2.2. RAMIFICACION Y ACOTAMIENTO 65

2.2. Ramificacién y acotamiento

Generalmente se habla del método de ramificacion y acotamiento, MRA,
o bifurcacion y acotamiento, “branch and bound”, aunque mas que un méto-
do especifico y preciso, se trata de un grupo de métodos que tienen en comun
ciertas reglas. La mayoria del software comercial para OE esta basado en
el RA, al que se le agregan otras técnicas y refinamientos para hacerlo mas
eficiente.

El espiritu del método estd basado en el célebre dicho “divide y ven-
cerds”. Sea Py el problema inicial P, y P} su relajacién lineal. Si la solucién
de P} es entera, entonces también es solucién de P, . Si no es entera, enton-
ces el conjunto factible de Py se divide en dos conjuntos disyuntos Fy y F5.
Eso da origen a dos problemas de OE, P; y P», de tal forma que la solucion
de P, debe ser la solucion de P; o la solucién de P,. Para resolver estos
dos problemas de OE, se procede a resolver la relajacion lineal de cada uno
de ellos. Para cada uno de estos problemas se repite el proceso hasta haber
estudiado todos los casos posibles. Estudiar un caso quiere decir resolver la
relajacion lineal o descartar adecuadamente el caso sin tener que resolver la
relajacién lineal.

Ejemplo 2.7.

min z = 5x1 + 6x9
2x1 + w9

r1 + 2$2 12

r1 + X9 11

x €LY

13

IN IV IV

El problema anterior es P, , o sea, Fy.
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66 CAPITULO 2. OPTIMIZACION ENTERA

La relajacién lineal de Py es:

min z = 5x1 + 6x2
2z1 + 2
T1 + 219 12 (Py)

r1 + X2 11

r € R}

13

IN IV IV

Su solucion es
2¥ = [14/3 11/3]", 2 =136/3.
Vamos a dividir Fp, el conjunto factible de Py, de acuerdo a la variable

x1 = 14/3 = 44 2/3, que no es entera en la solucién de Fj.

F1:{$EFO:I'1S4},
Fy ={x € Fy:x >5}.

Explicitamente, I} se puede representar por las restricciones:
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2.2. RAMIFICACION Y ACOTAMIENTO 67

13
12
11
< 4
T €7

2r1 + T2
1 + 229
r1 + X2
x1

NIN IV IV

De manera analoga se puede definir F5. Al considerar la relajacién lineal se
tienen los problemas P| y P}, con conjuntos factibles F| y Fj.

La solucién del problema P| es

! = [4 5]T, 2t =50,

punto entero, que podria ser la solucién de FPy. Sin embargo, es necesario
estudiar Pj. Su solucién es

a? =[5 7/2]", 2* =46,

punto no entero. Entonces, utilizando la variable no entera xo = 7/2 =
3 4+ 1/2, F5 se puede dividir en dos conjuntos disyuntos, F3 y Fy, por
medio de las restricciones xo <3 y x9 > 4.
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68 CAPITULO 2. OPTIMIZACION ENTERA

La solucién de Pj es
=6 3], 2%=48,

punto entero. La solucién de Pj es
zt = [5 4]T, 24 = 49,

punto entero. Ya se han estudiado todas las posibilidades, luego la solucién
de Py es el mejor punto entero obtenido, o sea,

et =6 3]", »*=48 O

En el MRA el proceso de dividir o bifurcar se acostumbra a representar
por medio de un drbol binario con raiz. Cada nodo representa un problema,
el nodo 0 representa el problema, Py, el nodo 7 representa el problema P;.
Realmente, cada nodo representa dos problemas relacionados, el problema
entero P; y su relajacién lineal P/. Se usa la terminologia usual de padre e
hijo.

En el ejemplo anterior, el problema P; es el padre de los problemas P5 y
P4. O simplemente, el nodo 2 es padre de 3 y 4 y, perdén por la redundancia,
3 y 4 son hijos de 2.
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2.2. RAMIFICACION Y ACOTAMIENTO 69

Cuando se hace la representacién grafica del arbol, se usa la convencion
usual, la raiz estd arriba, y su hijos y nietos estan abajo.

= 23488 186732)1/3)

Se acostumbra decir que un nodo es descartado o podado (“pruned”)
en uno de los tres casos siguientes:

= No tiene solucion.
s Tiene solucién entera.

= Se puede afirmar que si el nodo tuviera solucién entera, ésta no serd
mejor que otro punto entero factible ya conocido.

Mas adelante hay una explicacion detallada del tercer caso.

Cuando un nodo es descartado, es necesario escoger otro nodo para exa-
minarlo. Cuando no hay més nodos para examinar, es decir, todos los nodos
fueron estudiados o descartados, entonces ha finalizado el estudio del pro-
blema y hay dos resultados posibles:

= La solucién del problema P. es el mejor punto entero obtenido.

= El problema P, no tiene solucién.

Recordemos que se ha supuesto que la relajacién lineal de P, tiene
o6ptimo finito. O sea, suponemos que para la relajacion lineal inicial no se
presenta el caso de 6ptimo no acotado ni el caso de conjunto factible vacio.

Poco a poco, veremos algunas reglas y algunos criterios para el desarrollo
del MRA. Hasta el momento:
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70 CAPITULO 2. OPTIMIZACION ENTERA

= Un nodo, o no tiene hijos, o tiene dos hijos.

= Si en el nodo 1, :1:; ¢ 7Z y se escoge la variable z; para bifurcar,
entonces los dos hijos de ¢ estan dados por las restricciones

= Ademds de la restriccién caracteristica de cada nodo, el hijo hereda
las demas restricciones del padre.

En el ejemplo anterior, para la solucién del nodo 3 (del problema asociado
al nodo 3) estdn las restricciones originales, la restriccién z7 > 5, heredada
de 2 y la restriccién especifica xo < 3.

Supongamos que P, tiene solucién finita y que z* es el valor 6ptimo de
z. Siempre se puede considerar que se conoce Z, una cota superior para z*.
Inicialmente, Z = 4+o00. Cuando se encuentra, durante el proceso, un nodo
con solucién entera, se actualiza el valor de Z.

Asi, en el ejemplo, cuando se obtiene la solucién del nodo 1, entonces
z = 50. Con la solucién del nodo 3, Zz = 48. La solucién del nodo 4 no
mejora el valor de z.

En la solucién del nodo 0, 2° = 136/3 = 45 + 1/3. La solucién del nodo
0 no es entera, eso quiere decir, que se tiene z, una cota inferior para z*,
yva que el mejor valor de z que podria tener cualquier descendiente entero
del nodo 0 seria

z = [2"] = 46.

El mismo razonamiento aplicado a otros nodos permite deducir resultados
y reglas para el MRA.

= Si el nodo ¢ tiene solucién no entera y
[2%] > % actual,
entonces el nodo es descartado y no bifurca.

= Si el nodo ¢ ya fue creado pero no estudiado, aunque no se conoce z*,
entonces

2] 2 [2(padre(i) )]
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2.2. RAMIFICACION Y ACOTAMIENTO 71

= Si el nodo i ya fue creado pero no estudiado y
[z(padre(i) )] > Z actual,

entonces el nodo 7 se descarta y no es necesario resolverlo (obviamente
no podra bifurcar).

Ejemplo 2.8.
min z = 11x1 + 20x9 4+ 15x3
2x1 + 4xo + 3x3 > 17
1+ 3x0o+ x3> T
x €l

3 EB400818313)5)

A continuacién aparece el orden en que fueron estudiados los nodos.

Nodo 0:

=10 4/5 23/5]",
=85 [0 =85

Bifurca la variable x2 para dar origen al nodo 1 con z9 > 1y al 2 con zo < 0.

Nodo 1:
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72 CAPITULO 2. OPTIMIZACION ENTERA

at=1[0 1 13/3]",
21 =85, [2']=85.
Bifurca la variable x3 para dar origen al nodo 3 con x5 > 5y al 4 con z3 < 4.

Nodo 3:

8
w
|

—

(@)

—_

ot

[}

23 =95, z=095.
La solucién es entera y no hay bifurcacién.

Nodo 4:

at=1[0 5/4 4],
2t =85, [z%] =85.
Bifurca la variable xs para dar origen al nodo 5 con x9 > 2y al 6 con x5 < 1.

Nodo 5:

=0 2 3],

25 =85, z=85.
La solucidn es entera y no hay bifurcacién. Ademas los nodos 2 y 6, todavia
no estudiados, no pueden dar lugar a puntos mejores que el mejor punto

entero actual, luego son descartados. Ya no quedan nodos por estudiar, luego
la solucién es el mejor punto entero hallado,

=0 2 3]",
2" = 85. <&
2.2.1. Escogencia de la variable que bifurca

Hay criterios para escoger, cuando hay més de una variable no entera en
la solucién del nodo i, la variable que bifurca. Algunos de ellos son claramente
contradictorios.
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= La primera variable no entera encontrada, o sea, la variable no entera
de subindice menor.
» La variable no entera de mayor parte fraccionaria.

» La variable no entera “menos entera” [Wol98] y [NeWo099], es decir la
variable mas alejada de los dos enteros que la rodean, o lo que es lo
mismo, la variable cuya parte fraccionaria estd mds cerca de 1/2. Se
bifurca con x; si

& = min{ {a}}, 1 - {23} }
6; = max{dy : =} ¢ Z}.
Mientras no haya confusién, se utilzara la notacién

Ji={=i}
Entonces
0p = min{f, 1 fi}
§; = max{dy : x} ¢ Z}.
» La variable no entera més cercana a un entero [Rar98|. Se bifurca con
x; sl
O = min{fli: 1- flf:}
§; = min{dy : z}, ¢ Z}.

» La variable no entera que podria dar lugar mas facilmente a descarte
por cota [NeWo099]. Se bifurca con x; si

Ap =max{ fi, 1—fi}
Aj = max{Ay, : z} ¢ Z}.
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Consideremos, en el ejemplo anterior, la soluciéon del nodo 0:

=0 4/5 23/5]",
02 = min{4/5, 1/5},

0o =1/5,
03 = min{3/5, 2/5},
J3 = 2/5.

Si se escoge la primera variable no entera, se usaria xo. Si se escoge la
variable de mayor parte fraccionaria, se usaria zs. Si se escoge la variable
menos entera, se usaria xs. Si se escoge la variable méas cercana a un entero,
se usaria xs.

2.2.2. Escogencia del nodo

Después de estudiar un nodo, se pueden presentar tres casos:

= La soluciéon no es entera, se escoge una variable para bifurcar y se
crean dos nodos hijos.

» La solucién es entera, se actualiza Z y se descarta el nodo

= No hay solucién y se descarta el nodo,

De todas maneras se requiere escoger el siguiente nodo a estudiar. Para
escogerlo hay dos politicas diferentes: en profundidad y a lo ancho. Para
estas dos politicas, asi como para los diferentes criterios que se pueden usar
en el MRA, no hay demostraciones que garanticen que un criterio sea mejor
que el otro. Simplemente hay justificaciones “razonables” a favor de cada
criterio. Ademads, un criterio, después de resolver muchos problemas, puede
haber mostrado mayor eficiencia para un tipo de problemas y ser peor para
otro tipo de problemas.

Cuando se utiliza la escogencia en profundidad, después de estudiar un
nodo con solucién no entera, siempre se estudia en seguida uno de sus hi-
jos. Por otro lado, si el nodo es descartado (solucién entera o problema sin
solucién) se estudia enseguida su hermano, si éste no ha sido estudiado.
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Cuando la escogencia se hace a lo ancho, el siguiente nodo es el menos
profundo entre los no estudiados y no descartados.

En el ejemplo anterior, la escogencia se hizo en profundidad Después del
nodo 1 se estudié uno de sus hijos. Después del nodo 4 se estudié uno de sus
hijos, el nodo 5.

Si en este mismo ejemplo la escogencia fuera a lo ancho, después de
estudiar el nodo 1 se estudiaria el nodo 2.

Hay dos razones importantes para escoger en profundidad el siguiente nodo
[Wol98]:

= Para disminuir el niimero de nodos a estudiar, es decir, el nimero de
problemas de OL, parece conveniente obtener pronto un punto entero
factible, con la esperanza de que provea una buena cota superior para
Z.

= Desde el punto de vista computacional, se puede lograr mayor eficien-
cia, cuando a partir de la tabla éptima del nodo padre, se busca la
solucién del nodo hijo, donde simplemente se agregd una restriccién
adicional (método simplex dual).

Otra idea 1util que puede ayudar a disminuir el nimero de nodos a resolver,
consiste en escoger el mejor nodo, es decir, el nodo que tenga un mejor
valor posible de z, o sea, el nodo no estudiado, cuyo padre tenga el valor de
z mas pequeno.

Otra técnica usada es la escogencia en profundidad con wvuelta hacia
atrds (“backtracking”). También es llamada LIFO (“last in, first out”).
En esta técnica cuando un nodo es descartado (por solucién entera, por
inadmisibilidad o por cota), se busca, si lo hay, recorriendo el camino desde el
nodo descartado hasta la raiz, el primer nodo que tenga un hijo no estudiado.
Este hijo sera el nodo a estudiar. En el siguiente arbol se observa la aplicacion
de esta técnica. El simbolo X indica un nodo descartado. Los nodos fueron
estudiados en el orden 1, 11, iit, ...
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Las estrategias también se pueden combinar. Por ejemplo, es razonable
usar al comienzo, inicamente la estrategia de profundidad, hasta encontrar
un punto entero factible. Después se puede utilizar la estrategia del mejor
nodo combinada con la escogencia en profundidad.

2.2.3. Escogencia de la rama

Bien sea que se usa la estrategia en profundidad o la estrategia a lo
ancho u otra estrategia, algunas veces hay que escoger entre dos hermanos,
es decir, se necesita escoger una de las dos ramas.

Hay criterios arbitrarios, por ejemplo, siempre se escoge primero la rama
x; < ..., o siempre se escoge primero la rama x; > ....

Hay otros criterios que estan relacionados con la escogencia de la variable
que bifurca. Por ejemplo, supongamos que se escoge para bifurcar la variable
menos entera. Entonces, al mismo tiempo se puede escoger la rama que hace
que esa variable sea menos entera:

{:czj si ;= {:1:;} §' 1— {x;},
(a:ﬂ si 6;=1-— {:1;3} > {:z:;}

Al considerar la solucién del nodo 0 del ejemplo 2.8

<
rama =
>

02 = min{4/5, 1/5},
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2.2. RAMIFICACION Y ACOTAMIENTO 77

8y = 1/5,
03 = min{3/5, 2/5},
83 = 2/5,
d; =103.

Entonces se deberia escoger primero la rama xz3 > 5.

Hay un criterio mas sofisticado que permite al mismo tiempo determinar
la variable que bifurca y la rama que se debe estudiar primero.

Sea 2z’ el valor de z en la solucién del nodo i y z,i* el valor de z en el
problema obtenido al agregar al nodo ¢ la restriccion x; < Lm}CJ, suponiendo
que el nuevo problema tiene solucién. De manera anéloga, sea sz el valor de
z en el problema obtenido al agregar al nodo 7 la restriccion xj > [xﬂ, supo-
niendo que el nuevo problema tiene solucién. Si uno de los nuevos problema
no tiene solucién, se considera que el valor de z es +oc.

Como el conjunto factible de cada uno de los nuevos problemas es mas
pequeno, entonces

i i—
z §zk

Sean
A (z) =2, — 2,
Af(z) =z -2
Al buscar

mlgxmin{ AL (2), Af(2) }

quedan determinadas la variable que bifurca y la rama que se debe estudiar
primero.

Ejemplo 2.9.
min z = 11z + 2029 + 14z5
2x1 + 4xo + 3x3 > 17
r1+ 30+ x3> T
x €Ll
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78 CAPITULO 2. OPTIMIZACION ENTERA

Al resolver la relajacion lineal:

=0 4/5 23/5]"
2V =402/5

Para calcular los valores Ag(z) se puede aplicar el simplex dual utilizando
la ultima tabla.

@3 2/5 0 1 -3/5 4/5  23/5
s 1/5 1 0 1/5 -3/5 4/5
—z 7/5 0 0 22/5 4/5 —402/5

Al agregar la restriccién zo < 0, después de introducir una variable de
holgura, se tiene

T + 26 = 0.

Esto hace agregar una fila y columna a la tabla:

3 2/5 0 1 —3/5 4/5 0  23/5
z 1/5 1 0 1/5 —=3/5 0 4/5
6 01 0 0 0 1 0
—z 7/5 0 0 22/5 4/5 0 —402/5

Para obtener la matriz identidad 3 x 3, basta con restar a la tercera fila, la
segunda fila.

s 2/5 0 1 —=3/5 4/5 0  23/5
xa 15 1 0 1/5 —3/5 0 4/5
x —1/5 0 0 —1/5 3/5 1  —4/5
—z 7/5 0 0 22/5 4/5 0 —402/5

El método simplex dual puede empezar. Sale la tercera variable basica,
xg, = Tp, = ¥e. Para escoger la variable que entra es necesario buscar

EA
max{ﬁ tagj < 0}
aj

s 25

IRy A

max{

Entonces entra x; y la nueva tabla es factible (y éptima).
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2.2. RAMIFICACION Y ACOTAMIENTO

T3
T2
T

O = OO

o O = O

oo O =

= N

79

Entonces A; (z) = 86 — 402/5 = 28/5. Realmente no es necesario calcular
completa la nueva tabla para obtener A; (z). Basta con efectuar el producto
7 x 4/5. De manera general, para calcular A, (z), basta con

i

.’Eﬁq :xk,

p~ =min{-L

J

Qqj

Ay (2) =p {z}}.

: xj es libre y ag; > 0},

Al agregar al problema inicial la restriccién x5 > 1, después de introducir
una variable de holgura, se tiene

Esto hace agregar una fila y columna a la tabla:

x3
Z2
Te
—Z

2/5
1/5

0
7/5

.Tg—l’(;:l

o O O

-3/5
1/5
0
22/5

—xy + 26 = —1

4/5
~3/5
0
4/5

23/5
4/5

-1
—402/5

Para obtener la matriz identidad 3 x 3, basta con sumar a la tercera fila, la

segunda fila.

L3
T2
L6

2/5
1/5
1/5
7/5

o O = O

o O O

~3/5
1/5
1/5
22/5

4/5
~3/5
~3/5

4/5

o= O O

23/5
4/5
~1/5
—402/5

El método simplex dual puede empezar. Sale la tercera variable bésica,

xg, = xg, = T¢. Para escoger la variable que entra es necesario buscar
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80 CAPITULO 2. OPTIMIZACION ENTERA

max{& tagj < 0}
Qg
4/5

375 1= /3

max{

Entonces entra x5 y la nueva tabla es factible (y éptima).

w3 2/3 0 1 —1/3 0 4/3  13/3
9 01 0 00 -1 1
s —1/3 0 0 —1/3 1 -5/3 1/3
—z 5/3 0 0 14/3 0 4/3 —242/3

Entonces Aj (2) = 242/3—402/5 = 4/15. De nuevo, realmente no es necesa-
rio calcular completa la nueva tabla para obtener AJ (z). Basta con efectuar
el producto 4/3 x 1/5. De manera general, para calcular A: (z), basta con

7

.’I;/jq =T,
. G :

pT =min{—2— : z; es libre y a4 <0},
7 —Oqy

Af(z) =p" (1 {xi}).

Procediendo de manera analoga con la variable z3,

7/5 4/5

p_:min{%a 47/5}:1,
Az (2) = (1)(3/5) =3/5,
= min{_23/§/5} —92/3,

AT (2) = (22/3)(1 — 3/5) = 44/15.

Entonces

ml?xmin{ A; (2), Af(2) } = max{min{28/5, 4/15}, min{3/5, 44/15}}
= max{4/15, 3/5}
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2.2. RAMIFICACION Y ACOTAMIENTO 81

=3/5.

Segun el criterio, conocido a veces con el nombre de penalizacién, se
deberia bifurcar con la variable x3 y estudiar primero la rama z3 < 4.

Este criterio se utilizé bastante en software para OE, pero, en problemas
grandes, la practica muestra que los célculos no se justifican [NeWo099].

Ejemplo 2.10. Resolver el siguiente problema utilizando las siguientes op-
ciones: bifurcacion sobre la variable menos entera; escogencia del nodo segtin
la técnica LIFO, mientras no haya puntos enteros conocidos; escogencia del
mejor nodo cuando ya se conoce un punto entero.

max z = 1bxy — Txy
3$1 + 51‘2 S 40
8$1 — 61’2 S 63

T €7l
Convertido al formato usual:
min z = —15x1 + Txzo
3r1 + bxe < 40
8.%'1 — 6.%‘2 S 63
x €l
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82 CAPITULO 2. OPTIMIZACION ENTERA

Los detalles de la soluciéon, algunos ya estan en el arbol, son los siguientes:

2" = [555/58 131/58]"

2= —-3704/29, [z] =127

fV=33/58, 1—fY=25/58 & =25/58
f2=15/58, 1— f=43/58, &y =15/58
0j =101, x1>10, =z <9

F{ =0, se descarta el nodo 1,

por LIFO se escoge el nodo 2,

a? =19 3/2]"
22 =-249/2, [z] =124

82



2.2. RAMIFICACION Y ACOTAMIENTO

f£1/27 1_f22:1/27 52:1/2
0j =02, 221, w22>2

a3 = [69/8 1]"

23 =-979/8, [z] = —122
fi=5/8, 1—f=3/8, 6 =3/8
0j =01, 1>9, x1<8

Fi =0, se descarta el nodo 5,

por LIFO se escoge el nodo 6,

28 =8 1/6]"

5= -713/6, [z]=-118
ff=1/6, 1—fS=5/6, 5=1/6
0j =02, 2250, w22>1

2" = [63/8 0]"

2T =—-945/8, [z] = —118
fA=17/8 1—f1=1/8 & =1/8
0j =01, x1>8, 1 <7

Fy =10, se descarta el nodo 9,

por LIFO se escoge el nodo 10,

=107 0", 2°=-105,

primer punto entero, se escoge el mejor nodo: el 4,

at=19 2]", 20=-121,
nuevo mejor punto entero,
se descarta el nodo 8 por cota,

no hay nodos activos.
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84 CAPITULO 2. OPTIMIZACION ENTERA

Entonces la (una) solucién es

zf=-121. <

2.2.4. Aproximaciones

Cuando el punto z*, solucién del nodo i, no es entero, se pueden construir
facilmente tres aproximaciones, una por redondeo, otra por parte entera
inferior y otra por parte entera superior. Sea t el valor entero obtenido al
redondear t,

R I S
EAIRE
Al fabl e )

En seguida se averigua si son puntos factibles, y si lo son, se puede saber
si son mejores que el mejor punto entero obtenido. Los tres pasos requeri-
dos (construir las aproximaciones, averiguar si son factibles y comparar con
el mejor punto actual) requieren pocas operaciones y pueden disminuir el
numero total de nodos o el niimero de utilizaciones del simplex.

Ejemplo 2.11. Resolver el problema del ejemplo anterior, con los mismos
criterios, agregando la construccion de las aproximaciones.

max z = 15x; — Txo

31‘1 + 5$2 S 40
83?1 — 6%‘2 S 63

x €Ly

En el formato usual:
min z = —15x1 + Tx2

3x1 + dxe < 40
8(131 — 6%2 S 63

T €Ly
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Ejercicios

2.1 Resuelva

min z = 7z; + 1329 + 15x3
2x1 + 4xo + g > 23
1+ x2+2x3>3
x el
Utilice el método de Gomory y el de bifurcacion y acotamiento. Emplee
varios criterios.
Respuesta: = = (0, 2, 3), z =T71.
2.2 Resuelva
max z = 17x1 + 13x9
1+ 3x0 <11

91 + 5z < 19
x €Ll

Utilice el método de Gomory y el de bifurcacion y acotamiento. Emplee
varios criterios.

Respuesta: = = (1, 2), z = 43.
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86 CAPITULO 2. OPTIMIZACION ENTERA

2.3 Resuelva

min z = 2x1 + 39
10z + 1120 < 29
1321 + 1229 > 27
T < 2
€2 g 27
reZl
Utilice el método de Gomory y el de bifurcacion y acotamiento. Emplee
varios criterios.

Respuesta: no hay puntos factibles.
2.4 Resuelva

max z = 12x1 + 10z2 + 1123
2x1 + 3x0 + 4xg > 23
Tr1 + 629 + Sxg < 83
r el
Utilice el método de Gomory y el de bifurcacion y acotamiento. Emplee
varios criterios.

Respuesta: z = (1, 0, 15), z = 177.
2.5 Resuelva

max z = 8xr1 + 13z + 2323 + 314
3r1 4+ dxo + Txg + 11lxy <61
r el
Utilice el método de Gomory y el de bifurcacién y acotamiento. Emplee
varios criterios.

Respuesta: z = (0, 1, 8, 0), z = 197.
2.6 Resuelva

min z = 12x1 + 5x9 + 14x3 + Tay
6x1 + Dxo + 1623 + 324 > 7
T; € {O, 1}, Vi.
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2.2. RAMIFICACION Y ACOTAMIENTO 87

Utilice el método de Gomory y el de bifurcacion y acotamiento. Emplee
varios criterios.

Respuesta: z = (0, 1, 0, 1), z =12.
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Capitulo 3

Optimizacién en grafos

3.1. Conceptos iniciales

Un p-grafo esta formado por un conjunto no vacio y finito de vértices, y
por un conjunto finito de arcos o flechas, donde cada arco va de un vértice
a otro vértice y, por mucho, hay p arcos entre un vértice y otro.

Figura 3.1.

Esta figura muestra un 3-grafo. Sus vértices son 1, a, 4, a y x. Tiene 9
flechas.
De manera mas formal, un p-grafo G es una tripla G = (V, A, f), donde
-V # ) finito, es el conjunto de vértices o nodos,

- A finito, es el conjunto de arcos o flechas,
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90 CAPITULO 3. OPTIMIZACION EN GRAFOS
- fr A=V xV, tal que

max{|f (i,7)] : (i.5) € f(A)} = p.

La funcién f asigna a un arco una pareja (i, j) para indicar que la flecha
arranca de i y llega a j. En el ejemplo de la figura 3.1, f(u) = (4,1), ya
que la flecha u va de 4 hacia 1. La imagen inversa de la pareja de vértices
(1,a) es el conjunto {c}, es decir, es el conjunto de flechas que van desde
1 hasta a. La imagen inversa de la pareja de vértices (1,4) es el conjunto
{q,r, s}, es decir, es el conjunto de flechas que van desde 1 hasta 4. Como no
hay imagenes inversas con més de 3 elementos y hay una con 3 elementos,
entonces se tiene un 3-grafo.

3.1.1. Grafos dirigidos

Cuando p = 1 se tiene un I-grafo, grafo, grafo dirigido o digrafo. En
algunos libros, grafo es diferente de digrafo. En este documento, grafo es
exactamente lo mismo que digrafo.

Como en un grafo hay a lo mas una flecha de un nodo a otro nodo,
entonces se puede representar, sin ambiguedad, la flecha que va del nodo i
al nodo j por la pareja (i, 7).

Un grafo se puede representar por una pareja G = (V, A), donde

V # () finito, es el conjunto de vértices,
A C V xV es el conjunto de arcos.

Figura 3.2.

En el grafo de la figura anterior,
V = {1’ 2’ 3’ 47 57 67 7}7
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3.1. CONCEPTOS INICIALES 91

A={(1,2),(1,3),(2,3),(2,4),(2,5),(3,5), (4,5), (4,6), (5,7),(7,6) }.

FEn muchas de las aplicaciones de los grafos, un p-grafo se puede convertir
en un grafo, introduciendo vértices ficticios cada vez que haya més de un
arco entre dos vértices.

En un grafo, un arco de la forma (i,7) se llama un bucle. En el 3-grafo
de la figura 3.1, el arco w es un bucle.

Si en un p-grafo, las flechas no tienen direccion, se tiene un multigrafo,
y las “flechas” reciben el nombre de aristas.

Denotemos por g (X) el conjunto de subconjuntos de X de k elementos
y por pps(X) = pp(X) U ps(X).

Un multigrafo se puede representar por una tripla G = (V, E, g), donde

V es el conjunto de vértices,
- F es el conjunto de aristas,
- g E = p(V).

En un multigrafo, una arista une 2 vertices o une un vértice consigo
mismo. La funcién g evaluada en una arista a, es decir g(a), indica cudles
vértices une la arista a.

Un grafo es simétrico si (i,j) € A = (j,i) € A. Un grafo es antisimétri-
co si(i,j)eA = (j,i)¢ A

Si en un grafo antisimétrico sin bucles, las flechas se convierten en aristas,
se tiene un grafo simple. Un grafo simple se puede representar por un pareja
G = (V,E), donde V es el conjunto de vértices, E C (9(V) es el conjunto de
aristas. O sea, la arista que une el vértice i y el vértice j se puede representar
por el conjunto {i,75}.

Un grafo simple es equivalente a un grafo simétrico sin bucles. O sea,
si en un grafo, siempre que hay un arco (i,j) también estd el arco (j,1),
entonces se pueden representar las dos flechas (i,7), (j,7) por la linea o
arista {7, 7}.

De aqui en adelante, mientras no se diga lo contrario, se supone que:

= p =1, es decir, todo se refiere a grafos.

» El nimero de vértices es n, o sea, |V| =n.

» El nimero de arcos es m, o sea, |A| = m.

» V ={v, ve, ...., up}, 0 de manera més sencilla, V = {1, 2, ...., n}.
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92 CAPITULO 3. OPTIMIZACION EN GRAFOS

Si (4,) € A, se dice que i es el origen del arco, j es el destino del arco,
i es predecesor o antecesor de j, j es sucesor de i.

Se denota por

Pli)=T; =T~ (i) ={k € V: (ki) € A}

(2

el conjunto de predecesores de ¢ y por

S@) =T =T ()={jeV:(ij) €A}
el conjunto de sucesores de 1.
En el grafo de la figura 3.2, 'V (2) = {3,4,5}, T~ (2) = {1}, T'"(6) = 0.
El diccionario de sucesores es la lista de los conjuntos de sucesores
de todos los nodos. Es otra manera de representar o de tener informacion

sobre un grafo. De manera andloga, un grafo se puede representar por el
diccionario de predecesores.

El grafo de la figura 3.2 se pude representar por su diccionario de suce-
sores:

!
_l’_
—~
.
~—

B
Ot

N ot ot e N
o

N O T W N |

Se denota por I'; = T'(z) = T~ (¢) UTT(4) el conjunto de vecinos de i.
Si I'(7) = 0, se dice que i es aislado.

Sij#iyjeTl(i),sedice que j es adyacente a i.

Si U C V, se define el conjunto (amplio) de vecinos de U

rU) = (JTw\U.

uelU

Sii¢UCVyiel(U),sedice que i es adyacente a U.
Dos arcos (,7), (u,v) son adyacentes si tienen algin vértice en comun,
es decir, si {i,7}N{u,v} # 0. En particular un arco es adyacente a s{ mismo.
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Una cadena de longitud p es una sucesién de arcos de G (i1, j1), (i2,j2),
..ey (ip, Jp) tal que para k = 2, ..., p-1 los arcos (ig—1,jk—1), (ik, jr) son adya-
centes. y los arcos (ig, jk), (ik+1, jk+1) también son adyacentes.

Un ciclo es una cadena donde el primer arco y el itimo son adyacentes.

Una trayectoria, camino o ruta de longitud p es una cadena (i1, 1),

(i2,72)s -y (ip, Jp) tal que para k = 1,...,p-1 el destino de cada arco coincide
con el origen del siguiente, es decir, ji = ix41, O sea, es una sucesién de arcos
de G de la forma (i1, 12), (i2,73), ..., (ip,ip+1). Se dice que el camino va de

i1 a ip41 = Jp- Este camino también se puede representar simplemente por
los vértices: (i1, 142, ..., ip, ip+1). Por convencién, (i), camino formado por un
solo vértice, es de longitud 0.

En el grafo de la figura 3.2, (1,2,5,7) y (1,2, 4,5) son caminos de longitud

Un circuito es un camino tal que el primer origen es igual al dltimo
destino, o sea, i1 = ip41.

Si existe un camino de i a j se dice que j es un descendiente de i, y que ¢
es un ascendiente de j. Un nodo es descendiente y ascendiente de si mismo.
Dados dos nodos diferentes i y j, puede suceder que ¢ sea descendiente de j
y 7 descendiente de 1.

Un vértice ¢ es una raiz del grafo si todos los otros vértices son sus
descendientes. Un vértice j es una antiraiz del grafo si es descendiente de
todos los otros vértices. Un vértice ¢ es una fuente del grafo si no tiene
predecesores. Un vértice j es un sumidero del grafo si no tiene sucesores.

El vértice 1 es raiz del grafo de la figura 3.2 y también es una fuente. El
vértice 6 es un sumidero y también antiraiz. En la figura 3.3, el nodo 6 es
un sumidero pero no es antiraiz.

Se dice que B es una base del grafo G = (V, A) si:
. B0,

BCV,

i,jEB = (i,j) ¢ A, (1) € A,

si k ¢ B, entonces es descendiente de algun elemento de B.
A continuacidn, algunos resultados importantes.

Siempre existe por lo menos una base.

No siempre existe una raiz.

Una raiz es una base de un elemento en un grafo sin bucles.

Si en un grafo G = (V, A) se toma A’ C A se tiene un grafo parcial
G = (V,A).
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94 CAPITULO 3. OPTIMIZACION EN GRAFOS

La figura 3.3 muestra un grafo parcial del grafo de la figura 3.2. De él se
han suprimido los arcos (2,3), (4,5) y (7,6).

Figura 3.3.

Un grafo H = (U, B) es subgrafo de G = (V,A)siU C V y B C A.
Como se supone que H es grafo, entonces B C U xU. SisetomaU CV y B
formado por los arcos de A que estdn en U x U, se tiene el subgrafo (U, B)
generado por U.

Al tomar, en el grafo de la figura 3.2, el conjunto U = {1,2,4,5,6}, es
decir, quitando los nodos 3 y 7, se obtiene el subgrafo de la figura 3.4.

Figura 3.4.

Un camino es elemental si pasa una sola vez por cada uno de sus vértices.
Un camino es prehamiltoniano si pasa por todos los vértices de V.
Un camino prehamiltoniano y elemental se llama hamiltoniano.

Un camino es simple si no pasa més de una vez por sus arcos.

94



3.1. CONCEPTOS INICIALES 95

Un camino es preculeriano si pasa por todos los arcos de A.
Un camino preeuleriano y simple se llama euleriano.

Un grafo se puede puede representar por la matriz asociada al grafo,
algunas veces llamada matriz de incidencia nodo-nodo. FEsta matriz es de
tamano n X n:

mi; = 1 si (’L,]) €A

La matriz asociada al grafo de la figura 3.2 es:

=

Il
SO OO O oo
(=l oNoNoNel
SO OO O+~
SO OO OO
O OO = = =O
_ o Ok O OO
SO R OO oo

También existe la matriz de incidencia nodo-arco, también llamada sim-
plemente matriz de incidencia. Esta matriz es de tamano n x m, cada fila
corresponde a un nodo, cada columna corresponde a un arco (los arcos deben
tener un orden, primer arco, segundo, ...).

i =1  siies origen o destino del k-ésimo arco,

iz =0  en caso contrario.

Para el grafo de la figura 3.2, tomando los arcos en el orden A = { (1,2),
(1,3), (2,3), (2,4), (2,5), (3,5), (4,5), (4,6), (5,7), (7,6) }, la matriz de

incidencia nodo-arco es:

1100000000
1011100000
0110010000
000100717100
00001110710
00000O0O0T1O01

0000O0O0GO0O01 1]
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96 CAPITULO 3. OPTIMIZACION EN GRAFOS

La matriz de incidencia no contiene toda la informacién sobre un grafo
dirigido, en cambio un grafo no dirigido se puede representar perfectamente
por su matriz de incidencia.

3.1.2. Deteccién de descendientes de un nodo

El siguiente algoritmo, muy sencillo, permite conocer los descendientes
de un nodo a. Como caso particular permite saber si a es raiz del grafo.

Marcar el nodo a.
Marcar los sucesores de todos los nodos marcados.
Repetir el proceso hasta que no haya nuevos nodos marcados.

Al final todos los nodos marcados, diferentes de a, son descendientes de a.
Sea p una variable que indica el niimero de nodos marcados en una iteracién
y w € {0,1,2}" definido por

0 siel nodo 7 no estd marcado,

i si el nodo i estd marcado, pero no sus sucesores,

2 i el nodo ¢ estd marcado y sus sucesores también.
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DESCENDIENTES DE UN NODO

datos: : V, A, a
w0
e — 1
p+1
mientras p >0 y min{y;} =0
p+ 0
para i =1:n
si My = 1
para j € I'" (i)
si pj =0 ent
pi=1
p+—p+1
fin-si
fin-para
pi < 2
fin-si
fin-para
fin-mientras
Ha < 0

97

A la salida del algoritmo anterior, todos los nodos marcados, u; > 1, son

descendientes de a.

Ejemplo 3.1. Hallar los descendientes de 1 en el grafo de la figura 3.5.

Figura 3.5.

Su diccionario de sucesores es:
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i [TF(0)
1]2 3
23,4, 5
305
415, 6
57

6

716

El proceso de marcacién es el siguiente: Marcacion de 1 y de sus sucesores
2y 3.
12, 21 31,4, 5,6, 7

Sucesores de 2: nodos marcados: 4, 5.
12, 2%, 3% 4t 5t 6, 7
Sucesores de 3: ningin nodo marcado.
12, 22,32, 41, 51, 6, 7
Sucesores de 4: nodos marcados: 6.
12, 22, 32, 42 5 6%, 7
Sucesores de 5: nodos marcados: 7.
12, 22, 32, 42, 52, ¢!, 7!
6 no tiene sucesores.
12, 22, 32, 42, 52 6%, 7!
Sucesores de 7: ningin nodo marcado.
12, 22, 32, 42, 52, 6!, 72

p = 6 pero para todos los nodos u; > 1. Entonces se acaba el proceso
iterativo, p1 < 0. Asi todos los nodos, diferentes de 1, son descendientes de
1, luego 1 es una raiz. <

Ejemplo 3.2. Hallar los descendientes de 2 en el grafo del ejemplo anterior.

Sucesores de 2: nodos marcados: 3, 4, 5.
1, 22, 3%, 4!, 51 6, 7
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Sucesores de 3: ningin nodo marcado.

1, 22 32 4! 5! 6, 7
Sucesores de 4: nodos marcados: 6.

1, 22, 32, 42, 5! 6, 7
Sucesores de 5: nodos marcados: 7

1, 22, 32 42, 52, 6!, 7!

6 no tiene sucesores.
1, 22, 32, 42, 52, 62, 7!

Sucesores de 7: ningiin nodo marcado.
1, 22, 32, 42, 52, 62, 72

p = 5, se empieza una nueva iteracion.

En esta nueva iteraciéon p = 0, luego los descendientes de 2 son : 3, 4, 5, 6,
7. <
3.1.3. Deteccion de un circuito

Cuando se desea saber si un grafo G = (V, A) tiene circuitos, se puede
utilizar el siguiente algoritmo, el cual utiliza el diccionario de sucesores.

1. Buscar en el diccionario de sucesores, un nodo sin sucesores.
2. Eliminar este nodo de todo el diccionario.

3. Mientras sea posible, repetir los pasos 1 y 2.

El algoritmo anterior acaba de dos formas:
a) El diccionario quedé “vacio”.
b) Ya no es posible quitar més nodos.

En el caso a), G no tiene circuitos. En el caso b), con el subgrafo obtenido
por los nodos no suprimidos, se obtiene un circuito.

Ejemplo 3.3. Averiguar si el grafo de la figura 3.6 tiene circuitos.

Su diccionario de sucesores es:
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100

Figura 3.6.

o < ©
AN oo S b= ©

—S AN M <O O b~

Suprimir 6.

M <f
N Yo o I~

— AN M <0 D=

Suprimir 7.

o <t
N oo o

— AN M <O
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Suprimir 5.

i | TF(4)

12,3

23,4

3

4
Suprimir 3 y 4.

i | TF(4)

112

2
Suprimir 2 .

i | TF(4)

1

Se suprime el nodo 1, luego se concluye que el grafo no tiene circuitos. <

Ejemplo 3.4. Averiguar si el garfo de la figura 3.7 tiene circuitos.

Figura 3.7.
Su diccionario de sucesores es:
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!
_l’_
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Se suprime 6.

=
+
=
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O W N
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Se suprime 7.

=
+
=

CU B W b =
N Ol Ot Lo
NIV

Como no se puede continuar el proceso y el diccionario no esta vacio, se
puede concluir que hay un circuito. En el subgrafo resultante, figura 3.8,
estd el circuito (2, 4, 5, 2).

3.1.4. Grafos no dirigidos

Un grafo no dirigido G se puede representar por la pareja (V, E'), donde
V' # () es el conjunto finito de vértices y E C po(V) es el conjunto de aristas.

En un grafo no dirigido se pueden definir algunos de los conceptos vistos
para grafos (dirigidos).
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Figura 3.8.

El vértice j es vecino de i o adyacente a i si{i,j} € E. Se denota por
I'; = I'(¢) el conjunto de vecinos o de adyacentes a i. Dada la definicién de

E C po(V), es claro que i ¢ T'(7).
Si I'(7) = 0, se dice que i es aislado.
Si U C V, se define el conjunto (amplio) de vecinos de U

TU) = [JTw~U .
uelU

Dos aristas diferentes {i,j}, {u,v} son adyacentes si tienen un vértice
en comun, es decir, si {i,7} N {u,v} # 0.

Una cadena de longitud p es una sucesién de aristas de G, {i1,71},
{i27j2}7 ceey {ipvjp} ta‘l que pa'ra k:]-u "‘7p_]- s€e Cumple {lk7]k} 7& {ik+17jk+l}
Y Jk = ik+1. En este caso se dice que la cadena une los vértices i1 y jp.
Es usual representar la cadena por la (p + 1)—upla

(ila i2a "'aipajp)

Un grafo no dirigido es conezo si para cualquier par de vértices i y j en
V', con i # j, existe una cadena que los une.

Sea G = (V, E) un grafo no dirigido, U C V, H el subgrafo generado por
U. Si H es conexo y al agregar a U cualquier vértice, el subgrafo generado
no es conexo, se dice que H es la componente conexa generada por U. Asi,
un grafo se puede “dividir” en una o varias componentes conexas.

Un ciclo es una cadena (i1, 2, ..., ig+1) de longitud k > 3 donde ig11 = 7;.

Un drbol es un grafo no dirigido conexo y sin ciclos.
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Dado un grafo no dirigido G = (V, E), un drbol generador o drbol de
expansion (“spanning tree”) es un arbol que contiene todos los vértices de
G. Este arbol tiene n — 1 aristas. Un grafo es conexo sssi tiene un arbol
generador.

3.2. Camino mas corto

3.2.1. Introduccién

Una red (dirigida) es un grafo (dirigido) con una funcién de costo (o de
longitud), o sea, es una tripla R = (V, A, ¢), donde (V, A) es un grafo y c es
una funcién de costo, ¢ : A — R. El costo se denota (7, j) = c¢;;.

Sean R = (V, A, c) unared y a = (41,42, ..., ip, ip+1) Un camino. Se define
el costo del camino o la longitud del camino como la suma de los costos,
es decir,

M@

cla) = iy iky1) -

b
Il

1

Obsérvese que cuando se tiene una red, la longitud del camino ya no se
refiere al nimero de arcos del camino, la longitud es la suma de costos o
distancias. Se puede pensar que un grafo es un caso particular de una red,
donde ¢;; = 1 para todo (4, 7) € A.

Sean a,z € V, z descendiente de a. Un camino « de a a z es minimal
0 es un camino més corto, si no existe otro camino mas corto de a a z. Si
existe una ruta mas corta de a a z, su costo se llama el costo o distancia
entre a y z:

c*(a,z) = min{c(a): o es un camino de a a z} .

Dados a,z € V, z descendiente de a, el problema del CMC (camino
més corto), consiste en obtener, si es posible, ¢*(a,z) y un camino « tal
que c*(a,z) = c(a). Aunque a primera vista, siempre debe existir un valor
minimo, esto no siempre es cierto.

Como el CMC tunicamente tiene sentido si a,z € V y 2z es descendiente
de a, entonces basta con considerar el subgrafo generado por a y sus descen-
dientes. Mas atn, se puede entonces simplemente suponer que a es una
raiz de R.
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3.2. CAMINO MAS CORTO 105

Un circuito « se llama absorbente si ¢(«) < 0. Ahora si se puede enun-
ciar, de manera precisa, el resultado que parecia obvio

Si la red no tiene circuitos absorbentes, entonces el problema de CMC
tiene solucion.

La anterior afirmacién es simplemente una condicién suficiente, mas no
necesaria. Esto quiere decir, que algunas veces, dependiendo de z, puede
existir un CMC en presencia de circuitos absorbentes.

Figura 3.9.

En la red de la figura 3.9, no se puede calcular ¢*(1,5) ya que siempre
se puede construir un camino cada vez menos largo, por ejemplo,
(1,2,3,4,2,3,4,2,3,4,....,2,3,4,....,2,5)..

En este mismo grafo, aunque hay un circuito absorbente, ¢*(1,6) = 7.

Mientras no se diga lo contrario, supongamos que R = (V, A, c) es
una red sin circuitos absorbentes, a es raiz de R.

Para cada elemento 7 de V, su distancia a a, también llamada potencial,
se denota por

(i) = c*(a,i) .
Si (i,7) € A entonces

(i) +c(i,j) = () -

Sea G' el grafo parcial obtenido al considerar los arcos (i,j) tales que
c*(1) + ¢(i,5) = ¢*(j) y R la red correspondiente. Entonces a es raiz de G'.
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En general, la raiz de un grafo no es siempre raiz de todos sus subgrafos.

3.2.2. Algoritmo de Dijkstra

Este algoritmo [Dij59] es muy sencillo, de él se han derivado modificacio-
nes mas eficientes y generales. Para mayor sencillez supongamos que ¢;; > 0
para todos los arcos. Esto garantiza que la red no tiene circuitos absorbentes.

En este algoritmo se usa el simbolismo gréafico de rétulos. A los nodos, a
los que se ha calculado el valor c¢*, se les coloca una “marca” y se dice que
estan marcados.

Inicialmente se marca el nodo a y ¢*(a) = 0. A los demés nodos se les
da un valor provisional ¢/(i) = co. A los sucesores del tltimo nodo marcado
1, se les recalcula el valor provisonal ¢’ de la siguiente manera:

(4) + ZIGHI{I} {(5), (i) + i }-

De los nodos no marcados, se escoge el de menor ¢/(k), se asigna este
valor como su potencial, y se marca el nodo escogido. Ahora se repite el
proceso hasta marcar el nodo z.

Para poder reconstruir el camino se requiere saber desde qué nodo se
marcé un nodo, luego es necesario saber desde qué nodo se calculé el valor

c.

Como los rétulos tienen un significado visual, para mayor sencillez del
esquema del algoritmo, convengamos que un nodo j estd marcado si ¢*(j) <
oo. Convengamos también que p(j) indica de donde “proviene” j, o sea, el
nodo desde donde se llega a j por el mejor camino (o uno de los mejores)
obtenido hasta ese momento.
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ALGORITMO DE DIJKSTRA

datos: : V, A, a, z, MAXIT
para j=1,...n
¢*(j) 4= 00, ¢(j) 4= 00, p(j) < 0

fin-para
c*(a) + 0, d(a)«0
i1+a, k<1

para j € I'" (i)
sit<d(j)

fin-si
fin-para

c*(i) = (i)
k+—k+1
fin-mientras

t < C*(Z) + Cij

d(j) «t, p(j) i

i < argmin ;{c'(j) : ¢*(j) = oo}

mientras c*(z) = o0 y k < MAXIT

El algoritmo se acaba de dos maneras:

» ¢*(2) < 00, es decir, se encontré la distancia de a a z.

107

m k> MAXIT, es decir, hubo demasiadas iteraciones y posiblemente
no haya convergencia, o sea, posiblemente hay circuitos absorbentes o

posiblemente z no es descendiente de a.

Una de las rutas éptimas se encuentra “al revés”, z, p(z), p(p(2)), p(p(p(z))),

ey G

Ejemplo 3.5. Hallar un camino maés corto en la red de la figura 3.10, entre

a=1yz="1.

Esta informacién grafica se puede representar por medio de la siguiente

lista de arcos y costos.
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Figura 3.10.
7 j Cl'j
1 2 3
1 3 6
2 3 2
2 4 1
2 5 2
3 5 1
4 5 2
4 6 4
5 7 2
7 6 4

Inicialmente se marca el nodo a:

*
~

~—

9}
—
<
~

[}
—
<
S—
i~

N B B S R )
88883838 °
8888838 =
coococococoQ

Para los sucesores de 1, es decir, para los nodos 2 y 3, se recalcula ¢/(j), por
ejemplo,
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d(2) + min{ ' (2), ¢*(1) +c12}
d(2) + min{oo, 0+3} =3.

i) CG) pG)
1 0 0 0
2 o0 3 1
3 o 6 1
4 o0 00 0
5 o0 o0 0
6 o 00 0
7 o0 00 0

/

El nodo no marcado de menor ¢/(j) es el nodo 2, entonces se marca:

i () <G pU)
1 0 0 0
2 3 3 1
3 o 6 1
4 o0 00 0
5 o 00 0
6 o o0 0
7 o0 00 0

Para los sucesores de 2, es decir, para los nodos 3, 4 y 5, se recalcula ¢/(j),
por ejemplo,

d(3) + min{ d(3), ¢*(2) + ca3 }
d(3) « min{6, 3+2}=5.

i@ dG) p()
1 0 0 0
2 3 3 1
3 o 5! 2
4 o0 4 2
5 o 5} 2
6 o 00 0
7 o 00 0
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El nodo no marcado de menor ¢/(j) es el nodo 4, entonces se marca:

i () <0G) p(G)
1 0 0 0
2 3 3 1
3 o 5 2
4 4 4 2
5 o0 5 2
6 oo 00 0
7 o0 00 0

Para los sucesores de 4, es decir, para los nodos 6 y 5, se recalcula ¢/(5):

i () <) p(G)
1 0 0 0
2 3 3 1
3 oo 5 2
4 4 4 2
5 o0 5 2
6 oo 8 4
7 o 00 0

El nodo no marcado de menor ¢/(j) es el nodo 3, entonces se marca:

i) dG) pG)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 o0 5 2
6 oo 8 4
7 o 00 0

Para los sucesores de 3, es decir, para el nodo 5, se recalcula ¢ (j):
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i) <) p()
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 00 ) 2
6 oo 8 4
7 o0 00 0
El nodo no marcado de menor ¢(j) es el nodo 5, entonces se marca:
i) ¢0) p()
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 5 5 2
6 oo 8 4
7 o0 00 0

o,

Para los sucesores de 5, es decir, para el nodo 7, se recalcula ¢/(j):

iocU) dG) pl)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 5 5 2
6 oo 8 4
7T o 7 5

El nodo no marcado de menor ¢(j) es el nodo 7, entonces se marca:

i W G pl)
1 0 0 0
2 3 3 1
3 5 5 2
4 4 4 2
5 5 5 2
6 o 8 4
7 7 7 5
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Como ya se marco el nodo z = 7, se detiene el proceso. E1 CMC tiene
longitud 7. Para reconstruir la ruta, se empieza en z = 7 que proviene de
5, que a su vez viene de 2, que viene de 1. Luego uno de los caminos mas
cortos es (1,2,5,7).
Obsérvese que el problema acabd porque se marcé z = 7, pero, por ejemplo,
6 no estd marcado.

Figura 3.11.

3.2.3. Algoritmo de Floyd-Warshall

Este algoritmo [Flo62] es més general que el de Dijkstra. Puede ser usado
en una red con costos negativos. Ademaés permite detectar circuitos de costo
negativo. Requiere més espacio para guardar la informacion necesaria, ya
que utiliza dos matrices n X n, pero da méas informacién, puesto que cuando
no hay circuitos de costo negativo, proporciona la distancia més corta entre
todas las parejas de nodos.

Este algoritmo empieza con dos matrices cuadradas de orden n: D° y
TY. A partir de ellas se calculan D!, T, luego D?, T?, ..., hasta llegar a
D = D" T = T". Aqui los superindices indican iteraciéon y no potencia
(multiplicacién) de matrices.

Si no hay circuitos absorbentes, el elemento d;; de la matriz final D
indica la distancia (distancia més corta) entre el nodo i y el nodo j. En
particular, si d;; = 00, no hay un camino que va de i a j. La matriz final T
sirve para reconstruir el camino o trayecto de un nodo ¢ a un nodo j.

Las matrices iniciales D y T se construyen asi:
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0 si i=7;
dij=qoo s i#j, (4,5) ¢ A;

Cij si 17&]7 (Z,j)GA
ty=j Vi.

La matrices de las iteraciones se calculan mediante las siguientes reglas:

g k—1 &
k _ —_
k- _ —
sino
k _ gk—1 k—1
dij dzk +dkj
tk tkfl
ij ik
fin-si

Para reconstruir un CMC de i a j se procede de la siguiente manera.
Sea q = t;;. Si t;; = j entonces el CMC de 7 hasta j es simplemente el arco
(7,7). Si g # j entonces el CMC de i hasta j, empieza en i, enseguida pasa
por g y después se averigua por el CMC entre q y j.

En lo que sigue se usara parcialmente una notacion semejante de Matlab
y Scilab. Si se tiene un vector fila z de p elementos, entonces

(z, 1)

es un vector fila en el que ¢ es un elemento adicional en la posicion p + 1.

Si j es descendiente de i, el siguiente esquema algoritmico permite ob-
tener un camino de costo minimo desde ¢ hasta j, usando las matrices D y
T.

q < tij

a < (i,q)

k<1

mientras ¢#j v k<n
q < tgj
A (o, q)
k+—k+1

fin-mientras
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Si en una de las matrices D* aparece un elemento diagonal negativo, por
ejemplo, dfi < 0, entonces existe un circuito de costo negativo que empieza
en iy acaba en 4. Utilizando T* se construye uno de estos circuitos. Se aplica
el mismo esquema anterior con T = T* para obtener un camino entre i e 3.

Ejemplo 3.6. Hallar, en la red de la figura 3.12, las distancias més cortas
entre los nodos o encontrar un circuito de costo negativo.

S
Figura 3.12.

[0 2 o0 oo oo T [1 2 3 4 5 6]

oo 0 3 o 5 1 1 2 3 456
po_ |© 0 4 o0 o 70 _ 1 2 3 45 6

oo —8 oo 0 o0 |’ 1 2 3 456

oo oo oo oo 0 oo 1 2 3 45 6

oo 00 o0 oo oo 0] 11 2 3 4 5 6]

En esta iteracién siempre dgj < d% + d(l)j, entonces D! = DO y Tt =TV,
Por ejemplo, d3x =5 < d%; + dfs = 0o + <.

0 2 oo o oo 7 1 2 3 4 5 6

o 0 3 o 5 1 1 2 3 45 6

pl_ | 0 4 o o 7l 1 2 3 45 6
oo -8 oo 0 oo oof’ 1 2 3 45 6

x© o oo oo 0 o 1 2 3 4 5 6

oo 00 oo oo oo 0] 11 2 3 4 5 6]

En esta iteracién sf hay cambios. Por ejemplo, dj; = 0o £ djy + di; =
—8+3 = —5, entonces diy = —5 y 125 = tiy = 2.
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0 2 5 oo 7 3 1 2 2 4 2 2
o 0 3 = 5 1 1 2 3 4 5 6
p2_ |@ 0 4 oo o T2 _ 1 2 3 45 6
oo -8 -5 0 -3 -7\’ 12 2 4 2 2
o© oo oo oo 0 o0 1 2 3 45 6

oo oo oo oo oo 0] 11 2 3 4 5 6]

o0 2 5 9 7 3] (1 2 2 2 2 2]

co 0 3 7 5 1 1 2 3 3 5 6

Do | 0 4 oo ™ T3 _ 1 2 3 45 6
co -8 -5 -1 -3 7|’ 12 2 2 2 2
oo oo oo oo 0 o0 1 2 3 45 6

|co oo oo oo oo O] |11 2 3 4 5 6]

El elemento diagonal dyy = —1, luego hay un circuito, que empieza en 4 y

acaba en 4, de costo negativo. Para obtener uno de estos circuitos se realizan
los siguientes pasos: t44 = 2, luego el circuito empieza en 4 y sigue después
a 2; tog = 3, luego el circuito continda por 3; t34 = 4, luego el circuito acaba
en 4. En resumen, el circuito (4,2, 3,4) tiene costo —1. <

Ejemplo 3.7. Hallar las distancias més cortas entre los nodos de la red de
la figura 3.10 (ejemplo 3.5), o encontrar un circuito de costo negativo.

DO

SR LR IR I

~

o

I
[ T = T T = S S apye
DN NN R NN
W W W W ww w
N N
1IN BN I B S
DI DD
ESEEN EENEENEEN EES IEN|

88888 ow
8888w
888 =>8r3

I
8888838

00
2
1
2
0

00

00

o8 =883

)

2

Il
88 K8AAAR©o
88 K8KREow
888 KQ o
88 RoB =
R R owrwwm
B O O A~ Ul 00
O R Mok w AN
]

N

3

Il
— o e
0NN R NN
W W W W W W N
NN NN
Ot Ot Ot Ot Ot Ot N
e I = L N
N J J Ot Ot Ot DN
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El costo del CMC entre 1 y 6 es 8. Reconstruccién de un camino: t16 = 2,
tog = 4, tyg = 6. Luego un CMC es (1,2,4,6). <

3.3. Flujo maximo

3.3.1. Introduccién

Sea una red R = (V, A, u) con una unica fuente a y un tnico sumidero z.
Supongamos ahora que la funcién v : A — R, indica la capacidad que tiene
cada arco. En estas notas Ry = [0, co[. Suponemos ademds que los valores
de u son enteros, es decir, u: A — Z.

Se desea llevar el mayor nimero de unidades de un mismo producto
desde el nodo a hasta z, respetando las capacidades de los arcos. En cada
vértice, diferente de a y z, se debe cumplir la ley de conservacién, “lo que
entra es igual a lo que sale”. O de otra forma, “lo que entra menos lo que
sale es igual a cero”.

Sea x;; el numero de unidades que van del vértice ¢ al vértice j. El
problema se puede plantear asi:

max E Tqj

JET+(a)
Z Tij — Z zjr =0 Vj#a,z
i€l (j) kel (4)

rij <wy V(i,j) €A

También se puede plantear asi:

max v

—v sl j=a

Z Tij — Z Tjp = 0 sij#a,z

i€l (4) kel *(5) v sl j=z
rij <wg; V(i) € A
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3.3. FLUJO MAXIMO 117

Fijemos un orden para enumerar los m arcos. Un flujo admisible es un
vector z = (..., 2;j,...) € R™ que cumple las restriciones. Para este problema
siempre existe por lo menos uno: x = 0, es decir, x;; = 0 para todo arco
(,7). Para un flujo admisible, la cantidad

v=uv(z)= Z Tqj

Jjert(a)

se llama el valor del flujo.

Se dice que una pareja de conjuntos (X,Y") es un corte que separa a de
z 0, simplemente, un corte, si:
XCV
YCV
acX
zeY
XNy =190
Xuy =V.
Por la definicién se ve que Y debe ser el complemento de X con respecto
a V. En estas notas, siempre que no se diga lo contrario, y mientras no sea
ambiguo, dado X un subconjunto de V', se denotard el complemento de X
con respecto a V' por medio de X. Entonces, un corte es una pareja (X, X)
tal que:
XCVv
acX
z¢ X.
Dado un flujo admisible z y, X y Y dos subconjuntos de V', no nece-
sariamente disyuntos, se define el conjunto de arcos que van de X a Y, el
flujo y la capacidad:

AX)Y)={(i,j)e A:ie X, jeY}

V(X Y)=v(z, X,Y) = Y oy
(4,)EA(X,Y)

(1,§)EA(X,Y)

Si se tiene un corte (X,X), A(X,X) indica el conjunto de arcos que
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empiezan en un nodo de X' y acaban en un nodo fuera de X, u(X, X) indica
la capacidad del corte y v(X, X) indica el valor del flujo del corte.

Se puede demostrar rigurosamente y también se pude intuir que si = es
un flujo admisible y (X, X) es un corte, entonces

v=uov(z) <u(X,X).
Sea v* el maximo valor de los flujos. Como los valores de las capacidades
son enteros, y
v< Y ulag),
j€Tr*(a)
entonces existe el valor v*. Un flujo z tal que v(xz) = v* se llama un flujo
optimo.

Se deduce entonces que si x es un flujo admisible y existe un corte (X, X)
tal que

v(z) = u(X, X),

entonces v(x) = v*, es decir, x es 6ptimo.

Como V es finito, entonces el niimero de cortes (que separan a de z) es
finito, luego existe el valor

u* = min{u(X, X) : (X, X) es un corte }.

Un corte (X, X) tal que u(X, X) = u* se llama un corte minimal.

También se puede demostrar que si se tiene x un flujo éptimo entonces
v(x) = v* = u*. En resumen, el teorema de Ford-Fulkerson dice que un flujo
admisible x es dptimo si y solo si existe un corte (X, X) tal que

v(z) = u(X, X).

La demostracién del teorema y el algoritmo se basan en las siguientes
ideas. Si se tiene un flujo admisible se construye un corte (X,X) de la
siguiente manera:

i) a € X;
ii) siie X, jeT(i) y zi <u, entonces j € X;
ili) siie X, jel'~(i) y x; >0, entonces j € X.
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Se demuestra que si el flujo es éptimo, entonces z ¢ X, es decir, (X, X) es
un corte y que

3.3.2. Algoritmo de Ford-Fulkerson

En este algoritmo, dado un flujo admisible x, se construye X segun los
criterios i), ii) y iii). Si se logra obtener un corte, es decir, si z ¢ X, entonces
el flujo es 6ptimo. Si z € X, entonces el flujo se puede mejorar, es decir, su
valor se puede aumentar.

Para facilitar la construccién de X se coloca a cada nodo, paso a paso, un
rétulo (etiqueta o marca). Este rétulo es sencillamente una pareja (m;, 0;).
Los nodos que estdn en X son precisamente los que tienen rétulo. La cons-
truccion de X es entonces gradual, durante el algoritmo, X indica los
nodos que hasta ese momento han sido rotulados. Sélo al final de un
proceso de rotulaciéon, X representa su verdadero significado.

El valor 7; sirve para indicar el nodo que se utilizé para rotular el nodo
1. Ademdas m; tiene un signo. Si m; > 0, entonces se utilizé el nodo m; e
i € I'M(m;). Si m; < 0, entonces se utilizé el nodo —m; e i € I'™(—m;).

El valor ¢; indica el valor en que se podria modificar el flujo en un camino
para mejorar el valor del flujo. Mas adelante estd la definicién precisa de 9;.

Durante el proceso de rotulacién se utiliza un conjunto o lista L, que
contiene todos los nodos que estan rotulados y que no han sido
examinados. Examinar un nodo rotulado quiere decir estudiar sus vecinos
(sucesores o predecesores) no rotulados. Para que un nodo sea examinado
se requiere que ya esté rotulado.

Si i € L, examinar ¢ significa lo siguiente:

119
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para j € I'" (i)
si j§§Xy:U,~j<uij
Tj <1
5j — min{&i, Uij — .’L’ij}
jentraa X y a L
fin-si
fin-para
para j € I'" (i)
sij ¢ Xy Tji > 0
Tj < —1
(5]‘ — min{&i, Iji}
jentraa X y a L
fin-si
fin-para

Para empezar el algoritmo X < (). En seguida se rotula la fuente con
g < 0, 0g ¢ 00, X < {a} y L < {a}. Mientras haya nodos en L se
examinan. Cuando no haya més nodos en L, hay dos posibilidades.

» Siz ¢ X, entonces = es éptimo.

= Si z € X, entonces se puede mejorar el flujo.

Mas adelante se verd cémo mejorar el flujo. Después de mejorar el flujo se
vuelve a empezar. El esquema del algoritmo es el siguiente:

xi; < 0 para todo arco (4, j)
hacer
(Ta, 6a) < (0, 00)
X «{a}, L+ {a}
mientras L#() y 2¢ X
escoger ¢ en L
examinar ¢
sacar ¢ de L
fin-mientras
si z € X ent mejorar el flujo
sino x es optimo
mientras x no es éptimo

Cuando z € X, el flujo se puede mejorar modificando, en algunos arcos
del grafo, el valor z;; en una cantidad € = .. Se empieza en el nodo z y se
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hace un regreso mediante los valores m; o —m; hasta llegar a a. De manera
mads precisa, este es el esquema del procedimiento:

14 2
mientras i # a
sim >0
J T
Tji < Tji +e€
sino
J -
Tij < Tij — €
fin-si
14 J
fin-mientras

Con este procedimiento se construye, desde el final hacia el comienzo,
una cadena aumentante o mejorable y al mismo tiempo se mejora el flujo,

Ejemplo 3.8. Hallar, en la red de la figura 3.13, el maximo flujo entre 1 y
6.

Cuando un nodo tenga rétulo, éste sera la pareja (m;,d;). Esta pareja
aparece en el dibujo al lado del nodo. Junto a cada arco habra dos valores.
El primero indicard x;;, el segundo u;;.

Se empieza con un flujo factible: z;; <- 0 para todos los arcos. Se le
coloca rétulo a la fuente. Ver figura 3.14.

X = {1}, L = {1}. Se examina 1, se rotulan 2 y 3. Ver figura 3.15.
X =1{1,2,3}, L = {2,3}. Se examina 2, se rotulan 4 y 5. Ver figura 3.16.

X ={1,2,3,4,5}, L = {3,4,5}. Se examina 3, no se rotula nada.
X =1{1,2,3,4,5}, L = {4,5}. Se examina 4, se rotula 6. Ver figura 3.17.

X =1{1,2,3,4,5,6}, L = {5,6}. Como z = 6 estd en X, entonces el flujo
no es éptimo. Se modifica el flujo en la cantidad ¢ = dg = 3, en los arcos
determinados por los nodos 6, 4, 2, 1. Ver figura 3.18. La cadena (1,2,4,6)
era una cadena aumentante.

Se borran todos los rétulos. Se rotula 1. Se examina 1, se rotula 3. Se examina
3, se rotula 4. Se examina 4, se rotulan 6 y 2 (my = —4). Ver figura 3.19.

Como z € X ={1,2,3,4,5,6,7}, entonces el flujo no es 6ptimo. Se modifica
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el flujo en € = g = 1, en los arcos determinados por los nodos 6, 4, 3, 1. Ver
figura 3.20.

Se borran todos los rétulos. Se rotula 1. Se examina 1, se rotula 3. Se examina
3, se rotula 4. Se examina 4, se rotula 2 (m3 = —4). Se examina 2, se rotula
5. Se examina 5, se rotula 7. Se examina 7, se rotula 6. Ver figura 3.21.

X =1{1,2,3,4,5,6,7}, luego el flujo no es 6ptimo. Se modifica el flujo en
€ = d¢ = 1, en los arcos determinados por los nodos 6, 7, 5, 2, 4, 3, 1.
Obsérvese que en el arco (2,4) se hace al revés, es decir, se disminuye el
valor de xo4. Ver figura 3.22.

Se borran todos los rétulos. Se rotula 1, X = {1}, L = {1}. Se examina 1, se
rotula 3, X = {1,3}, L = {3}. Se examina 3, no se rotula nada, X = {1, 3},
L = (. Ver figura 3.23.

Como L =0y z no estd en X = {1, 3}, entonces el flujo es éptimo. Luego
el corte ({1,3}, {2,4,5,6,7}) es un corte minimal. Su capacidad debe ser
igual al valor del flujo, es decir, 5. Ver figura 3.24.

Figura 3.13.
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(0pd 2

Figura 3.14.

(0g8)8

Figura 3.15.
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(@x8)2

Figura 3.16.

()

Figura 3.17.
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0dB 3

Figura 3.18.

Figura 3.19.
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ags 2

Figura 3.20.

Figura 3.21.
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3a8 2

Figura 3.22.

(@pm)p

Figura 3.23.
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Figura 3.24.
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Ejemplo 3.9. El acueducto de un municipio tiene tres depdsitos de agua:
A, B y C. Debe llevar agua a cuatro corregimientos: D, E, F y G. En la
siguiente tabla estdn las capacidades (en litros/segundo) de cada uno de
los depdsitos, las necesidades (1/s) de cada corregimiento y las capacidades
de conduccién (1/s) entre cada depdsito y cada municipio. Entre algunos
depdsitos y algunos corregimientos no hay posibilidad de enviar agua.

DIE| F| G
151 5|10 |15
A 22| 5|7 10
B 12(10(2] 7
C 10 5| 5

Se desea conocer la distribucién de agua que, respetando las capacidades de
los tanques y de la tuberia existente, satisfaga de la mejor manera posible
las necesidades de los cuatro corregimientos.

Este problema se puede plantear como un problema de flujo maximo,
introduciendo dos nodos ficticios: una fuente denominada 1 y un sumidero
denominado 9. Los tanques seran los nodos 2, 3 y 4. Los corregimientos seran
5,6, 7y 8. Ver figura 3.25.

1010 73 288

Figura 3.25.

En la octava iteracién se obtiene un corte minimal

X = {17 27 6}7
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X ={3,4,5,7,8,9},
u(1,3) =12,
u(1,4) = 10,
u(2,5) =5,
u(2,8) = 10,
u(6,9) =5,
uw(X, X) = 42.

La solucién estd en la figura 3.26. En cada arco estd el valor del flujo z;; y
la capacidad u(i, j).

10 < WERWAR 710 < 10

Figura 3.26.

3.4. Flujo de costo minimo

Consideremos ahora una red R = (V, A,u,c), donde V es el conjunto
de nodos o vértices, A es el conjunto de arcos o flechas, u es la funcién de
capacidad de los arcos y ¢ es la funcién de costo unitario de los arcos. Si (i, j)
es un arco, ¢;; = c(4, ) indica el costo de llevar una unidad del producto
entre el nodo 7 y el nodo j.

Suponemos, por facilidad, que el grafo (A, V) es antisimétrico. Si no es
asi, cuando hay dos arcos (i,5) y (j,7), uno de los dos se puede cambiar por
dos arcos mediante un nodo ficticio.
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Si se tiene un flujo z, éste tiene un costo

E Cijl'ij .

(3,7)€A

Dado un flujo admisible z con valor de flujo v, se desea obtener un flujo
también admisible y con el mismo valor v, pero que sea de costo minimo.
En particular, si el flujo admisible considerado es un flujo maximo (de valor
maximo), entonces se tiene un problema de flujo méximo a costo minimo.

A un flujo admisible z se le asocia una red R(z) = R = (V, A, ¢) definida
por:

si (i,7) € A y x5 <wuy;, entonces (i,j) € A, & = cij,

si (i,5) €A, y x;; >0 , entonces (j,i) € A, ¢j; = —cij.

Los primeros arcos se llaman arcos normales, los segundos se llaman arcos
1NVersos.

El esquema del algoritmo para encontrar un flujo de valor v y costo
minimo es bastante sencillo. Dado x admisible de valor v, se construye R(z).
Si R(x) tiene un circuito a de costo negativo, entonces se modifica el flujo
para obtener uno del mismo valor pero de menor costo. El proceso se repite
hasta que R(a:) no tenga circuitos de costo negativo.

Para encontrar un circuito @ de costo negativo en fm’(x), se puede usar
el agoritmo de Floyd-Warshall visto en el capitulo 4.

Cuando se encuentra un circuito «, de costo negativo, en R, el flujo =
se modifica de la siguiente manera. Supongamos que por este circuito de R
se hace circular un flujo . Este flujo debe ser “superpuesto” al flujo = de
R teniendo en cuenta los arcos normales (también estdn en A) y los arcos
inversos (no estan en A).

Sea (i,7) un arco de a. Aunque « no es un conjunto, diremos, abusando
del lenguaje, que (i,7) € a. Sea 2’ el flujo modificado de R.

.« /e . Vi .
si (4,7) € A, entonces x;; = ;5 + €

si(i,7) ¢ A, entonces z; = xj; —€;
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Es claro que a mayor valor de e, mayor disminucién en el costo. Pero si
¢ es demasiado grande puede alterar la factibilidad del flujo en R. Entonces
€ debe tomar el mayor valor que no altere la factibilidad:

€1 = mln{uzj — Tyt (Z’]) € o, (Za]) € A}?
€2 = mln{le (Zvj) € a, (Z7j) ¢ A}’
e =min{e;, €2} .

Ejemplo 3.10. Consideremos la red del ejemplo 3.8 con su flujo maximo
y, adicionalmente, una funcién de costo. Utilicemos la misma convencién
grafica del ejemplo 3.8, es decir, al lado de cada arco hay dos valores, el
primero es el valor x;;, el segundo es u;;. Encima de ellos estard el costo ¢;;.

348 2

Figura 3.27.

El valor de este flujo es 5 y su costo es 52. jEs este costo minimo? Para
saberlo es necesario construir R.

Como z12 = 3 £ u12 = 3, entonces (1,2) ¢ A.

Como z12 = 3 > 0, entonces (2,1) € A, &y = —4.
Como x13 = 2 < uj3 = 6, entonces (1,3) € A, &3 =2.
Como z13 = 2 > 0, entonces (3,1) € A, &3 = —2.

Entonces se obtiene la red definida por la siguiente lista de arcos y costos:
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O NN J OO TN EDNWRFN e
N O O WNOUN WS,
|
—_

Figura 3.28.

A esta red se aplica el método de Floyd-Warshall y se obtiene un circuito
absorbente:

a=(7,6,4,257), &a)=-2.

El cédlculo de la méaxima modificacién da:

e1 = min{4, 2,3}, g9 = min{4, 2},
g1 = 2, g9 = OO,
e=2.
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Al superponer este flujo del circuito sobre el flujo z, se obtiene un flujo del
mismo valor, pero con costo = 52 + (—2)(2) = 48. Por ejemplo:

(7,6) e A = x'76::1:76+5:1+2:3,
(6,4)¢A = x216:$46_5:4_2:2-

8as 2

Figura 3.29.

De nuevo se construye otra red R. La lista de arcos y costos es:

—4
2
—2
3
-1

O N OO R R U W RN .
N O U A O W R WS,
|
N

A esta red se aplica el algoritmo de Floyd-Warshall y no se obtiene

134



3.5. RUTA CRITICA 135

Figura 3.30.

ningun circuito de costo negativo, entonces el flujo actual tiene costo minimo.
<&

3.5. Ruta critica

Este método, conocido como CPM (Critical Path Method), fue desa-
rrollado por la compania Du Pont de Nemours y extendido por la compania
Mauchly Associates. Junto con el método PERT (Project Evaluation and
Review Technique) desarrollado por la Marina de E.E.U.U., se utilizan para
la planeacién y control de proyectos.

La diferencia principal consiste en que para CPM los tiempos de las acti-
vidades se suponen conocidos de manera determinista; en PERT los tiempos
tienen consideraciones probabilistas.

Para un proyecto dado se tiene la lista de actividades y el tiempo de
duracién de cada actividad. Ademés se conocen las actividades que deben
ser realizadas antes de cada actividad. Es importante conocer las actividades
que al tener algiin retraso producen también un retraso en la terminacion
de todo el proyecto. Otras actividades pueden tener pequenos retrasos sin
afectar la terminacion de todo el proyecto.

Ejemplo 3.11. Construccién de una casa (tomado de Hillier y Lieberman).
Inicialmente se hace una lista de las actividades necesarias para la realizacién

del proyecto.
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A Excavacién

As  Cimientos

Az Muros y cerchas

A4 Techos

As  Instalacién eléctrica
Ag  Plomeria exterior
A7 Plomeria interior
Ag  Panete interior

Ag  Colocaciéon de pisos
A9 Pintura interior

Aq1 Acabados interiores
Ao Panete exterior

A3 Pintura exterior
A1s  Acabados exteriores

Para cada actividad es necesario conocer el tiempo estimado y las acti-
vidades previas (deben haber terminado para poder empezar la actividad).

Actividad 7 | Actividades
previas
A7 | Excavacién 2
A | Cimientos 4 | A
As | Muros y cerchas 10 | As

Ay | Techos
Ag | Instalacién eléctrica
Ag | Plomeria exterior

As

A7 | Plomeria interior

Ag | Panete interior
Ag | Colocacién de pisos
Aqo | Pintura interior

A11 | Acabados interiores
Ao | Panete exterior
Ai3 | Pintura exterior
A14 | Acabados exteriores

| o | o o x| oo| et x| 1o
N
oo

El proyecto se puede representar por medio de una red con las siguientes
caracteristicas:

» Cada actividad se representa por un arco.
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» Cada actividad tiene un conjunto (puede ser vacio) de actividades
previas, es decir, actividades que deben haber acabado antes de ella.

s Cada actividad Ay tiene asociado un tiempo estimado de duracién 7.
Si la actividad esta representada por el arco (i, j), entonces el tiempo
estimado para la actividad se representa por 7;; .

= Los nodos representan eventos en el tiempo, generalmente la termina-
cién de una o varias actividades o el comienzo de otras.

= Si una actividad debe preceder a otra, entonces el evento final de la
primera es el evento inicial de la segunda o el evento final de la primera
es un ascendiente del evento inicial de la segunda.

= No puede haber dos actividades distintas que tengan el mismo even-
to inicial y el mismo evento final. Si es necesario, se crea un evento
artificial y un arco artificial con tiempo de duracién nulo.

» El grafo de la red tiene una fuente y raiz, el inicio del proyecto, y un
sumidero, la terminacion de todo el proyecto.

Para cada evento, es decir, cada nodo, se define el tiempo mds pronto, de-
notado por ¢; . Es el tiempo en el que ocurrira el evento si las actividades que
lo preceden acaban los més pronto posible. Para el nodo raiz, supongamos
que es el nodo a, t, = 0.

El proceso de célculo de los ¢; se hace hacia adelante. Inicialmemte asig-
namos a todos los otros nodos t; = —1. Un valor negativo indica que no se
ha calculado el verdadero valor de t;.

Mientras sea posible es necesario hacer lo siguiente:

buscar j tal que
t; < 0,
t; > 0 para todo i € I'" (j).

A este nodo se le calcula el valor ¢;:

tj =max{t; + ;i € ' (j)}.

Para cada evento, es decir, cada nodo, se define el tiempo mds tardio,
denotado por T;. Es el ultimo momento en que puede ocurrir el evento sin
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retrasar la terminaciéon del proyecto. Para el nodo sumidero, supongamos
que es el nodo z, T, =t,.

El proceso de célculo de los T; se hace hacia atras. Inicialmemte asigna-
mos a todos los otros nodos T; = oo. El valor infinito indica que no se ha
calculado el verdadero valor de T;.

Mientras sea posible es necesario hacer lo siguiente:

encontrar un nodo ¢ tal que:
T; = oo,
T; < oo para todo j € I'M(i).

A este nodo se le calcula el valor T;:

T; = min{T; —7;; : j € TT(0)}.

La holgura para un evento i es la diferencia entre el tiempo mas tardio
y el tiempo maés pronto:

hi = T’Z — ;.
Indica cuanto retraso se puede tolerar para llegar a ese evento sin que se

retrase el proyecto.

La holgura para una actividad (7, j) se obtiene al sustraer del tiempo més
tardio del evento j, el tiempo mas pronto del evento ¢ y el tiempo estimado
para la actividad (4, j):

hij = T] —t; — Tij-
Indica cuanto retraso se puede tolerar en la terminacion de esa actividad sin

que se retrase el proyecto.

Una ruta critica es una ruta compuesta por actividades de holgura nula.

3.5.1. De la tabla de actividades a la red

A partir de la tabla de actividades es necesario construir la red asociada.
Este proceso conlleva varias etapas y se puede realizar de varias formas.
Unas mas sencillas que pueden producir una red mas grande, otras mas
sofisticadas que pueden producir una red més pequefia. A continuacién una
forma sencilla para construir la red.
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» Paso 1. Colocar como nodo de inicio (o nodo raiz) el nodo 1.
= Paso 2. Para cada actividad Ay sin actividades anteriores:

e Paso 2a Crear dos nodos nuevos, ¢ y j, y asociar a Ay el arco
(4,7) con duracién 7;; = Ty .
e Paso 2b Crear el arco ficticio (1,4) con duracién nula.

s Paso 3. Considerar cada actividad A sin arco asociado, tal que todas
las actividades anteriores a ella tengan arco asociado.

e Paso 3a. Crear dos nodos nuevos, i y j, y asociar a A el arco
(4,7) con duracién 7;; = 7.
e Paso 3b. Por cada actividad anterior a Ay, con arco (u,v), se

construye un arco ficticio (v, ) con duracién 7,; = 0.

El paso 3 se repite mientras sea necesario.

» Paso 4a. Cuando el paso 3 se haya efectuado la veces necesarias, crear
un nodo nuevo, z, que sera el sumidero o evento final del proyecto.

» Paso 4b Para todos los nodos j sin sucesor (correspondientes a las
actividades que no son actividades previas de otras actividades) crear
un arco ficticio (j, z) con 7, =0

Ejemplo 3.12. Considere la siguiente lista de actividades:

7 | Actividades
anteriores

A | 6

As | 9

As | 8 | A1, As

Ay | 7 | A, As

As | 10 | Ay

Ag | 12 | A3, As

A7 | 5 | Ag, Ay

Paso 2.
Ay: arco (2,3), Te3 = 6; arco ficticio (1,2), 72 = 0.
Ay: arco (4,5), 145 = 9; arco ficticio (1,4), 114 = 0.
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Paso 3.

Ag: arco (6,7), 767 = 8; arco ficticio (3,6), 136 = 0, arco ficticio (5,6),
T56 — 0.

Ay arco (8,9), 739 = T7; arco ficticio (3,8), 133 = 0, arco ficticio (5,8),
T58 — 0.

As: arco (10,11), 119,11 = 10; arco ficticio (9, 10), 79,10 = 0.

Ag: arco (12,13), T2,13 = 12; arco ficticio (7,12), 7712 = 0, arco ficticio
(11, 12), 7'11712 = 0.

A7: arco (14,15), T415 = 5; arco ficticio (7,14), 7714 = 0, arco ficticio
(9, 14), 79,14 = 0.

Paso 4. z = 16; arcos ficticios (13,16), (15,16). Ver figura 3.31.

Figura 3.31.

Célculo de los tj: t; =0; to = max{0+ 0} =0; t3 = max{0+ 6} = 6;
ty =max{0+0} =0; t; =max{0+9} =9; tg =max{6+0,9+0} =9;
t16 = max{38 + 0,22+ 0} = 38.

Calculo de los T;: Ty = 38; T15 = min{38—0} = 38; T14 = min{38—5} =
33; Th3 = min{38—0} = 38; Ty = min{38—12} = 26; Ti; = min{26—0} =
26; Tio = min{26 — 10} = 16; Ty = min{16 — 0,33 — 0} = 16;

T) = min{3 — 0,0 — 0} = 0.
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vty T
1 0 O
2 0 3
3 6 9
4 0 0
5 9 9
6 9 18
7 17 26
8 9 9
9 16 16
10 16 16
11 26 26
12 26 26
13 38 38
14 17 33
15 22 38
16 38 38

Célculo de las holguras de las actividades: h(Aj1) = hog = T3 — tg — To3 =
9-0-6=3: h(Ag) =hus =T5 —ts—T45=9—0—-9=0; ...

Ay
Ay

b
>~
>
—
=
OO OO W—

BN
3
—_

Las actividades Ao, Ay, A5 y Ag son criticas. <

3.5.2. Simplificacién de una red

Una vez construida la red, es posible simplificarla, suprimiendo algunos
arcos ficticios.

» Sea (u,i) un arco ficticio que precede al arco real (una actividad real)
(4,7). Si el nodo i no tiene otros predecesores diferentes de u y no

tiene otros sucesores diferentes de j, entonces se puede suprimir el
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arco ficticio (u, ) y el nodo i. En este caso el arco real (i, 7) se cambia

por (u, j).

%

De manera andloga, sea (j,v) un arco ficticio precedido por el arco

real (una actividad real) (7,

j)- Si el nodo j no tiene otros predecesores

diferentes de i y no tiene otros sucesores diferentes de v, entonces se
puede suprimir el arco ficticio (j,v) y el nodo j. En este caso el arco

real (i,7) se cambia por (i,v).

A

= Puede ser 1util renombrar los nodos para eliminar los nodos aislados

provenientes de las modificaciones anteriores.

Ejemplo 3.13. Simplificar la red del ejemplo anterior, calcular el tiempo
mas pronto, y el tiempo més tardio para cada nodo, y la holgura de cada
actividad.

remplazar

2) (2, 3)

1,4) (4, 5)
9,1 (10 11)

(1,
(
(
(9, 11) (11, 12)
(
(

0)

1)
12, 13) (13, 16)
14, 15) (15, 16)

por

—
ot

(1, 3)
(1, 5)
(9, 11)
(9, 12)
( 6
(

—_
—_

La red después de las supresiones esté en la figura 3.32. En la figura 3.33
esta la red después de renombrar los nodos.

3.5.3.

Preproceso de la lista de actividades previas

Antes de construir la red a partir de la lista de actividades previas es
necesario verificar que la lista no da lugar a un circuito y que no hay infor-
macién claramente redundante.
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As AR

Figura 3.32.

Figura 3.33.

Circuito de actividades

Ejemplo 3.14. Considere la siguiente lista de actividades:

7 | Actividades
anteriores
Ay | 11
Ay | 13| Ay, As
As | 17 | As
Ay | 19 | Az, A5
As | 23 | Ag

143

Es claro que la anterior lista de actividades previas no es adecuada. As

es requisto para As; Az es requisito para As y As es requisito para As.

<

En esta etapa de preproceso, a partir de la lista de actividades previas,
se construye un grafo donde a la actividad A; se le hace corresponder el
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nodo 4. Si A; es un requisito para Aj;, entonces (4,j) es un arco del grafo.
Este grafo no debe tener circuitos.

Para la lista de actividades del ejemplo, se obtiene el grafo de la figura 3.34.

Figura 3.34.

El camino (2,3,5,2) es un circuito. Esto se puede observar en la figura
o se puede obtener como resultado del algoritmo de deteccién de circuitos.
Al final de este algoritmo el diccionario de sucesores queda reducido a

ot

Actividades previas redundantes

Si la actividad A; es un requisito para la actividad A; que a su vez es
requisito para la actividad Ay, entonces, obviamente, A; es un requisito para
Ayj, pero es innecesario colocar a A; como actividad anterior a Ag.

Sea (V, A) el grafo (sin bucles) obtenido a partir de la precedencia entre
las actividades (los nodos son las actividades), M € R™ ™ su matriz nodo-
nodo asociada y MP* la potencia k-ésima de M. El elemento mfj indica el
numero de caminos de longitud k& que van desde i hasta j (se supone que la
longitud de cada arco es 1). Obviamente si M* = 0, entonces M**+1 = 0.

Sea 2 <k <mn—1 (con M* #£0). Si
mijzl y mfj>0

entonces es redundante decir que la actividad i es requisito para la actividad
j.
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Ejemplo 3.15. Considere la siguiente lista de actividades previas.

Actividades
anteriores

Aq

Ay

As

Ar, Ay

Ay

A

As

Ay, Az, Ay

Ag

As

A7

Ay, Az, Ag

La matriz asociada al grafo y algunas de sus potencias son:

=

Il
O OO O O oo
OO OO O OO
SO OO O
SO OO OO
OO O === O
eNeNeRel S =R

S

|
OO OO o oo
OO O OO oo
OO O OO oo
OO OO o oo
OO OO o oo
OO O OO oo

Como miy =1y m% > 0, entonces A no es un requisito directo para
A7. De manera andloga, son redundantes los arcos (2,5) y (3,7). Entonces

SR OO~ O

[e=lelelelell

la tabla de actividades previas es:

2
Il
coococoocoo

S
|
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OO O OO oo

SO oo o oo

OO OO o oo

OO O oo oo

OO OO o oo

OO O OO N

O O OO O oo

O O OO O =
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Actividades
anteriores

Ay

Ao

Az | Ay, A

Ay | Ao

As | A3, Ay

Ag | Az

A7 | Ag

3.6. Arbol generador minimal

Una red no dirigida es un grafo no dirigido con una funcién de costo (o
de longitud), o sea, es una tripla R = (V, E, ¢), donde G = (V, E) es un grafo
no dirigido y ¢ es una funcién de costo, ¢ : E — R. El costo de la arista
a = {i,j} se denota de varias maneras: c(a) = ¢, = ¢(1,]) = ¢ij.

El costo de un grafo parcial o de un subgrafo es la suma del costo de
las aristas. Un drbol generador minimal o drbol generador minimo, AGM,
(MST, minimal spanning tree) es un drbol T'= (V, E’), generador de G, de
costo minimo. Algunas veces se habla, de manera precisa, de drbol generador
de costo minimo.

En un grafo no dirigido G = (V, E), D C E es un conjunto desconectante
si (V, E . D) no es conexo. Un conjunto desconectante D es un conjunto
corte sino tiene subconjuntos propios desconectantes. Sean X, Y, no vacios,
disyuntos, con X UY = V, Exy denota el conjunto de aristas con un
elemento en X y el otro en Y. Como Y es el complemento, no vacio, de
X # 0, con respecto a V, basta con denotar Ex . Claramente Ex 5 es un
conjunto desconectante pero no necesariamente un conjunto corte.

Algunos resultados sobre drboles son los siguientes (ver [Bal95]):

» Un grafo es conexo sssi tiene un arbol generador.

» Sea G = (V,E) un grafo no dirigido y H = (V, E') un subgrafo. Si
H cumple dos de las tres propiedades siguientes, entonces cumple la
tercera.

1. H es conexo.
2. H no tiene ciclos.
3. |E'|=n-1.
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» El conjunto desconectante Exy es un conjunto corte si (V,E \ Exy)
tiene exactamente dos partes conezas.

n Sie es una arista de T un drbol generador del grafo no dirigido G =
(V, E), entonces al suprimir e en T quedan determinados de manera
precisa dos conjuntos X, Y tales que Exy es un conjunto corte.

» T es un AGM del grafo no dirigido con costo (V, E,c) si cada arista e
de T es de costo minimo en el conjunto corte definido por e.

Ejemplo 3.16. Uno de los ejemplos tipicos de AGM es andlogo al siguiente.
En el campus de la Universidad Nacional hay n edificios y se desea conec-
tarlos con fibra éptica.

Para cada pareja de edificios (4, 7), se sabe si la conexién directa entre los
dos edificios es viable o no. Cuando la conexién directa es viable, un estudio
técnico evalud el costo de la conexién directa.

Se desea conocer como debe ser el tendido de la fibra 6ptica de costo
minimo de tal forma que todos los edificios queden unidos. <

3.6.1. Deteccién de un ciclo

Hay varios algoritmos para la deteccién de un ciclo en un grafo no diri-
gido. La versién presentada aqui es una adaptacién del método de busqueda
a lo ancho BFS (breadth first search). La versiéon de BFS en [CLRI0] sirve

para encontrar la componente conexa asociada a un nodo i.

Empezando con un nodo cualquiera, por ejemplo el nodo 1, se marcan
sus vecinos y después los vecinos de los nodos marcados. Se considera que
un nodo ha sido estudiado cuando se han marcado sus vecinos. Cuando se
estudian los vecinos del nodo u y v € I'(u) ya habia sido marcado antes y la
marcacién de u no fue hecha desde v, entonces el grafo tiene un ciclo.

Un nodo puede tener tres estados: no marcado, marcado pero no estu-
diado y estudiado. Algunas veces se utilizan colores: blanco, gris y negro.
Aqui se utilizan los valores 0, 1, 2.

0 : 7 no ha sido marcado,
c(i) = ¢ 1 : i fue marcado pero no estudiado,

2 : 1 fue estudiado.

También se requiere saber a partir de que nodo se marca otro. Asi,
p(j) = i indica que j fue marcado como vecino del nodo i. Inicialmente se
asigna p(i) = 0 para todos los vértices.
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En el algoritmo, @ es la lista (conjunto) de nodos marcados no estudia-
dos. En la lista, los elementos estan ordenados por orden de entrada.

datos: V., E, ig
¢+ 0, p+0, Q< {ip}, clip) + 1
mientras Q # ()
u 4 Q1
para v € I'(u)
si c(v) =0
c(v) + 1
p(v) < u
Q < QU{v}
sino
si v # p(u)
hay un ciclo, parar
fin-si
fin-si
fin-para
c(u) < 2
Q4+ Q~{Q1)
fin-mientras
No hay ciclos.

El algoritmo anterior sirve para saber si la componente conexa en la cual
estd el vértice iy tiene o no tiene ciclos. Si al final, no hay ciclos, entonces los
vértices 7 tales que ¢(i) > 0 forman el conjunto que genera una componente
conexa (sin ciclos) de G.

Obviamente si G es conexo, al usar el algoritmo anterior una vez se
sabe si tiene o no tiene ciclos. Cuando G tiene varias componentes conexas
(generalmente, no se sabe por anticipado), es necesario utilizar el algoritmo
anterior varias veces, hasta detectar un ciclo o hasta asegurar que en todas
las componentes no hay ciclos.

Ejemplo 3.17. Averiguar si el grafo (V, E) tiene ciclos, donde E estd com-
puesto por las aristas:
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{1,3}
{2,4}
{3,4}
{3,5}
{4,6}
{5,6}
{5, 7}
{6,8}

El diccionario de vecinos es:

=
—~
~.
SN—

oo W o
0 J & Ot

00 ~J O T i W N

O CU R W - W

Estudio de w = 1. Nodo v =3: ¢(3) =1, p(3) = 1.

Estudio de u = 3. Nodov = 1. Nodo v = 4: ¢(4) =1, p(4) = 3. Nodo v = 5:
c(5) =1, p(b) = 3.

Estudio de u = 4. Nodo v = 2: ¢(2) =1, p(2) = 4. Nodo v = 3. Nodo v = 6:
c(6) =1, p(6) = 4.

Estudio de w = 5. Nodo v = 3. Nodo v = 6. Hay un ciclo.

En el subgrafo definido por las aristas

{1,3}, {3,4}, {3,5}, {4,2}, {4,6}, {5,6}

hay un ciclo. Ver figura 3.35.

Ejemplo 3.18. Averiguar si el grafo (V| E) tiene ciclos, donde E estd com-
puesto por las aristas:

{5,4}
{6,2}
{9,3}
{5,8}
{3,7}
{1,5}
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g Figura 3.35.

El diccionario de vecinos es:

!
—
.
~—

EN|

© 00 O Ui W N =
COOTOO[\DJ%OT@@OT
%o
—_

Estudio de u = 1. Nodo v = 5. ¢(5) =1, p(5) = 1.

Estudio de w = 5. Nodo v = 4. ¢(4) = 1, p(4) = 5; nodo v = 8. ¢(8) = 1,
p(8) = 5; nodo v = 1.

Estudio de u = 4. Nodo v = 5.

Estudio de v = 8. Nodo v = 5.

No hay ciclo en la componente conexa generada por {1,4,5,8}.

De manera andloga se obtiene la componente conexa generada por {2,6},
que tampoco tiene ciclos.

Finalmente se obtiene la componente conexa generada por {3,7,9}, que
tampoco tiene ciclos. <
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3.6.2. Algoritmo de Kruskal

Este algoritmo hace parte de los algoritmos voraces (“greedy”) para
obtener un AGM de un grafo no dirigido conexo G = (V, E). Su descripcién
es muy sencilla. La buena, regular o mala eficiencia del método depende
fuertemente de la manera de implementar cada paso.

El AGM T se va construyendo iterativamente. Siempre 7' = (V, F'). Lo que
realmente se construye iterativamente es el conjunto de aristas F'. Como el
conjunto de vértices de T' es V', durante el proceso T se caracteriza simple-

mente por F. Por eso mismo se hablard de F' como si fuera exactamente
T.

1. Ordenar las aristas por orden creciente de costo en una lista L. F < (.
2. F« FU{L1}. L+ L~{L}

3. Si |F| = n — 1, entonces parar, ya que T es un arbol generador.

4. Si |L| = 0, entonces parar, G no es conexo.

5. Si FU{L1} no tiene ciclos, entonces F' <— FU{L1}, L+« L~{L1}
e ir al paso 3. Sino, L <— L~ {L;} e ir al paso 4.

Ejemplo 3.19. Construir un AGM del grafo no dirigido con costos, cuyas
aristas y costos son:

oo

{1,2},
{17 3}7
{1,7},
{27 4}7
{2,8},
{37 4}7
{3,5},
{47 6}7
{5,6},
{5, 7},
{67 8}7
{7.8},

— =
o O

[
O =N~ NNt W

Al ordenar las aristas de menos a mayor costo se obtiene:
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{4,6}
{2,8}
{3,5}
{2,4}
{6,8}
{3,4}
{5,6}
{1,2}
{7,8}
{1,3}
{17}
{5, 7}

El arbol empieza con la arista {4,6}.

L; ={2,8} se agrega a T.

L ={3,5} se agrega a T

L1 ={2,4} se agrega a T.

L, = {6, 8} haria ciclo.

L; ={3,4} se agrega a T.

L, = {5,6} haria ciclo.

Ly = {1,2} se agrega a T.

Ly ={7,8} se agrega a T.

Ya hay 7 aristas, luego se tiene un AGM de costo 30. Figura 3.36

L Figura 3.36.
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3.6.3. Algoritmo de Prim

Este también es un algoritmo voraz para obtener un AGM de un grafo no
dirigido conexo G = (V, E). En este algoritmo se van escogiendo los vértices
de manera voraz. Recuérdese que en el algoritmo de Kruskal se escogen
iterativamente las aristas.

El algoritmo empieza con un nodo cualquiera que va a ser el primer
elemento de W. En cada iteracion se busca la arista menos costosa entre
aquellas que van de vértices de W a vértices en V . W. Esa arista entra al
arbol y el vértice que no estaba en W entra a W. El algoritmo acaba cuando
T tiene n — 1 aristas, o sea, cuando W tiene n vértices.

El algoritmo se va guiando por el conjunto W y el arbol que se va cons-
truyendo se puede representar simplemente por su conjunto de aristas F'.
Para facilitar la implementacion es conveniente ordenar las aristas de menor
a mayor costo. De manera precisa el algoritmo es el siguiente:

datos: F, ¢, iy
W+ {’Lo}
F«10
mientras |[W| <n
escoger a = {i,j} € E, 1€ W, j ¢ W tal que:
c(a) = min{c(w, k) : {w, k} € By}
si Eyw =0, ent G no es conexo.
W+ Wu{j}
F + FU{a}
fin-mientras

Ejemplo 3.20. Construir, a partir del nodo 1, un AGM del grafo no dirigido
del ejemplo anterior. Al ordenar las aristas de acuerdo al costo se tiene:
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{4,6}
{2,8}
{3,5}
{2,4}
{6,8}
{3,4}
{5,6}
{1,2}
{7,8}
{1,3}
{1,7}
5,7}

0 g Utk W N

[ S
N OO ©

W = {1}.

a=1{1,2}, cla)=8, W={1,2}, F={{1,2}}.

a=1{28}, cla)=2, W=1{1,2,8}, F={{1,2},{2,8}}.

a=1{2,4}, cla)=3, W={1,2,8,4}, F={{1,2},{2,8},{2,4}}.
a={4,6}, cla)=1, W =1{1,2,8,4,6}, F={{1,2},{2,8},{2,4},{4,6}}.

a= {4,3}, C(CL) =5 W= {1,2,8,4,6,3},
F= {{1’ Q}a {27 8}7 {2’ 4}7 {47 6}’ {47 3}}

a={3,5}, cla)=2, W =1{1,2,8,4,6,3,5},
F={{1,2},{2,8},{2,4},{4,6},{4,3},{3,5}}.

a={87} cla)=9, W=1{1,28,4,63,57}
F = {{1,2},{2,8},{2,4},{4,6},{4,3},{3,5},{8,7}}. Figura 3.37

Con implementaciones eficaces, el nimero de operaciones en el algoritmo
de Kruskal es O(m log(n)) y en el de Prim es O(n?). Ver [Pri90)].
3.6.4. Version matricial del algoritmo de Prim

La versién matricial se basa en la definicién de una matriz D € R™**"
definida por

{cz-j si {i,j}€E o {ji}€E,
dij:

o) en caso contrario.
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v Figura 3.37.

Por construccion, D es simétrica. Se utiliza ademas un sistema de marcas

para las filas de D. Esta marcacién se simbolizard por un vector pu € R**!
1

(realmente p € {0, 1},

1 si la fila 7 estd marcada,
Hi = 0 si la fila 7 no estd marcada.

Para facilitar la presentacién del algoritmo, utilizaremos una funcién = que,
a una matriz D y un vector columna u, asigna la pareja (i,7), posicién del
menor elemento de las filas marcadas de D:

(t,j) =m(D,p) si dij=min{dgs : pp =1, s=1,...,n}.

Si z es un vector y x una constante, la notacion x < x indica simplemente,
T; < K para todo i.

Inicialmente ninguna fila estd marcada. Sea ig el nodo escogido. Se marca
la fila ig y para la columna ig, a todos sus elementos se les asigna co.

Repetir hasta encontrar el AGM o hasta detectar que el grafo no es co-
nexo el siguiente proceso: obtener, por 7, la pareja (i, j); la arista {7, j} hard
parte del AGM; marcar la fila j; para la columna j, a todos sus elementos
se les asigna oo.
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datos: G = (F,c¢), 1o

construir D

w0

Wi <1

D-io — 0

F+0

mientras |F| <n—1
(i,5) < (D, p)
si d;j; = 0o, ent G no es conexo, parar.
F e FU{{ij}}
My < 1
D.j — 0

fin-mientras

Ejemplo 3.21. Hallar un AGM para el grafo del ejemplo anterior.

oo 8 10 oo o oo 10 o™
8 o0 0 3 o0 oo oo 2
10 co 0 5 2 o0 oo o
po_ | ™ 3 5 o0 o0 1 oo o0
o0 00 2 oo oo 7 12 o
oo o0 oo 1 7T oo oo 4
10 c0o o0 o0 12 oo oo 9
oo 2 o0 oo o 4 9 oo
ig=1
[ o0 10 co o0 oo 10 oo
00 00 0 3 oo o0 oo 2
00 00 00 H 2 00 0
pl— | 3 5 oo oo 1 oo o©
oo oo 2 oo oo 7 12 oo
o oo oo 1 7 oo oo 4
00 00 o0 oo 12 oo oo 9
o0 2 o0 o0 o0 4 9 oo
F={{1,2}}.
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>
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F = {{1,2},{2,8}}.
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m
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I
A
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22238288
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2888888
g 8w g gy
2888888
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[
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F={{1,2},{2,8},{2,4},{4,6}, {4,3} }.

[00 00 00 oo 00 oo 10 ool +/
00 00 00 00 00 00 00 00| 4/
00 00 00 00 00 oo oo +/
pb_ |00 00 00 00 00 00 00 00 v/
00 00 00 o0 oo oo 12 o0
00 00 00 00 7 oo oo oof
00 00 00 00 12 0o oo ™
00 00 00 00 oo oo 9 oo
F={{1,2},{2,8},{2,4},{4,6},{4,3},{3,5}}.
[00 00 00 o0 oo oo 10 ool +/
00 00 00 00 00 00 00 00| 4/
00 00 00 00 00 00 00 00| 4/
D7 00 00 00 00 00 00 00 00| 4/
oo 00 00 00 o0 oo 12 oo 4/
00 00 00 00 00 00 00 00| 4/
0O 00O 00 00 00 00 00 00
o0 00 00 00 o0 00 @ oo]
F ={{1,2},{2,8},{2,4},{4,6},{4,3},{3,5},{8,7}}. <
Ejercicios

3.1 Considere el grafo cuyos arcos son: (2,1), (3,5), (4,2), (4,10), (10, 3),
(1,6), (5,9), (6,7), (9,8), (7,4), (8,10). Halle los descendientes de 2,
de 3 y de 4.

Respuesta: 2 es raiz; los descendientes de 3 son 3, 5, 9, 8, 10; 4 es raiz.

3.2 Considere el grafo cuyos arcos son: (1,2), (2,4), (2,7), (3,1), (3,6),
(4,8), (5,3), (5,9), (6,1), (6,7), (7,4), (7,10), (9,6), (9,11), (10,8),
(11,7), (11,12), (12,10). Averigiie si tiene circuitos.

Respuesta: no tiene circuitos.

3.3 Considere el grafo cuyos arcos son: (1,2), (2,4), (2,7), (3,1), (3,6),
(4,8), (5,3), (5,9), (6,1), (7,4), (7,10), (7,6), (9,6), (9,11), (10,8),
(11,7), (11,12), (12,10). Averigiie si tiene circuitos.

Respuesta: (7,6,1,2,7) es un circuito.
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3.4 Halle el camino mas corto y la menor distancia entre 1 y 5 en la red
con los siguientes arcos y costos:

(1,2) 6
(1,3) 16
(1,4) 12
(2,4) 4
(2,5) 12
(3,5) 2
(4,3) 4
(4,6) 14
(5,6) 4

Respuesta: el camino més corto es (1,2,4,3,5) con longitud 16 .

3.5 Halle el flujo méximo y su valor en la red con los siguientes arcos y

capacidades:
(1,2) 9
(1,3) 5
(1,4) 4
(2,5) 2
(2,6) 3
(2,8) 4
(3,5) 4
(3,6) 1
(3,7 3
(4,7) 2
(4,8) 2
(5,9) 6
(6,9) 2
(7,9) 4
(8,9) 6

Respuesta: 10 = 8, 213 = 5, x14 = 4, T95 = 2, X956 = 2, Tog = 4,
x35 =4, w36 = 0, x37 = 1, w47 = 2, 148 = 2, w59 = 6, T69 = 2, w79 = 3,
xg9 = 6, v(x) = 17.

3.6 Halle un flujo de valor 3, de costo minimo, en la red con los siguientes
arcos, capacidades, flujos y costos:
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—~
~.

Oy = O U1 DN O s W N .

— e N S N N N N
IS
<
8
<

NN N N N S N N
OOt W W NN = =
W N NN WD WS
— O N O N NS
s
WN RN N N RS

Respuesta: costo inicial = 27; flujo de costo minimo: 12 = 1, 213 = 2,
o4 =0, 295 = 2, w32 = 1, w35 = 1, 246 = 0, 254 = 0, w56 = 3; costo
minimo = 21.

3.7 Halle el flujo méximo y su valor en la red con los siguientes arcos y
capacidades:

AN N N TN TN N TN TN N
OUOU = W W NN = =
S O U DN O W N

SNBSS AN NN
W DN DN DN WD W

Respuesta: 10 = 3, 213 = 2, x94 = 2, 95 = 2, x30 = 1, x35 = 1,
T46 = 2, v54 = 0, 256 = 3, v(v) = 5.

3.8 Halle un flujo de valor 5, de costo minimo, en la red con los siguientes
arcos, capacidades, flujos y costos (resultado del ejercicio anterior):

160



3.6. ARBOL GENERADOR MINIMAL 161

(Zvj) Uig  Tij  Cij
(1,2) 3 3 4
(1,3) 2 2 1
(2,4) 3 2 2
(2,5) 2 2 1
(3,2) 2 1 2
(3,5) 1 1 2
(4,6) 2 2 4
(5,4) 1 0 2
(5,6) 3 3 3

Respuesta: el flujo es de costo minimo.

3.9 Halle la duracién del proyecto, las holguras y las actividades criticas.

7 | Actividades

anteriores
Aq 4
As 4 | A
Az | 48 | Ay
A, | 8 | A,
A, | 12 | 4,
A; | 4 | A;
A, | 12 | 4,
Ag | 16 | Ay
Ag 4 | Ag
A | 8 | Ag
A | 8 | Ag
Ap | 4 | An
Az | 8 | A7, Ay, Ara
Ay | 4 | Agg
Ais | 8 | Ay
A | 4 | A
A7 | 4 | Ags
Ag | 4 | Arr
A | 8 | A7
A | 2 | Agg
Ay | 1 | Ag, Ago
Ay | 0.5 | Ayg , Ao
Az | 2 | A1g, Aig
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Respuesta: el proyecto dura 126 dias. Las inicas holguras no nulas son:
h7 = 16, hig = 18, hig = 4, hog = 18, hoy = 9, hos = 1.5.

3.10 Halle la duracién del proyecto, las holguras y las actividades criticas.

7 | Actividades
anteriores

Ay | 64
Ay | 28 | Ay
As | 12 | Ay
Ay | 28 | A
As | 8 | Az, Ay, Ay
Ag | 16 | As
A7 | 4 | As
Ag | 4 | Ag
Ag | 8 | Ag
A | 2 | Ay
A | 1| Ag, Ao
A12 0.5 Ag, AlO
A13 2 Ag, Ag

Respuesta: el proyecto dura 126 dias. Las tinicas holguras no nulas son:
hs =16, hy =18, hg =4, hip =18, hi1 =5, his = 1.5.

3.11 Halle la duracién del proyecto, las holguras y las actividades criticas.

7 | Actividades
anteriores

Ap | 16 | por lo menos 5 dias después del comienzo
Ay | 14
As | 20 | por lo menos 3 dias después del comienzo
Ay | 8 | Aq, Ay

As | 18 | Ag

Ag | 25 | Ag, As

A7 | 15 | Ay, As, Ag

Ag | 17 | As, la primera mitad de As

Ag | 10 | Ay, As, Ag

Respuesta: el proyecto dura 63 dias. Las tnicas holguras no nulas son:
h1 =19, hg =9, hy =19, hs =14, hg =14, hg = 5.
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3.6. ARBOL GENERADOR MINIMAL 163

3.12 Encuentre un arbol generador minimal, por los dos métodos, en el
grafo definido por las siguientes aristas y costos:

{6,5}, 20
{5,2}, 18
{8,7}, 8
{6,8}, 5
{4,7}, 18
{3,1}, 14
(7,6}, 13
{7.3}, 19
{4,5}, 11
{1,6}, 14
(8,4}, 12
(5,7}, 1
{3,8}, 12
{5,3}, 16

Respuesta: una arbol generador minimal esta formado por las aristas
(1,6), (2,5), (3,8), (4,5), (5,7), (6,8), (7,8). Su costos es 69.
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Capitulo 4

Optimizacién no
diferenciable

4.1. Introduccién

4.1.1. Ejemplos de problemas de OND

Ejemplo 4.1. Problema de localizacién. Sean a', a?, ..., a” puntos conocidos

en R™. Se desea encontrar un punto x en R” tal que la suma de las distancias
de z a los puntos sea minima.

p
min f(z) =) |z —d|l. ©
=1

Ejemplo 4.2. Un sistema de tasa y sobretasa puede estar modelado por la
funcién

. C 0 <<
T(i) = 70t . ST(')_Z_CL,
roa+ri(i —a) sii>a,

donde rg < rq; son la tasa y la sobretasa. Claramente T es continua pero
no es diferenciable en x = a. Un problema de optimizacién donde se use T’
posiblemente sea un problema de OND. Por ejemplo, dados ag, a1, C, uq,
uz, V1, V2,

min f(z1,22) = T(x1) + T(x2)
1 +a9=C
up <xp <y

up <xg <wy. <
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166 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

Ejemplo 4.3. Sean f1, fs, ..., fm funciones convexas y diferenciables,

min f(z) = max{f1(z), f2(2), ... fm(2)}-
La funcién f es convexa pero posiblemente no es diferenciable. <

Ejemplo 4.4. Sean f1, fs, ..., fm funciones convexas y diferenciables,

|
min f(z) = ||(f1(z), fo(@), .os fin (7))o ©

Ejemplo 4.5. Sea g : R" — R"™*™ diferenciable (con otras propiedades
adicionales),

La norma euclideana tampoco es diferenciable, pero generalmente este
inconveniente se salta utilizando el cuadrado. <

Ejemplo 4.6. Programacién semidefinida, SDP. Dadas Ag, A1, Ao, ..., A,
matrices simétricas p X p, se buscan escalares x1, 9, ..., T,, para minimizar
una funcién lineal con la restriccion de que una matriz sea semidefinida
positiva:

min cixy + cox9 + ... + ¢y
Ao+ x21A1 + 2042+ ...+ 2,4, = 0 O

Ejemplo 4.7. La relajacion lagrangiana es una de las fuentes més impor-
tantes de problemas de OND. Consideremos un problema de ONL

min f(z)
g(z) <0,
r e X,
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4.1. INTRODUCCION 167

donde f:R"™ - Ry g: R"™ — RP. Cuando hay restricciones “complicadas”,
éstas se pueden eliminar mediante la relajacién pero se obtiene un problema
no diferenciable. Supongamos que las restricciones g son dificiles y que las
que definen X son féciles, entonces la relajacién del problema anterior es

min f(z) + A" g(x)
e X.

Sea
d(A) = min{f(z) + \"g(z) : x € X}.

El problema dual del problema inicial de ONL es:

max ¢(A)
A>0,

equivalente a

min —¢(A)
A>0.

Este problema es convexo (la funcién es convexa y el conjunto admisible
también), generalmente no diferenciable y con frecuencia se puede resolver
més facilmente. <

Los métodos de descomposicién estan relacionados con la relajacion la-
grangiana. Los problemas de gran tamano poseen generalmente una estruc-
tura que permite considerar varios problemas pequenos. Los problemas pe-
quenos no son completamente independientes, normalmente estdn relacio-
nados por algunas restricciones.

4.1.2. Algunos conceptos

Sea C' un subconjunto de R™ (o de un espacio vectorial). Se dice que C
es convero si al tomar dos puntos en C, entonces los puntos del segmento
que los une también estan en C'. Es decir, para todo z,y € C' y para todo
A e [0,1],

(1-XNz+ Xy € C.
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NCE@OTBEX0

Figura 4.1.

Si A C R"™, se denota por co(A) al convexo més pequeno que contiene a
A (o convexo generado por A o la envolvente convexa de A), es decir,

co(A) es convexo,

A C co(A),
A C C convexo = co(A) C C.

Este conjunto se puede caracterizar de dos maneras:

co(A) = ﬂ C
ACC convexo
k

k
co(A):{Z)\ixi ck>1, 2" €A, >0, Z)\i:]_}
=1 i=1

Se dice que una funcién f : C — R, con C' convexo y no vacio, es conveza,
si al tomar dos puntos de la grafica de f, los puntos del segmento que los
une quedan por encima o coinciden con los de la grafica. Es decir, para todo
x,y € Cy para todo \ € [0, 1],

FIA =Nz +Ay) < (1 =) f(2) +Af(y).
Un vector d # 0 es direccion de descenso de f en T si existe € > 0 tal
que
f(z +td) < f(z) para todo t €]0,¢].
4.1.3. Formas generales
Un problema de OND se puede escribir en una de las formas siguientes:

min f(z) (4.1)
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neafifeeyeaxa,
Figura 4.2.
x eR",

min f(z) (4.2)
x €A,

min f(x)
91(x)
92()

(4.3)

VANVAN
o o

A

gm(x) <0

min f(x) (4.4)
g(x) <0

donde A es convexo, las funciones f, g1, 92, ..., gm, g, de variable vectorial
y valor real, son convexas y por lo menos alguna de ellas no es diferenciable.
En realidad se trata de un problema de optimizacion convexa no dife-
renciable. La palabra convexa no se usa explicitamente, pero se supone. En
general, A denotara el conjunto de puntos factibles, es decir, dependiendo
del problema, puede ser R”, un conjunto convexo o el conjunto de puntos
que satisfacen todas las desigualdades g;(z) < 0.

Un problema en la forma (4.4) es un caso particular de (4.3). A su vez,
un problema en la forma (4.3) se puede convertir en uno de la forma (4.4),
utilizando

9(x) = max{gi(x), ga(x), -, gm(2)}.
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170 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

Usualmente f es C! por pedazos, es decir, A se puede dividir en partes
tales que en el interior de cada una de ellas el gradiente f’(x) existe y es
continuo.

El valor éptimo de f y el conjunto de puntos 6ptimos se denotaran por:

ff=min{f(z):x € A} si existe,
Fr={zeA: f(x)= f*}.

4.1.4. Subgradiente, subdiferencial, optimalidad

En la definicién de funcién convexa no hay nada relativo a continuidad.
Sin embargo se puede mostrar que toda funcion convexa f : C — R es
continua en el interior de C. En cambio la diferenciablilidad no se puede
garantizar. El ejemplo mas sencillo es el de la funcién valor absoluto que es
convexa pero no es diferenciable en x = 0.

Ahora bien, si f es convexa y diferenciable en un punto Z, entonces la
grafica de p1, aproximacién de primer orden de f alrededor de Z, o aproxi-
macién afin, siempre queda por debajo o coincide con la gréfica de f, es
decir,

pi(z) = @)+ f(@)"(z —7) < f(x) Vo eC.

y=#i(n)

Figura 4.3.

Mi4s aun, si f es diferenciable y C' es un convexo abierto, entonces el cum-
plimiento de la desigualdad anterior para todo x y Z en C' es una condicion
necesaria y suficiente para la convexidad de f.

Cuando f no es diferenciable en Z, entonces no se tiene “la” aproximacion
de primer orden de f. Si f es convexa y no diferenciable en Z, puede haber
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varias aproximaciones de primer orden que pasan por (Z, f(Z)) y quedan
por debajo de f.

y =% (v)

Figura 4.4.
Un vector v es subgradiente de la funciéon convexa f en T si
f(#) +47(x - 7) < f(2), Vo € A

El conjunto de todos los subgradientes de f en un punto Z se llama el
subdiferencial de f en T y se denota por

Of () = {7 : v es subgradiente de f en z}.

Un punto z donde f no es diferenciable se llama un “kink” o “torcedura”.

Ejemplo 4.8.
f(z) = %(w —1)+|r—1/+2, Figura4.5
0f(=2) ={-1/2},
of(1) = [-1/2,3/2],
af(2) ={3/2}. <
Ejemplo 4.9.

1
f(x1,x0) = §(x1 — 1)+ |z1 — 1| + 2 + 3xo,

{(=1/2,3)} si 21 < 1,
Of(x1,22) = ¢ {(t,3): t € [-1/2,3/2]} sizy =1,
{(3/2,3)} sixp > 1.

171



172 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

4.1.5. Algunos resultados

Una direccién d # 0 es admisible en el punto T € A, si existe ¢ > 0 tal
que
Z+td € A para todo t € [0,¢].

Si el limite existe, la derivada direccional de f en Z € A, en la direcciéon
admisible d, estd dada por

o) -t LEED @)

t—0+ t

Un punto x es estacionario si 0 € df(x).

» Si f: A— R es convexa, T € A y d es direccion admisible, entonces
f(z,d) existe.

» Si f:R"™ = R es convexa, entonces

of(x) #0,

Of(z) es convezo.
n S f:R" = R es convexa y diferenciable en x,entonces
of (@) ={f"(z)}.

» Si f:R"™ — R es convexa, entonces las tres afirmaciones siguientes
son equivalentes
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e T cF*
e 0€0f(x),
o f'(Z;d) >0, para todo d € R".

vedf(x) sssi v'd < f'(x;d) para todo d € R™.
» Jf(x) = co(S), donde

S=/{ lim f'(z®) : f'(«¥) y el limite existen}

v —T

s Una funcion f : R™ = R conveza es diferenciable en casi todas partes
(el conjunto de “kinks” es de medida nula).

» d#0 es direccion de descenso de [ (convexa) en x sssi f'(x;d) < 0.

= 51 f,g:R"™ = R son convexas, entonces
f +g)(x) =0f(x) + dg(x).

En otras palabras el segundo resultado dice que si f es convexa, entonces
para cada T € C existe por lo menos una aproximacién de primer orden
(funcién afin cuya gréfica pasa por (z, f(Z)) ) inferior o igual a f.

Para A y B subconjuntos de un espacio vectorial

A+B={z+y:x€A, ye B}.
4.2. Meétodos de OND

En OND es usual suponer que se conoce una caja negra u oraculo que,
dado x, puede calcular f(x) y un subgradiente v € df(z). El ordculo puede
estar dado por una funcién o por un programa. Figura (4.6)

La primera aproximacién a la solucién seria utilizar los métodos para
optmizacién diferenciable (Newton, cuasiNewton, descenso mdas pendiente,
...), pero esto puede dar resultados catastréficos. En realidad hay dos clases
de métodos. Los métodos directos que tienen en cuenta la no diferenciabili-
dad y los métodos que tratan de suavizar el problema para aplicar métodos
de optimizacén diferenciable (este proceso se puede repetir varias veces).

Dentro de los métodos directos, el mas simple es el método del sub-
gradiente, donde dado un punto z* se toma como direccién uno de los
subgradientes
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ORA@A(LO
Figura 4.6.

d" = _’Yka fyk € 6f($k)¢

ol =2k 4 tkdk.

El subgradiente utilizado (uno de los posibles), dado por el ordculo, puede
no ser una direccién de descenso. Ademaéas generalmente la convergencia es
muy lenta.

Otro de los métodos directos es el método del elipsoide de Nemirovski,
Yudin, Levin, Shor. Generalmente su efectividad préctica es mediocre.

4.3. Meétodo de planos cortantes

El método del plano cortante de Kelley, MPC, [Kel60] y Cheney Golds-
tein [ChG59] sirve para optimizacién convexa, no necesariamente diferencia-
ble.

min f(x)

donde f, g; son convexas. Se usa el siguiente resultado [HiL93].

Sean f:R"™ — R convera y x € R"™. Entonces

f(z) = max{f(y) +~"(x —y): v € df(y)}.

yeR™

Sean z', 22, ..., 2 e R",
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f(z) = max {f(z") +~" (x —2) : 7' € Df (")},

1<i<k

llamada aproximacién afin (o “lineal”) por trozos y tangencial de f (figura
4.7). Obviamente

f(z) < f(a).

Figura 4.7.

4.3.1. Problema no restringido

Consideremos inicialmente el problema no restringido

min f(z). (4.5)

Si éste se remplaza por
min f(z) (4.6)

se obtiene una relajacién del problema. Sea v = f(z), entonces

v > flat) +9 (@ -2t

v > f(@") + 4 (@ 2h).

Una formulacién equivalente a la relajacion (4.6) es el siguiente problema
de OL

min v
x,v
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176 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

v fl@') + 9 (@ -2,

v> f@b) + 4 (@ — ),
Este problema se puede escribir de forma més convencional
min 0"z + v
v

Yo —v<ya - fah) (4.7)

’ykTaz —v < 'ykak — f(zF).
Sea (z*+1 vy, 1), solucién del problema anterior. Si

Vg+1 = f(xkﬂ)

entonces se tiene la solucién del problema inicial. Sino, se agrega a la defi-
nicién de f otra funcién afin

AN f(xk-i-l) + 7k+1T(:c _ xkﬂ).
Esto se traduce por otra restriccién:
v > f(warl) +,.)/k+1T<x _ karl)’

que también se puede escribir

fkaTa: —u< ,yk+1Tl,k+1 _ f(mk+1). (4.8)

Esta restriccién recibe el nombre de corte de optimalidad. El método
anterior es convergente. Si f estd definida por un niimero finito de partes
lineales (o afines), entonces el método acaba en un nimero finito de pasos.

Para garantizar que el problema (4.7) tenga solucién finita, se agregan
restricciones de caja para x y cota inferior para v (no es necesario colocar
una cota superior para v).

uy < w9 < wo (4.9)
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v<w

Estas cotas deben ser suficientemente amplias pero es innecesario que lo sean
demasiado Es posible que después de un numero suficiente de iteraciones,
las restricciones de caja no sean necesarias. En lo que sigue, B denotara
el conjunto de puntos (z,v) que satisfacen las restricciones de caja. Asi el
problema de OL que se resuelve en cada iteracién es

min 0Tz + v
T,v

Az —v <Az — fah) (4.10)

’ykT.CC —w < ,chTxk _ f(l‘k)
(x,v) € B.

Si & = (z,v) € R""!, el problema anterior se puede escribir de manera
compacta

min &p41
Mg < ec.
En la primera iteracién
I, 0 w
M = -1, 0|, c=1|-ul,
0 -1 —v
|y -1 L o

conaw =~z — f (x'). El esquema general del algoritmo para el método de
planos de corte no restringido es:
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METODO DE PLANOS DE CORTE NO RESTRINGIDO

datos: f, z', u, w, v, e, MAXIT, tales que u < 2! <w

las restricciones iniciales son las de caja
V1 < —O0
para k=1,... MAXIT
con z¥ el ordculo proporciona:  f(zF), ~v € d(f,z"*)
si f(z*) —wv, <e, parar
a "k — f(a¥)
agregar el corte YTz —v < «
obtener (z**! vy,1) solucién de (4.10)
fin-para

Ejemplo 4.10. Aplicar el método de planos de corte al problema de loca-
lizacién con los puntos

al = (—4,-3),
a? = (—1,-2),
a® = (=2, -8),
y con los datos iniciales
ol =(-1,-1),
u=(-8,-8),
w = (0,0),
v=1,
e=10"°

Sea a un punto de R" y

n 1/2
p(r) = [|z —alls = (Z(wz - ai)2>

i=1
En los puntos donde ¢ es diferenciable, el inico subgradiente es el gradiente.
Donde no es diferenciable se puede tomar el vector nulo.
Tr—a

y(p,x) = { @lz)
0 six = a.

six # a,
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Para

entonces
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p
f@)=7 Il —a'll2
i=1

p

v(£,2) =) Az —a'll2, )

i=1

f(z') =11.6766,
vt = (0.9735, 2.5446) .

En la primera iteracién

© 00 N O d WwN+~w

o
= O

22
23
24
25
26
27
28
29
30

.0000
.0000
.0000
. 8468
.2835
.6218
.5020
.5311
L1773
.5722
.1003
.7653
. 7687
.7551
. 7637
. 7607
. 7647
L7697
.7679
.7658

—1

179

1 0 07 [0 i
0 1 0 0
0 0 8
9y Cc=
0 -1 0 8
0 0 -1 -1
0.9735  2.5446 —1 | |—15.1947 |
$§ Vi f($k) 71 V2
.0000 -1000000 11.6766 0.9735 2.5446
.5783 1.0000 11.6151 1.7465 -0.7338
.5178 1.0000 19.1755 -2.7283 0.7204
.0116 4.7599 8.3187 -0.0444 0.4954
.0000 5.9114 14.1312 -1.5367 -1.8756
.5790 7.0369 9.35631 -0.1902 -0.8242
.9475 7.7953 8.7658 0.8074 -0.3305
.8339 7.8974 8.2779 0.1023 -0.2693
.6521 8.0606 9.1195 -1.5974 -0.5321
.5360 8.0912 8.4145 -0.5670 -0.3511
.4454 8.1151 8.2391 -0.1624 -0.0385
.4505 8.2123 8.2125 0.0009 0.0086
.4615 8.2124 8.2125 -0.0015 -0.0020
.4587 8.2125 8.2125 0.0053 0.0016
.4567 8.2125 8.2125 0.0013 0.0028
.4622 8.2125 8.2125 0.0023 -0.0021
.4600 8.2125 8.2125 0.0006 -0.0003
.4571 8.2125 8.2125 -0.0017 0.0020
.4592 8.2125 8.2125 -0.0009 0.0002
.4580 8.2125 8.2125 0.0002 0.0015

179

.1947
.5217
.8373
.6841
.4561
.2559
.6740
.5042
.5034
.1478
.6029
.2446
.2015
.2325
L2257
.2116
.2131
.2150
.2105
.2181
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En cada iteracion, el corte que se agrega es yi1x1 + Yoxe — v < a.

La solucién del problema de localizacién con tres puntos de R? no ali-
neados tiene una propiedad geométrica interesante: la medida del angulo
£La'zral, con i # j, es de 120 grados. <

4.3.2. Problema restringido

Muchos de los problemas de optimizacién (no lineal) diferenciable, se escri-
ben en la forma:

min f(x)
gi(x) <0,i=1,...,m,

donde las funciones f, g; son diferenciables. El problema anterior también
se escribe usualmente

min f(z)

donde g : R™ — R™ es diferenciable.

Consideremos un problema de OND en la forma 4.4, es decir, con una
sola restriccion

min f(x) (4.11)
g9(x) <0,
donde f y g son funciones (de variable vectorial y valor real) convexas.

Para resolver el problema anterior, éste se remplaza por una relajacién, se
cambian f y g por aproximaciones afines por trozos,

min f(x) (4.12)
@) <0.
De manera més precisa, sean z', 22, ..., ¥ en R”,
K ={1,2,...k},
K=IUJg,
LN J, = @,

fr.(x) = lgelgi({f(wi) +(fa) (@ —a')},
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43. METODO DE PLANOS CORTANTES 181

3 ) o )
g, (z) = g%a}f{g(wz) +(g,2") (z —2")},
entonces se va a encontrar la solucién de

min f;, (z) (4.13)
g1, (z) <0.

De nuevo, haciendo v = f, (), el problema anterior se convierte en

min v
x,v
v > f(@') +y(f,2")"
T

0> g(z") +(g,2") (z—2"), i€l.

(x—2), i€y,

Escribiendo en la forma usual,

min 0Tz + v

V£ x—v<A(f,a") ' = fla'), i€y, (4.14)
7(9; :Ei)Tx < '7(ga :Ei)T$i - g(l‘z)7 (S Ik .

Para garantizar la existencia de solucién finita se utilizan las restricciones
de caja (4.9) y B denota el conjunto de puntos que las cumplen. Asi el
problema de OL es

min 0Tz + v

y(f, ) e —v < y(f,2') 2t — f(2), i€ Jk, (4.15)
g,z <A(g,2') 2t —g(ah), i€y,

T
(xz,v) € B.

Para completar la descripcion del método, es necesario precisar la construc-
cién de Iy y Ji. El conjunto Ij tiene los indices de los puntos no factibles y
Ji, los indices de los puntos factibles,

I, ={1<i<k: g(z') >0},

Jo={1<i<k: g(z) <O}

Cuando z* no es factible, se tiene un “punto” de I (punto cuyo superindice
estd en I) y se construye un corte de factibilidad. Cuando x* es factible, se
tiene un “punto” de J (punto cuyo superindice estd en J) y se construye
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182 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

un corte de optimalidad. El ordculo sigue teniendo una entrada, pero ahora
tiene tres salidas: x,(z) (la funcién indicatriz de F' indica si el punto estd
en F' 0 no), el valor g(x) o f(x) y un subgradiente de g o de f (figura 4.8).
De manera mds precisa, el ordculo produce x.(z), h(x) y 7,

ja)

si g(xz) > 0, entonces x,(x)=
h(z) =g
v =(g,
si g(xz) <0, entonces x,(x)=

h(z) = f
v =(f,

x)’
)7
x)?

).

También se puede tener, en lugar de un solo oraculo, dos oraculos, uno para
f y otro para g.

— = 8 —

8

ORKEVLO
Figura 4.8.

La interpretacion geométrica de los cortes de factibilidad tiene que ver
con una aproximacion exterior del conjunto factible

F={xeR":g(x) <0}.
Sea B C R™ la restriccién de B C R™*! a las variables xj, es decir,
B =B x[v, oof.

Si al problema relajado (4.13) se le agregan las restricciones de caja para x
se tiene

(4.16)
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o también
min f;, (z) (4.17)
x € Fy,

donde B
Fy, :Bﬂ{x:gjk(a;) SO}

Estos conjuntos estan encajados y todos deben contener a F,
B=FR2FI2F2 - DF2F4u2--2F.

En términos de conjuntos, un corte C' es simplemente un semiespacio definido
por medio de un hiperplano H que “corta”,

H={zeR": p'z=a},
C={zeR":p'xz<a}l
Si xF*1 € F, no es factible (g(x**1) > 0), entonces el corte debe cumplir
ZL‘k+1 ¢ C
FCc,

asi

Fk+1:FkﬂC
Fk+12F7

¢ P
El corte definido por
V(g & e < y(g, ") — g2t

cumple exactamente esas propiedades. Comprobemos (mientras no haya

ambigiiedad v = (g, zFT1). Un punto y € C si y solamente si T zF+! —

g(z" ) — 4Ty > 0.

Veamos que F' C C. Sea x € F', entonces
g9(x) <0.
Como g es convexa,
g(@™ ) + 4" (@ — ™) < g()
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184 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

luego

9" 1) +9" (z — 2" <0,

Entonces

’YT'T S 7T£L‘k+1 _g(xk—H)

9
es decir, x € C. Veamos ahora que 2"+ ¢ C.

Txk-‘rl _ xk—H) AT Tl,k-i-l -

Yy =7 9(
= _g(mk+1) < Oa

fEk+1) N Tﬂfk+1

v q( v

puesto que 2**1 no es factible. Entonces z**1 ¢ C.

Figura 4.9.

En la figura 4.9, Fy esta determinado por Py Po P3Py, Fy, por P Ps Py P7 Py,
el corte es el semiespacio definido por el hiperplano Hy11 en la direccién de
la flecha, el conjunto Fyy1 estard definido por Py PsPsPrPsPy .

Los cortes pueden “tocar” el conjunto F' o no tocarlo. La situacién ideal
se tiene cuando los cortes tocan a F' 'y lo envuelven adecuadamente (no
se concentran en una parte de la frontera de F'. Esto requiere un manejo
sofisticado y no siempre se logra completamente.

El esquema general del algoritmo para el método de planos de corte
restringido es:
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METODO DE PLANOS DE CORTE RESTRINGIDO

V1 < —O0

sino
p<+0
fin-si

fin-para

datos: f, g, z' € F,u, w, v, e, MAXIT,

las restricciones iniciales son las de caja

para k=1,... MAXIT
con z* el ordculo proporciona: x,(z*), h(zF), ~(zF)
si Xp ($k) =1
p+——1
si h(z¥) —wv, < e, parar

a < Tk — h(zk)
agregar el corte YTz 4+ pv < «

obtener (zFt! v;, 1) solucién de (4.15)

Ejemplo 4.11. Aplicar el método de planos de corte para minimizar

con la restriccion

3
min f(x) =3 [l — a'll>.
=1

max{—12 + 3(z1 +4)? — 29, 5+ 4(x1 +5)% + 22} <0,

con los puntos

y con los datos iniciales

al = (—4,-3),
a® = (-1,-2),
a® = (-2, -8),
zt = (—4,-10),
u = (=20, —20),
w = (0,0),
v=1,

e=10"°
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Se puede suponer que g(z) = max{gi(z), g2(z)}. Una manera de
truir un subgradiente es la siguiente:

k

k Ty
1 -4.0000 -10.
2 0.0000 O
3 -2.6250 O
4 -4.0757 O
5 -5.2140 O
6 -4.6448 -4
7 -4.9294 -4
8 -5.0717 -4
9 -5.0005 -4
10 -4.9650 -4
11 -4.9472 -5
12 -4.9561 -5
13 -4.9516 -5
14 -4.9494 -5
15 -4.9505 -5
16 -4.9500 -5
17 -4.9497 -5
40 -4.7460 -5
41 -4.7465 -5
42 -4.7468 -5
43 -4.7560 -5
44 -4.7538 -5
45 -4.7527 -5
46 -4.7532 -5
47 -4.7529 -5
48 -4.7499 -5
49 -4.7507 -5
50 -4.7511 -5

v(g, )

x5

Uk

0000 -100000

.0000
.0000
.0000
.0000
.2088
.6960
.9396
.9798
.9998
.0099
.0074
.0093
.0102
.0098
.0100
.0101
.25681
.2570
.2564
.2381
.2425
.2447
.2436
.2442
.2503
.2486
.2478

1.
.0000
.0000
.0000
L7462
.33561
.1296
.1605
.1760
.1837
.1866
.1868
.1870
.1870
.1870
.1870
.2228
.2228
.2228
.2231
.2231
.2231
.2231
.2231
.2231
.2231
.2231

(o) e > e> I e) I e)Ie )N e )R e RN e ) NN RNG) BNVl -

N e el e e e e
N e e e

0000

7(917 x)
v(g2, )

=
b

H OO R, OO0 OO OO0OKFF OOO0ODODO0ODO0ODODODOOOOO OO -

fa®)
18.3724
105.0000
.5625
.4176
.1832
.2958
.3239
.0810
.0202
.0051
.0013
.0003
.0001
.0000
.0000
.0000
.3892
.0000
.0000
.2232
.0001
.0000
.0000
.0000
.2232
.0000
.0000
.2231

N
-

[

[y

-
H O O R, OO OO OO FF OO0 OO0 O0OO0OOO O OO = U

[

71

.0682
.0000
.0000
.3947
L7119
.8414
.5648
.5736
.0044
.2802
.4225
.35613
.3869
.4047
.3958
.4002
.9248
.0321
.0277
.7765
.9521
.9699
.9788
.9743
.7813
.0011
.9944
.T799

PR RrP R R RPRRPRPRPRPRPRPRPRRPRRN

|
= O

si g(z) = g1(2),
si g(z) = ga(x).

V2
6434

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 7984
.0000
.0000
.8986
.0000
.0000
.0000
.0000
.8946
.0000
.0000
.8958

p
-1 12
0 -105
o -77
0 -38
0 3
0 -18
0 -7
0 -2
0 -4
0 -6
0 -7
0 -6
0 -6
0 -7
0 -6
0 -6
-1 2
0 -14
0 -14
-1 1
0 -14
0 -14
0 -14
0 -14
-1 1
0 -14
0 -14
-1 1

cons-

(67

.2948
.0000
.4375
.5561
. 7426
.7025
.8039
L1117
.9780
.3960
.1012
. 7490
.9262
.0132
.9692
.9912
.1385
.9026
.8815
.9332
.5224
.6069
.6492
.6281
.9346
. 7553
.7234
.9341

En programacioén lineal de gran tamano, el método de descomposicién
de Dantzig-Wolfe es “método dual” del método de planos de corte.

4.3.3.

Método de haces penalizados

El método de planos cortantes funciona muy bien en algunos problemas,
en otros puede ser inestable, muy lento (ver ejemplo en [BoG97] p. 90) o
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la sucesion {f(z*)} puede no ser una sucesién de descenso. Se dice que un
método es de descenso si la sucesién {f(z*)} es de descenso, es decir,

f(@F) < f(2*)  para todo k.

El método de planos de corte para

min f(z)
resuelve en la iteracién k el problema relajado

min f(z)

u<x<w.

Introduciendo v = f(x) el anterior problema de convierte en (4.10), proble-
ma de OL. El método de haces penalizados introduce una penalizaciéon en

la funcién objetivo para evitar que haya demasiado movimiento entre z* y
k+1
x

.oz 1
min () + 5l 2 — ¥

u<z<w,

que utiliza el pardmetro p > 0. De nuevo introduciendo v = f(x) el proble-
ma anterior se convierte en un problema de optimizacién cuadrética (funcién
objetivo cuadratica con restricciones lineales)

1
min 0"z + v+= ||z — 2| |3
) 2

Az —v <42t — fah) (4.18)

o — v <AF ek — (o)
(z,v) € B.

4.4. ACCPM

En el método de plano cortante el punto (z*+1,v;,1) se escoge como la
solucion del problema relajado

min &,41

187



188 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

ME<Lc

donde & = (z,v). La matriz M y el vector columna ¢ se construyen a partir
de las restricciones

r < w,

—z < —u, (4.19)
v < 0o,

—v < =0,

T 7

(g, 2z <A(g,2") 2" —g(zh), i€ I,
/Y(fa xi)Tx —-v S fY(fv xi)T‘ri - f(xz)v 1€ Jk .

La tnica diferencia con lo visto anteriormente estd dada por la restriccion
adicional v < 7y que establece una cota superior para v. El conjunto

Ekzﬁz{feR"H:Mﬁgc}

se llama el conjunto de localizacién. El subindice k£ indica que el conjunto
de localizacién depende de k y cambia en cada iteracién (la matriz M y
¢ también dependen de k). Se supone que en cualquier iteracién, el punto
& = (z*,v*) estd en L. Asi, el problema relajado que se resuelve en una
iteracion del método de planos cortantes es

min - §n41

el

Hay otras maneras de escoger &1 . Una de ellas es el método de
los centros. El punto &*+1 es simplemente el “centro” de £. Hay varias
definiciones de centro, una de ellas es el centro analitico. Usando este centro
se obtiene el ACCPM, Analytic Center Cutting Plane Method, [GoHV92],
un método eficiente de planos de corte para optimizacién convexa. Se puede
utilizar en los dos casos, no diferenciable o diferenciable. Generalmente para
problemas diferenciables hay métodos més eficientes.

4.4.1. Centro analitico

Sean A € R™" n>m, c€ R Y ={yeR™!: ATy < ¢}
acotado y de interior no vacio. Se define el centro analitico de Y, definido
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4.4. ACCPM 189

por AT y ¢, y denotado por ca(AT,¢), al inico punto y solucién del
problema de optimizacién

ca(A", c) = argmin (— Zlog(c,- — A} y)) )
i=1

o

yey

Como se supone que Y = {y € R™*! : ATy < ¢} # (), entonces ¢; — ALy
siempre es positivo y el logaritmo estd bien definido. La funcién P(y) =
— > log(e; — AT y) se llama la funcién potencial. No estd definida para
puntos en la frontera de Y (para algin i, ATy = ¢;). Cuando un punto
interior esta cerca de la frontera, entonces ¢; — A y es positivo pero cercano
a cero y la funcién potencial tiene un valor grande. Como el centro analitico
minimiza la funcién potencial, debe estar “lo més alejado posible” de la
frontera.

Mis adelante se vera que el centro analitico depende especificamente de
A" vy de ¢ pero no depende exactamente de Y. Es decir, puede haber dos
definiciones que den lugar al mismo conjunto Y pero den lugar a dos centros
analiticos diferentes.

Condiciones de optimalidad

Sea s € R™*! el vector de variables de holgura, es decir,

Aty+s=c.

En Y se cumple s > 0. Sea 2 € R™ ! definido por

1
r; = —.
S
unas v n i ntex = s . s ntonces x .
Algunas veces, se denota simplemente L. Como s > 0, entonces z > 0
Sea e el vector columna de unos de tamano adecuado. En métodos de punto
interior es usual la siguiente notacién: si z € R™!, X es una matriz diagonal
cuyos elementos son los z;,

I 0 0

0 xI9 0
X =

0 O Ty
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Asf la definicién de = se puede presentar como x = S~ 'e, o también,
Xs=ce.

Célculo del gradiente de la funciéon potencial:

gll/j(y) - _g ¢ —1A;f.y(_1)AZTj
gj;(y) = gflﬂ%
gj;(y) =Ajx

P'(y) = Ax

Como el centro analitico (minimizador) es un punto interior, entonces su
gradiente debe ser nulo
Az = 0.

Agrupando las condiciones de factibilidad y optimalidad, en las variables x,
Yy S, se tienen m + n + n ecuaciones con n + m + n incégnitas:

Ax =0, x>0, (4.20a)
A"y+s—c=0, s>0, (4.20Db)
Xs—e=0. (4.20c¢)

Se denotard con (z%,y% s*) a la tripla que cumpla estas condiciones.
Realmente el centro analitico es y®. Para saber si un punto 4 es el centro
analitico, se pueden seguir los siguientes pasos:

s calcular s =c— A"y,
» verificar que s > 0,
1

= calcular x = S~ "e,

» verificar que Az = 0.
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Supongamos ahora que se desea saber si a partir de un vector  se puede
obtener el centro analitico. Dicho de otra forma, ; z = 2% 7 Se pueden seguir
los siguientes pasos:

» verificar que £ > 0,

» verificar que AT =0,

» calcular s = X le,

» verificar que el sistema sobredeterminado ATy = ¢ — s tiene solucién.
= La solucién del sistema es el centro analitico.

Las condiciones (4.20) se parecen mucho a las condiciones de factibilidad
y optimalidad para el problema de OL min z = ¢z sujeto a Ax = b, x > 0,

Ar—b=0, >0,
A'ly+s—c=0, s>0,
Xs=0.

En OL las variables principales o primales son las variables x; y las duales
son las variables y;. En la obtencién del centro analitico sucede lo contra-
rio. Sin embargo, para guardar semejanza con OL, las ecuaciones (4.20a) se
llaman condiciones de factibilidad primal, las ecuaciones (4.20b) se llaman
condiciones de factibilidad dual y las ecuaciones (4.20c) se llaman condicio-
nes de complementariedad.

Ejemplo 4.12. Centro analitico del conjunto definido por las restricciones

2 1 1
-2 1ly<]| 5
0 -1 ~1

El conjunto Y es el tridngulo con vértices (0,1), (=2,1) y (—1,3). Sea y =
(-1 5/3]",

s=c— A"y,

s=[4/3 4/3 2/3]",

z = S"le,

x=[3/4 3/4 3/2]",
Az =10 0]".

Luego ¢ = [—1 5/ S]T es el centro analitico. <
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Ejemplo 4.13. Centro analitico del conjunto definido por las restricciones

2 1 1

—2 1 5
<

0 —1|Y= -1

0 1 3

De nuevo, el conjunto Y es el tridngulo con vértices (0,1), (—2,1) y (—1,3).
Seay=[-1 3/2]",

s=c— A"y,

s=[3/2 3/2 1/2 3/2]",
z=S"le,

x=1[2/3 2/3 2 2/3]",
AJ::[O O}T.

Luego §y = [—1 3/ 2]T es el centro analitico. En estos dos ejemplos, el con-
junto Y es el mismo, las restricciones son diferentes y los centros analiticos
también. <

4.4.2. Meétodos de punto interior

La mayoria de los métodos para calcular el centro analitico son métodos
de punto interior. Estos estan basados en el método de Newton en varias
variables.

continuacién esta el método de Newton y el esquema de una adaptacién
A cont ta el método de Newt 1 d dapt
“general”. En otras subsecciones hay versiones sofisticadas de métodos de
puntos interior.

Método de Newton

Cuando se tiene un sistema de p ecuaciones no lineales con p incégnitas,
éste se puede escribir como la ecuacién

donde ® : RP — RP. La version mas sencilla del método de Newton empie-
za con una aproximaciéon (Y. En cada iteracién se resuelve un sistema de
ecuaciones lineales y se actualiza (:

D'(¢M) AC = —B(¢h),
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¢Hh =t ac

En el sistema de ecuaciones lineales, la matriz ®'(¢*) es la matriz jacobia-
na, —®(¢*) es el vector columna de términos independientes y A, llamado
frecuentemente la direccion, es el vector columna de incégnitas. En condicio-
nes adecuadas el método converge y cerca a la solucién tiene convergencia
cuadratica, lo cual es muy bueno. El proceso se detiene cuando

12(¢H)I] <e.

Método de Newton adaptado para puntos interiores

Consideremos ahora un sistema de ecuaciones donde ademas algunas de
las variables deben ser positivas, por ejemplo ¢ = ((i,...,{q) > 0, con ¢ < p,

®(¢) =0,

¢ >0,

El esquema simplificado del método de Newton puede ser: empezar con (°
una aproximacién inicial tal que ¢° > 0, y en cada iteracién:

®'(¢*) AC = —2(¢h),
tmax = max{t : CFHtAC > 0},
t = min{0.99 tax , 1},

tp = argmin ®(CF + tAQ),
0<t<t

¢ ="+ A

El célculo de t sirve para dos cosas:

" CON tmax Se tendrfa un punto tal que ¢¥ + £ AC > 0, pero que no es
punto interior. Al tomar 0.99¢,,.x se obtiene un punto interior.

» al hacer que ¢ < 1, se busca que el método sea muy semejante al méto-
do de Newton puro (en él, tx = 1) y asi buscar que la convergencia,
cerca a la solucidn, sea cuadratica.
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Notacion

Es usual introducir vectores residuo (o resto) primal, dual y de comple-
mentariedad

rp = Az,
rg=A"Yy+s—c, (4.21)
re=Xs—e,

y nimeros asociados a ellos, que dan una medida relativa de su tamano o
norma

1l

p p—
P max{1,||A]], |||}
|7l
o (4.22)
max{1, [[A]],]|e[|}
|||

p p—
“ max{1, ||z, ]|s||}

Cuando se tiene una tripla de vectores (z,y, s), tales que z >0y s > 0,
entonces y es el centro analitico sssi los tres residuos son nulos, es decir, sssi

pp = pd = pc = 0.

Lo anterior, en calculos numéricos, casi nunca es posible. Para efectos practi-
cos, para tener el centro analitico, basta con que estos nimeros sean sufi-
cientemente pequenos:

Pp<€p, pPd<E&q, Pc=eéc.

Las igualdades de las condiciones de factibilidad y optimalidad (4.20) se
pueden considerar como una ecuacién ®(¢) = 0, donde ® : R™+2n — R™+2n,
El valor de ® se puede expresar con los residuos:

Tp
q)(il,‘, Y, S) = |Td
Te
El jacobiano de ® esta dado por:
A 0 O
& (z,y,s)= |0 A" I,
S 0 X

Las filas estan agrupadas en bloques de m, n y n filas. Las columnas estdan
agrupadas en bloques de n, m y n columnas.
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4.4.3. Meétodo de Newton primal factible

Este método, tomado de [Ye97], permite obtener el centro analitico par-
tiendo de un punto interior primal 2° “cercano” a z®. De manera més precisa

20 > 0,
Az’ =0, (4.23)
np(xo) <1,
donde 7, indica “una distancia” de un punto a z¢,

mp(7)? = (Xc—e)" (I, — XAT(AX?AT)TAX) (Xc —e).

Six >0, Az =0, yn(xz) =0, entonces z = z°.

Premultiplicando por X! la tercera igualdad de las condiciones de fac-
tibilidad y optimalidad (4.20) se obtiene

Ax =0,
Aty +s—c=0,
s— X te=0.

Al aplicar el método de Newton se tiene

A 0 0| [Ax Ax
0 A" I| |Ay| =—-|A"y+s—c
X2 0 I| |As s— X le

Como x es factible primal, entonces Ax = 0. Ademds, para cualquier y se
puede calcular s para que ATy +s—c=0.

A 0 0| |[Ax 0
0 AT I| |Ay| = 0 (4.24)
X2 0 I||As X le—s
Es decir,
AAz =0, (4.25)
ATAy + As =0, (4.26)
X 2Az+As=X"le—s. (4.27)
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Multiplicando la tercera igualdad por AX?,
AX?X 2Az + AX?2As = AX?X e — AX3s,
AAz + AX?As = AXe — AX?s.
Como AAz =0

AX?%As = AXe— AX?s
AX%As = AX (e — Xs)

A partir de (4.26)

ATAy = —As
AX?ATAy = —AX?%As
AX?ATAy = AX(Xs —e)
Ay = (AX2AT)TAX (Xs —e)

De nuevo, a partir de (4.26)
As = —A"Ay
As = —AT(AXZ2A")TAX (Xs —e)
A partir de (4.27)

X2Az=—-As+ X te—s,
Az = —X?As+ X?X e — X2,
Ar = —-X(XAs—e+ Xs),

( XAT(AX2AT) TAX (X5 —¢) — e+ Xs),
( XAT(AXZAT)LAX + I) (Xs—e),

X (- XATAX? AN AX 4 1) (X (e - ATy) —e),
(I X A" AXZAT)*AX> (Xc e XATy),
<I XAT( AX2AT)‘1AX> (Xc - e>

(I XA AXZAT)—lAX)XATy
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(I XAT(AX2AT)" 1AX) (Xc - e)
(XAT XAT(AX2AT)™ 1AXXAT>y
(I XAT(AX2AT)~ 1AX) (Xc - e)

(XAT _ XAT) y

Entonces
Az = —X(I - XAT(AXQAT)_lAX> (Xc - e)
Si se define
- (I - XAT(AX2AT)—1AX) (Xc - e> (4.28)
entonces
Az =—-Xp (4.29)

y se puede mostrar que
p(x) = [[p]] (4.30)
La expresion para calcular Az no utiliza ni y ni s.

METODO DE NEWTON PRIMAL FACTIBLE

datos: AT, ¢, 2° que cumpla (4.23), ¢, MAXIT
para k=0,... MAXIT

calcular p segin (4.28) o (4.31)

1 |Ipll

si n < ¢ parar

Ax +— —Xp

R 2 4 Az
fin-para

Con el = obtenido se calcula s = X e y se resuelve el sistema sobredeter-

minado ATy = ¢ — s. Este sistema debe tener solucién en el sentido estricto,
no se trata de seudosolucién o solucién por minimos cuadrados. Sin embar-
go, una de las maneras de resolverlo es por minimos cuadrados, en particular
usando la ecuacién normal

(AAT)y = A(s —¢).
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Si las primeras m filas de AT son independientes, también se puede resolver
el sistema cuadrado

A" (1:m,:)y=s(1:m,1) —c(l:m,1).
Se puede mostrar que

”p(33k+1> < (np($k))2

lo cual garantiza la convergencia cuadratica.

El algoritmo es muy sencillo, pero su eficiencia depende en un porcentaje
importantisimo de una buena implementacién de (4.28) para el cdlculo de
p. Algunas consideraciones ttiles son las siguientes:

= Kl célculo de p se puede descomponer en los siguientes pasos:

m=Xc—e,

A=AX, (4.31)
resolver (AA™)o = An,
p=n—ATc.

» Casi nunca es necesario calcular explicitamente una inversa. Por eso
en lugar de tomar directamente de (4.28), o = (AAT) 1A, es mejor
resolver el sistema (AA") o = An.

» En la solucién del sistema de ecuaciones se deberfa tener en cuenta
que la matriz AA™ es definida positiva (si las columnas de A" son
independientes) y utilizar el método de Cholesky.

= No es necesario contruir explicitamente la matriz diagonal X, basta
con saber lo que pasa al multilicar por X.

Ejemplo 4.14. Hallar el centro analitico del conjunto definido por las res-
tricciones

~10 -1 0 —20
—2 —-10 0 —30
—1 -2 —10|y< |—40
4 5 6 50
111 8

partiendo de 20 = [0.8089796 0.7951020 1.12 0.2 10.]" .

Se puede verificar que Az =0, z° >0, y np(azo) = (0.8362, entonces se
puede aplicar el método.
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k ok zk ok ok zk
bh b2 p3 b4 Ds n

0O 0.8090 0.7951 1.1200 0.2000 10.0000
-0.1509 -0.1289 -0.1107 0.7749 -0.2170 0.836182

1 0.9311 0.8976 1.2440 0.0450 12.1699
-0.0248 -0.0275 -0.0298 -0.5999 -0.0172 0.601986

2 0.9542 0.9223 1.2811 0.0720 12.3792
-0.0007 -0.0033 -0.0056 -0.3596 0.0068 0.359723

3 0.9548 0.92564 1.2883 0.0979 12.2952
-0.0001 -0.0014 -0.0024 -0.1291 0.0036 0.129231

4 0.9549 0.9266 1.2914 0.1106 12.2509
-0.0000 -0.0002 -0.0004 -0.0167 0.0005 0.016666

5 0.9549 0.9268 1.2919 0.1124 12.2445
-0.0000 -0.0000 -0.0000 -0.0003 0.0000 0.000277

6 0.9549 0.9268 1.2919 0.1124 12.2444
-0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.000000

Entonces s = [1.047267 1.078990 0.774051 8.892908 0.081670]" . Es

necesario resolver

-10 -1 0 —21.047267
-2 -10 0 —31.078990
-1 -2 —-10|y= |—40.774051

4 5 6 41.107092
1 1 1 7.918330

y® = [1.8305478 2.7417895 3.3459924]. ©

4.4.4. Algoritmo potencial afin

Dado un punto inicial tal que

Az’ =0, (4.32)
:c0>07
se obtiene un punto x tal que
Ax =0,
x>0, (4.33)
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np(z) <1,

es decir, un punto que sirva como punto inicial para el método de Newton
primal factible.

Una de las formas de obtener un punto que cumpla (4.32) consiste en
resolver el siguiente problema de OL:

min z =0"2
Axr =0,
x > de.

Una vez obtenido un punto que cumpla (4.32), antes de empezar las
iteraciones, es necesario modificar z° para que

El paso importante en cada iteracién corresponde al cédlculo de p segun
(4.28). Dado un valor « €]0, 1], el esquema del algoritmo es el siguiente:

ALGORITMO POTENCIAL AFIN

datos: AT, ¢, 2° que cumpla (4.32), a, MAXIT
20 g0
Tz

para k=0,.., MAXIT

calcular p segin (4.28) o (4.31)

n < [lpll

si n < 1 parar

Az +— —gXp

o 2k Az
fin-para

Una manera, no muy eficiente, para encontrar un punto que cumpla
(4.32) consiste en resolver el siguiente problema de OL:

min z =02
Ax =
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Ejemplo 4.15. Encontrar un punto que cumpla (4.33) en el problema de
centro analitico del conjunto definido por las restricciones

~10 -1 0 —20
—2 —10 0 —30
~1 -2 —10|y< |—40
4 5 6 50
11 1 8

partiendo de 2° = [0.1 0.1054 0.1568 0.1 0.9676]", con a=0.9.

0

Se puede verificar que A2z = 0, z° > 0, entonces se puede aplicar el

método.
k zh xk zk ok zk
P p2 p3 P4 b5 n

0 0.3822 0.4029 0.5992 0.3822 3.6983
-0.4357 -0.2126 -0.0499 2.0507 -1.3525 2.504421
0

1 0.4421 0.4337 0.6099 .1005 5.4959
-0.5364 -0.5269 -0.5191 -0.1072 -0.5644 1.079284

2 0.6398 0.6242 0.8740 0.1095 8.0824
-0.3298 -0.3247 -0.3205 -0.0263 -0.3445 0.660519

4.4.5. Meétodo primal-dual factible

Es posiblemente el método mas popular para obtener el centro analitico,
debido a su gran eficiencia. Permite obtener la tripla (z% 3%, s*) (una muy
buena aproximacién de), partiendo de 2° y y° tales que

Az’ =0,

¥ >0, (4.34)
O =s(y°) =c— ATy >0,
ne(x°,s%) < 1,

donde
Ne(x,s) = [lrcll = || X's — e[ .

es decir, la tripla (2°,9%, s”) cumple con la factibilidad primal y la dual.
Se desa obtener, iterativamente, un punto que siga cumpliendo factibilidad
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primal y dual, pero que también cumpla con las condiciones de complemen-
tariedad, es decir, se busca que n.(z,s) = 0.

El sistema ®'({)A¢ = —®(¢) que debe ser resuelto en cada iteracién del
método de Newton para la solucién del sistema de ecuaciones (4.20) es

A 0 O Az —Tp
0 AT I,| |Ay| = |-rg
S 0 X| |As —Te

Como se supone que se cumple la factibilidad primal y la dual,

A 0 O Ax 0
0 AT I,| [Ay| =] 0 |. (4.35)
S 0 X| |As -7,

Aunque se puede resolver directamente el sistema anterior de ecuaciones
lineales de tamano (2n + m) x (2n 4+ m), es mas eficiente, en tiempo y en
precisién, realizar despejes semejantes a los del método de Newton primal
factible hasta obtener

Q=AXSA" (4.36a)
Az =—-S""(r.— XA"Q'AS 'r,) (4.36b)
Ay=-Q tAS e (4.36¢)
As = —A"Ay. (4.36d)

Obsérvese que, como aparece en algunos libros, también se puede escribir
Q = AST1X A" ya que las matrices X y S~! son diagonales.

Una consideracién adicional relativa a la eficiencia es la siguiente:

= Para calcular Ay es necesario resolver un sistema de ecuaciones con
matriz ). Uno de los pasos para calcular Az consiste en resolver el
sistema de ecuaciones Q7 = AS~'r.. Luego la primera factorizacién
de Cholesky de @) sirve para el segundo sistema.
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METODO PRIMAL-DUAL FACTIBLE

datos: AT, ¢, 2° y y° que cumplan (4.34), e, MAXIT
para k=0,..,. MAXIT

re < Xs—e

1< |lrel|

si n < ¢ parar

calcular Az, Ay, As segun (4.36)

ol — 2k 4+ Ax

yk+1 «— yk —I—Ay

sl sk + As
fin-para

En este método no es indispensable calcular en cada iteracién y*+1. Sim-

plemente muestra el proceso del calculo del centro analitico. Si no se hace,
una vez que 1 = 1.(x, s) < ¢, es necesario resolver ATy = c — s.

Se puede mostrar que si n.(x°,s%) < 2/3, entonces la convergencia es
cuadrdtica.

Ejemplo 4.16. Calcular el centro analitico del conjunto definido por las
restricciones

~10 -1 0 —20
-2 -10 0 —30
~1 -2 —10|y< |—40
4 5 6 50
11 1 8

partiendo de 2 = [0.8575510 0.8322449 1.16 0.1 11]" y y°=[1.8 2.8 3.3] .

Para los puntos iniciales, z° > 0, A42°=0, s = [0.8 1.6 04 9. O.I}T >

0, re = [~0.3139592 0.3315918 —0.536 —0.1 0.1]", 5 =0.7182, es de-
cir, se cumple (4.34).
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k k k ok k
k xf x5 x5 xy x5
st sb 55 sf s

ACCl A.ZQ Al'g AZL’4 AZ5

Asq Asy Ass Asy Ass

0.8576 0.8322 1.1600 0.1000 11.0000
0.8000 1.6000 0.4000 9.0000 0.1000
0.0973 0.0946 0.1319 0.0124 1.2448
0.2753 -0.5802 0.4166 -0.1192 -0.0204
0 1
1 0

.9549 0.9268 1124 12.2448
8808 0.0796

.2919

.0753 1.0198 .8166

0.

8.

-0.0000 -0.0000 -0.0000 O.
-0.0280 .0692 -0.0425 0.0122 0.0021

0.

8.

0
2 0.9549 0.9268 1.2919 1124 12.2444
1.0473 1.0790 0.7741 8929 0.0817

4.4.6. Algoritmo potencial primal-dual

Dados dos puntos z°, 3° tales que
Az =0,
20 > 0,
9 =s(°) =c— A" >0,

se obtienen dos puntos z, y tales que

Axr =0,

x>0,
s=s(y)=c— A"y >0,
Ne(z,s) < 1.

1

0.
0.

1

Y1

Ayy

.8000
7182
0340

.8340

0.0860

0000 -0.0004 -0.

1

0035

.8305

0.0000

Ay

2.8000

-0.0648

2.7352

0.0066

2.7418

3.3000

0.0512

3.3512

-0.0052

3.3460

(4.37)

(4.38)

es decir, una pareja de puntos que sirvan para empezar el método primal-

dual factible.

Una de las formas de obtener los puntos que cumplen (4.37) consiste en

resolver dos problemas de OL:
min z=0"z
Az =0,
x > die.
min z=0"y

204



4.4. ACCPM 205

Aty < c—dqe.

Una vez obtenida la pareja que cumpla (4.37), antes de empezar las
iteraciones, es necesario modificar 2° para que

En cada iteracién las direcciones Ax, Ay y As se calculan como en el
método primal-dual (4.36), pero en lugar de efectuar un paso de Newton
puro, z*t1 = 2% + Az, se controla el paso,

2" = 2F + A,
donde

0— ay/min(Xs) (4.39)

IXS)T2(Xs el

y « €]0,1[. Si w es un vector, minu = min{uy, ug,...}. Si D es una matriz
diagonal positiva, D~Y2 = /D1, El uso de 0 sirve para garantizar que
P >0 y s> 0.

ALGORITMO POTENCIAL PRIMAL-DUAL

datos: AT, ¢, 2° y y° que cumplan (4.37), MAXIT
9« c— ATyO

0

29— x

20" 50

para k=0,.., MAXIT

Te ¢ Xs—e

1 = |lrell

si n < 1 parar

calcular 6 segin (4.39)

calcular Az, Ay, As segun (4.36)

oF o 2k 4 0Ax

yk-i-l — yk + 0Ay

sFl o sk 1 9As
fin-para
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Ejemplo 4.17. Encontrar z , y que cumplan (4.34) en el problema de centro
analitico del conjunto definido por las restricciones

~10 -1 0 —20
—2 —-10 0 —30
~1 -2 —10|y< |-40
4 5 6 50
11 1 8

partiendo de 20 = [0.1 0.1054054 0.1567568 0.1 0.9675676]" y ¢° =
[1.7530612 2.6693878 3.3108163]" .

Para los puntos iniciales,

20 >0
Ax? =
0.2
0.2
2 =102 >0,
9.7759184
0.2667347

es decir, se cumple (4.37). Los resultados estan en la tabla 4.1 al final del
capitulo.

4.4.7. Restricciéon adicional en el método primal

El célculo del centro analitico se va a usar en el ACCPM, una modi-
ficaciéon del método de planos cortantes, en el cual se van agregando res-
tricciones, es decir, en una iteracién es necesario calcular el centro analitico
de

Aty <c (4.40)

y en la siguiente se debe calcular el centro analitico de
Aty <e (4.41)

donde hay una restriccion adicional, es decir,

A AT c
T __ o
i) e=La)
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Al calcular el centro analitico de (4.40) se obtiene & € R", aproximacién de
%, que, en particular, cumple

Az =0, (4.42)

Para empezar el método primal para (4.41) se requiere un & = (z,x,,) €
R™*1! tal que

A

IS

0, (4.43)
0

>
V

)

es decir,

Az + zy,w =0,
z >0,
T, > 0.

Se sabe que se puede obtener un Z que cumpla las dos condiciones (4.43)
resolviendo un problema de OL, pero, ;habrd otra forma? Asi, la pregunta
natural es: jcomo obtener Z, a partir de £7 Una de las maneras de hacerlo
es la siguiente.

Si & cumple (4.43) y B8 > 0, entonces 2 también cumple (4.43). Enton-

ces, dado ¢ > 0, las condiciones (4.43) se pueden remplazar por condiciones
de factibilidad en OL,

Usando la férmula de Sherman-Morrison-Woodbury (ver [GoVa96], p. 50),
Cc+uvhHt=ct-clua+vrtetu)y~tvre?

en [DuM95] estén los célculos para llegar a

d=(AX2A")lw (4.44a)
oc=w"d (4.44D)
do
= 4.44
1+ 06} (444c)
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Az = —6X2A%d (4.44d)
G = ["’3 +5Aw] (4.44e)

con ¢y > 0 suficientemente pequeno.

Ejemplo 4.18. Para las restricciones

2 1 1
2 1ly<| 5],
0 —1 -1

el centro analitico es y* = (—1,5/3) y z% = (3/4, 3/4, 3/2). Dado & =
(1.2, 1.2, 2.4), que cumple (4.42), encontrar &, un punto inicial primal, es
decir, que cumpla (4.43), para las restricciones

2 1 1

2 1 5
<

0 —1|Y=]-1

3 4 6

d = [0.2604167 0.4629630]"

o = 2.6331019,
5o =0.1,
§ = 0.0974345,

Az = [-0.1380321 0.0081195 0.2598252]"
&= [1.0619679 1.2081195 2.6598252 0.0974345]" .

Este punto cumple (4.43). <

4.4.8. Algoritmo ACCPM

La versién de ACCPM presentada aqui es una versién simplificada. Una
version muy eficiente estd en la tesis doctoral [DuM95]. Bastante informacién

se puede encontrar en la pagina del laboratorio Logilab de la Universidad
de Ginebra:

http://blogs.unige.ch/hec/logilab/templeet.php/rapport.fr.html
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Para evitar confusiones se utilizara el vector y € R™ como variable del
problema de optimizacién. ACCPM se utiliza para el problema convexo
(4.11):

min f(y)
g(y) <0.

Ademads de f y g (o del ordculo), los datos inciales son: u, w, vy, vq.No
se requiere un punto inicial.

Para las 2m + 2 restricciones de caja, el centro analitico es

U; + W
Yi = 9 ;
Vg + Vo
v= =9
2
Ademds
Wi — Uy
Si = Si+m = 2 y U= 17"'7m7
Vo — Vg
S2m+1 = S2m+2 = T )

xj=1/s;, j=1,...,2m+ 1.

De manera andloga al método simplex en OL, hay dos fases, fase I y fase
II. La fase II empieza cuando se obtiene el primer y factible y el primer corte
de optimalidad.

En la fase I, todos los cortes son de factibilidad. Sirven para ir aproxi-
mando, cada vez mejor, el conjunto factible. Cuando se trata de un problema
no restringido, todos los puntos son factibles, no hay fase I, se empieza di-
rectamente con la fase II.

Los cortes en la fase II pueden ser de factibilidad o de optimalidad.
Cuando el punto y* es factible, corte de optimalidad, se utilizan los valores
v y v, cotas superior e inferior actualizadas para v, es decir, para f(y).

o =min{f(y") : i € Jp}. (4.45)

La manera de obtener el valor v o una aproximacién es un poco mas
compleja. En realidad hay varias formas, unas mejores que otras, unas mas
faciles que otras. Los célculos estdn en [DuM95].
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El proceso iterativo ACCPM acaba, en la fase 11, cuando para un punto
factible, v — v, el salto o brecha (“gap”) de dualidad, es suficientemente
pequenio. De manera relativa,

v —

m <e. (4.46)

En esta versién simplificada de ACPPM se utilizara un criterio de parada
menos preciso. El proceso iterativo se detiene cuando dos vectores factibles
consecutivos son casi iguales o cuando el valor f en ellos es casi el mismo.
Sea y* un punto factible y ¢/ el anterior punto factible.

lly* — ||
Lt 1 4.47)
(L, ]} = (

f™) — F()]
max{L, (R} =

(4.48)

Cuando se obtiene el primer punto factible, la restricciéon v < vy se
remplaza por v < v. Con los otros puntos factibles, la restriccién se actualiza
al nuevo valor de 7.

También, con el primer punto factible, la retricciéon —v < —v se puede
suprimir. En la fase I se necesitaba para asegurar que el conjunto definido
por las restricciones de caja fuera acotado y asi garantizar la existencia del
centro analitico.

Algunos refinamientos son convenientes o algunas veces indispensables.
Segtin lo visto hasta ahora, en cada punto y* se calcula tnicamente un
subgradiente. Si g(y*) > 0, se pueden calcular varios subgradientes de g
y se introducen varios cortes de factibilidad. Por ejemplo, cuando ¢(y) =
max{g1(y), ..., gp(y) }, se puede pensar en tomar un corte de factibilidad cada
vez que g;(y*) > 0.

A medida que aumentan las iteraciones, el nimero de cortes (el nimero
de filas de la matriz) puede volverse inmanejable. Se hace indispensable
quitar restricciones innecesarias mediante el uso de elipsoides: un plano que
no corta el elipsoide es superfluo y se puede eliminar.
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4.4. ACCPM

ACCPM

datos: f, g, u, w, vy, vo, MAXIT
construir M y ¢ con restricciones de caja
Y0 (u+w)/2
U $— U
para k=0,.., MAXIT
con y¥ el ordculo proporciona: x,(y*), h(y*), v(y*)
si Xr (yk> =1
si h(y¥) <
v < h(y*)
Con+1 ¢ U
fin-si
si (4.46) o (4.47) o (4.48) parar
p+——1
sino
p<+0
fin-si
o yTyF — h(yh)
agregar el corte Ty + pv < «
obtener (y**1, vpy1) centro analitico de My < ¢
fin-para

Ejemplo 4.19. Aplicar ACCPM para minimizar

3
min f(z) = Y|z~ alla.
=1

con la restriccién
max{—12 + 3(z1 + 4)? — 29, 5+ 4(x1 4+ 5)% + 22} <0,

con los puntos

al = (_47 _3)7

a’ = (—1,-2),

a® = (-2, -8),
y con los datos iniciales

u=(—13,-20),

211



212

© 00N O WN - O T

e
= O

12
13
14
15
16
17

4.1

4.2

4.3

4.4

CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

w = (__37__5)7
QO: 9
Vo = 20.
yr yh v xr h(y") o V2 o

-8.0000 -12.5000 10.0000
-4.3742 -11.7900 10.0000
-3.9420 -8.0697 11.0000
-4.9200 -7.8064 11.0000
-4.9027 -5.8825 13.1320
-4.6387 -5.3797 11.6890
-4.8796 -5.3669 11.8540
-4.8081 -5.2057 11.4670
-4.8054 -5.0911 11.2570
-4.7406 -5.2813 11.2720
-4.7294 -5.2792 11.2290
-4.7594 -5.2329 11.2320
-4.7636 -5.2203 11.2240
-4.7480 -5.2540 11.2240
-4.7509 -5.2489 11.2240
-4.7527 -5.2447 11.2240
-4.7545 -5.2411 11.2230
-4.7510 -5.2479 11.2230

W
o

.2095 -2.2451 -1.0000 21.4000
.4077 8.4640 1.0000 -42.8430
.8260 -1.7454 -1.7448 -1 7.3821
.1190 -1.8157 -1.0702 -1 3.0788
.1426 2.8908 1.0000 O -18.9320
.5640 -1.8416 -0.9180 -1 2.3490
.2880 -1.8179 -0.8776 -1 2.0207
.0603 1.5664 1.0000 O -12.6310
.2350 -1.7704 -0.9063 -1 1.9449
.0136 2.1647 1.0000 0O -15.5300
.2250 -1.7863 -0.8907 -1 1.9380
.0032 1.8912 1.0000 O -14.2320
.E-05 2.0162 1.0000 0O -14.8270
.2240 -1.7797 -0.8961 -1 1.9347
.2230 -1.7811 -0.8947 -1 1.9347
.0001 1.9644 1.0000 O -14.5810
.2230 -1.7799 -0.8958 -1 1.9341

p
.5000 -24.0000 -1.0000 O 156.0000
0
0

= e =
R R ON DR

HORr L, OOFHRORORRLRORRPLOOOT
= = =
ORr P UlO R O KL O

[
[

Ejercicios

Sea C' un convexo, g¢i, g2 : C — R funciones convexas, a > 0,
f=g1+9g2, h=ag, TcC, ~'subgradiente de g; en z, ~2
subgradiente de go en Z. Muestre que 7! + 72 es subgradiente de f en
Ty ay! es subgradiente de h en Z.

Sea C' un convexo, g¢i, g2, g3 : C — R funciones convexas, g¢g(z) =

max{g1(z), 92(z), g3(x)}, T € C, 92(2),93(Z) < 91(%) = g(). Mues-
tre que 4! es un subgradiente de g en Z.

Sea C' un convexo, g1, g2, g3 : C — R funciones convexas, ¢(z) =

max{g1 (), g2(v), g3(x)}, 7€ C, g3(T) < 91(T) = g2(7) = g(z). De
una expresion para un subgradiente de g en .

Considere
-1 =2 -2 4/35
AT =|-3 1, c= 41, x=19/70
5 1 10 1/10
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4.5

4.6

4.7

4.8

4.4, ACCPM 213

Muestre que la direccién Az obtenida usando (4.24) (tome cualquier
y y s=c— A"y) coincide con la obtenida usando (4.28) y (4.29).

Respuesta: Az = (0.065306, 0.073469, 0.057143).

Considere
-1 -2 -2 2/35
AT= -3 1|, e=| 4|, 2°=]9/140
5 1 10 1/20

Aplique el método potencial afin y el método de Newton primal factible
para obtener el centro analitico.

Respuesta: y = (0.63095, 2.55952).

Considere
-1 =2 -2 2/35 05
AT= -3 1|, e=| 4|, 2°=1{9/140], yoz[ 1‘5}
5 1 10 1/20 '

Aplique el método potencial primal-dual y el método de Newton primal-
dual factible para obtener el centro analitico.

Respuesta: y = (0.63095, 2.55952).
Resuelva por el método de planos de corte el siguiente problema:

min f(z) = 14|z — a'||2 + 15|z — a?||2

|z — a®||1 < 3,

donde
a' = (2,8),
a? = (10,1),
CL3 = (_5¢ _4))

3

1/p
yllp = <Z|y¢|p> :
1

Solucién: x ~ (—2.23, —3.77).

Resuelva por ACCPM el problema anterior.
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214 CAPITULO 4. OPTIMIZACION NO DIFERENCIABLE

k x’f x§ xlg xfj x]g y’f ylg y’§
sk sk sk sk sk n 0
Az Azo Azs Axy Azxs Ayq Ayo Ays
ASl ASQ ASg AS4 AS5

0 0.3822 0.4029 0.5992 0.3822 3.6983 1.7531 2.6694 3.3108
0.2000 0.2000 0.2000 9.7759 0.2667 3.1563 0.0453
0.4191 0.3834 0.5070 -0.1974 6.2542 0.2028 0.1686 0.0760
2.1969 2.0917 1.2997 -2.1102 -0.4474

1 0.4012 0.4203 0.6222 0.3733 3.9819 1.7623 2.6770 3.3143
0.2996 0.2948 0.2589 9.6802 0.2464 3.0126 0.0718
0.4235 0.3875 0.5124 -0.1995 6.3210 0.1730 0.1467 0.0669
1.8764 1.8127 1.1351 -1.8265 -0.3865

2 0.4316 0.4481 0.6589 0.3590 4.4357 1.7747 2.6876 3.3191
0.4343 0.4250 0.3404 9.5491 0.2187 2.7950 0.1156
0.4241 0.3881 0.5131 -0.1998 6.3300 0.1339 0.1171 0.0544
1.4556 1.4386 0.9121 -1.4473 -0.3053

3 0.4807 0.4930 0.7183 0.3359 5.1674 1.7901 2.7011 3.3254
0.6026 0.5913 0.4459 9.3818 0.1834 2.4694 0.1918
0.4114 0.3764 0.4977 -0.1938 6.1402 0.0881 0.0810 0.0387
0.9621 0.9858 0.6374 -0.9897 -0.2078

4 0.5596 0.5651 0.8137 0.2987 6.3450 1.8070 2.7166 3.3328
0.7871 0.7803 0.5681 9.1920 0.1435 1.9923 0.3558
0.3667 0.3355 0.4436 -0.1728 5.4731 0.0440 0.0438 0.0220
0.4841 0.5258 0.3511 -0.5267 -0.1098

5 0.6827 0.6778 0.9627 0.2407 8.1830 1.8218 2.7313 3.3402
0.9497 0.9569 0.6860 9.0151 0.1067 1.3215 0.6603
0.2654 0.2428 0.3211 -0.1250 3.9611 0.0131 0.0149 0.0081
0.1458 0.1756 0.1239 -0.1756 -0.0361

6 0.8580 0.8382 1.1747 0.1581 10.7985 1.8305 2.7412 3.3455
1.0460 1.0729 0.7678 8.8991 0.0828 0.4549

Tabla 4.1. Ejemplo 4.17
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