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1 Definiciones

Sea A € C™*". Su SVD (singular value decomposition), descomposicion en
valores singulares, es:

A=USV* (1)

donde,
U € C™™ es unitaria (UU* = 1,,,),
S e R™*™ es “diagonal”, con “diagonal” no negativa y no creciente,
V € C™™ es unitaria.

En lo que sigue, sea p = min{m,n}. Usualmente la definicién de matriz
diagonal se aplica unicamente a matrices cuadradas. En este documento,
una matriz S rectangular es diagonal si s;; = 0 para @ # j. Su diagonal
esta compuesta por los elementos diagonales, es decir, los elementos s;;, ¢ =
1,...,p. Su diagonal es no negativa si s;; > 0 para ¢ =1, ..., p. Su diagonal es
no creciente si Syq > Sgg > -+ > Sy,

El resultado fundamental indica que, toda matriz tiene descomposicion en
valores singulares.



Los valores s;; se llaman los valores singulares de A (a veces los restringen
a los positivos). Frecuentemente los valores singulares se denotan oy = 11,
09 = S99, ...

Ejemplo 1.
A =
2 +21i 3 - 4 + 31
5 6 + i 7T -2 1
Vv =

-0.3878638 + 0.2684640 i -0.0941940 -0.1450840 i  0.1849632 + 0.8446038 i
-0.4517127 + 0.2478474 i  0.1193960 + 0.8382315 i -0.0681730 -0.1139840 i
-0.6663825 + 0.2606731 i  0.0307402 -0.5022408 i  0.0478029 -0.4821909 i

g =
12.116154 0 0
0 3.3464638 0

U =
-0.4842705 + 6.060D-18 i 0.8749183 + 4.397D-17 i
-0.7461752 + 0.4568420 i -0.4130107 + 0.2528637 i

Si A es real, U y V son ortogonales.

En lo que sigue, supondremos, mientras no se diga lo contrario, que A es
real y que m > n. Cuando m < n se considera A™.

Ejemplo 2.
A -
1 2 3 4 5
7 8 9 10
11 12 13 14 15
U =

-0.2016649 0.8903171 0.4082483
-0.5168305 0.2573316 -0.8164966
-0.8319961  -0.3756539 0.4082483

S =
35.127223 0 0 0 0
0 2.4653967 0 0 0



0 0 0 0 0
vV =
-0.3545571 -0.6886866 -0.5407780 -0.1172445 0.3062890
-0.3986964  -0.3755545 0.7159048 0.4167279 0.1175510
-0.4428357 -0.0624224 0.2035632  -0.6740223  -0.5515977
-0.486975 0.2507097 -0.3917089 0.5668389 -0.4746133
-0.5311143 0.5638418 0.0130289  -0.1923000 0.6023711

Hay varias demostraciones de la existencia. Se puede hacer por induccién
utilizando la descomposicién espectral de AT A [NoD88]. También se puede
hacer usando la descomposicién de Schur [MaN99].

1.1 Otros tipos de SVD

e SVD delgada (thin) o econémica:

A=U,S,V*
U,=U(:,1:n)eR™"
S,=8(1:n,1:n) e R™"

Si m > n, esta descomposicion se obtiene mucho mas rapidamente y
utiliza menos memoria.

e SVD compacta:
A= UT‘ST‘/;T
U =U(,1:r) e R™"
S,=81:r1:r)eR™"
V,=V(i,1:7r) e R™"
con r = rango(A).
e SVD truncada:

Ay = USi V"
U=U(,1:r)e R™"
Sp=8S(1:r1:r)eR™
Vi=V(,1:r)e R™"



con t < r. Esta matriz A, es la solucién del problema da aproximacion
matricial de rango bajo (ver adelante).

1.2 Algo de historia

La SVD fue desarrollada independientemente por dos gedmetras diferenciales,
Eugenio Beltrami 1873 y Camille Jordan 1874. De manera independiente
James Joseph Sylvester obtuvo la SVD para matrices cuadradas reales en
1889 (multiplicadores canénicos). Autone, también de manera independiente,
lleg6 a la SVD, via descomposicion polar.

Los principales nombres en el calculo de la SVD son Kogbetliantz, Hestenes,
Gene Golub, William Kahan, Christian Reinsch.

2 Resultados varios

1. Si se conoce la SVD de A, se tiene inmediatamente la SVD de A™:

AT =VSTU".
2.
AVj: O'jU.j, jzl,...,p
0 j=p+1,..n
Las columnas V.;, j = 1,...,p se llaman los vectores singulares por

derecha de A.

O'j(Vj)T, j = 1, ey P
0 j=p+1..m

U;)"A= {
Las columnas U.; se llaman los vectores singulares por izquierda de A.

N(AAT) = \(ATA), i=1,...p.

Para una matriz X con todos sus valores propios reales, éstos se pueden
denotar en orden decreciente: A\ = Aj(X) > Ay = Xp(X) > -+ .
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O'Z(A) =4/ )\Z(ATA> s 1= 1, ey P
. Sea r el nimero de valores singulares positivos.

r = rango(S) = rango(A).
N(A) =gen{V.,,y, ..., V.,,} CR™!

R(A) = gen{U.,, ..., U,} C R™!

. Sea E el hiperelipsoide £ = {Az : ||z||s = 1}. Los valores singulares
corresponden a las longitudes de los semiejes de F.

. Expansién SVD de A.

A= i UlUZ ViT
=1

11.

12

13

1Al = 01 = V/p(ATA) = /M (ATA)
norma generada por la norma euclidiana,

también llamada norma espectral.

I|A||lr = (6% + ...+ ¢2)Y? norma de Frobenius.

. Cuandom >n
. |[Az|]2

1 =
x#0 H.I'HQ "

. Normas de Schatten o Schatten-Von Neumann

P 1/q
14117 = lloll, = (ZU?)
i=1

I|A||? = o1 + -+ + 0, norma nuclear o de Ky-Fan

=tr (v ATA> también llamada norma de la traza
A5 = ||Al|F
A[1Z, = o1 = [[|A]]]2



14.

15.

16.

17.
18.

Las normas de Schatten son realmente normas y son (sub)multiplicativas
(1ABI[ < [[A[HIB)I])-

Si M es simétrica y semidefinida positiva, existe R simétrica tal que
RR = M; se llama la raiz cuadrada de M y se puede denotar v M

Normas de Ky-Fan de orden ¢:

q
1Al[5F = o,
i=1

JAIIF = o1 = 11Al1% = [I|Alll2,
AIE" = N1A[IF

La matriz A; definida en la descomposicién truncada es la matriz que
mejor aproxima A entre las matrices m x n de rango no superior a t
utilizando la norma espectral o la norma de Frobenius:

A; = argmin ||A — X||
X e R
rango(X) <t

Sea A € R™" y AT € R™ ™ la inversa generalizada de Moore-Penrose,

AAT es simétrica,

AT A es simétrica,

AATA=A
ATAAT = AT
Entonces
AT =VSTU".

La obtencién de ST es muy sencilla, los elementos diagonales de S
son de la forma

1
Y o
(S )ZZ = si o; # 0.

o(aA) = |a|o(A)
01(A+ B) < 01(A) + 01(B)



20. Si Py () son ortogonales,

En Matlab y en Scilab, la funcién y sintaxis para la obtencion de la SVD son
iguales:

s = svd(A) produce un vector columna con los valores singulares.

(U, S, V] = svd(A) produce la descomposicion en valores singulares.

3 Aplicaciones

e (Calculo del rango

e (Cdlculo de la seudoinversa

e Procesamiento de senales

e Estadistica

e Minimos cuadrados

e Obtencién del rango (recorrido de la transformacion).
e Obtencion del nicleo.

e Aproximacién de matrices.

3.1 Ejemplos de tiempos

En las dos tablas siguientes estan los tiempos aproximados de diferentes
procesos numéricos para matrices 1000 x 1000 y 2000 x 2000 usando Scilab
5.2, en Kubuntu 10.04, con un procesador Intel Core 2 Duo T5250. En cada
caso se corrio el proceso 5 veces.



n = 1000

producto 24 24 24 24 24
inversa 23 22 22 22 22
solucion Ax = b 0.8 0.8 08 08 038
matriz escalonada red. 22.6 225 225 225 225
determinante 07 07 07 07 0.7
seudoinversa 22.7 229 228 227 228
valores singulares 33 34 33 33 33
SVD 21.0 21.3 21.2 21.0 21.2
rango 34 34 33 33 34
valores propios complejos 11.0 11.2 11.0 11.1 11.1
valores propios reales 1.5 15 15 15 1.5

vectores propios reales 10.7 10.7 10.7 10.7 10.7

n = 2000
producto 19.7 21.5 40.8 21.5 452
inversa 179 198 420 199 188
solucién Ax =b 5.3 6.1 6.5 6.1 5.0
matriz escalonada red. 178.1 184.4 198.9 185.0 183.2
determinante 5.2 6.2 9.6 6.1 6.2
seudoinversa 192.1 205.6 259.9 239.2 2449
valores singulares 271 285 283 282 427
SVD 180.2 187.7 2453 209.3 186.1
rango 27.8 28,6 41.1 281 283
valores propios complejos  79.0 80.8 99.9 80.5 98.6
valores propios reales 125 129 125 128 126
vectores propios reales 86.3 88.1 86.5 1122 86.6

En un curso usual de Algebra Lineal, una de las maneras ensenadas para
obtener el rango de una matriz consiste en determinar el nimero de filas no
nulas de la matriz escalonada reducida. Para matrices pequenas lo anterior
funciona bien. Para matrices grandes, el método mas réapido es por medio de
la obtencion de los valores singulares.



4 Calculo de la SVD

4.1 Calculo mediante la descomposicién espectral

Los valores singulares de A se pueden obtener suponiendo que se conocen A;
> Ay >... > A\, los valores propios de AT A,

Uz:\//\_z

Supongamos ahora que se conoce la descomposicién espectral de ATA, es
decir, se conoce una matriz diagonal A y una matriz ortogonal W & R™*"
tales que

ATA=WAW?®

En el caso trivial, A = 0, entonces U = [,,,, V =1,, S =0 € R™*", Para
los demads casos, sea r el rango de A, o sea, el nimero de valores singulares
positivos. Inicialmente se construye una matriz U’ € R™*", de la siguiente
manera;

U'of) = —AW(d), j=1,.r @)

0j

Las columnas de U’ son linealmente independientes. Se puede construir U” €
R™*™ agregando columnas a U’ de tal forma que las m columnas de U”
sean linealmente independientes (resultado clasico de Algebra Lineal). En
seguida, a las columnas de U” se les aplica el proceso de ortogonalizacion de
Gram-Schmidt para obtener la matriz U. La matriz V' sera simplemente W'.

Ejemplo 3.
A:
-1 2 1
3 4 7
5 6 11
8 9 17
W:
0.373876 0.725868 0.577350
0.441682 -0.686719 0.577350



0.815558
val. propios:
val. singulares:

S:
26.297903
0
0
0

rango = 2

U inicial:
0.050386
0.326918
0.512992
0.792102

U completada:
0.050386
0.326918
0.512992
0.792102

0.

SO O N O

U ortonormalizada:

0.050386
0.326918
0.512992
0.792102

0.373876
0.441682
0.815558

039148

691.579685

26.297903

.102454

.979883
.140426
.028704
.138877

.979883
.140426
.028704
.138877

.979883
.140426
.028704
.138877

. 725868
.686719
.039148

-0.

o O O O

|
o O O O SO O O -

o O

10

577350

4.420315

2.102454

SO O = O

.193110
. 797849
.279501
.498020

.577350
.577350
.577350

0

0

0

0.486664
-0.811107

0.324443



4.2 Matrices de Householder

Sea v € R v # 0, u = v/||v|| (vector columna de norma 1). Una matriz
de Householder es una matriz de la forma

2
H=H,=H(v) :Iq—mva:Iq—QuuT.

A veces, al mismo tiempo que se obtiene el vector v deseado, se calcula el
nuimero

2
B=—,
vTv
entonces es comun expresar H en funcién de v y de [, aunque [ no es
ncesario. Simplemente, desde el punto de vista de eficiencia, si se conoce (3

no es interesante volverlo a calcular (son 2n — 1 “flops”).
H=Hw,p)=1,— pvv".

La matriz H tiene dos caracteristicas importantes, es simétrica y ortogonal.

Ademds, si x € R?*! se puede escoger v para que
Hyaoe<el>.

es decir,

)

0

La deduccion de como escoger v es sencilla. A continuacién esta un algoritmo
eficiente y que busca disminuir los errores de redondeo [GoV96].
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[v, B] =vHouse(x)
n = dim (z)
t=x(2:n)"x(2:n)
v=_[1; x(2:n)]

sit=0
6=0
sino
v=/axi+t
si T S 0
V1 =21 —V
sino
v = —t/(x1 +v)
fin-si
B =2v}/(t+v})
v=uv/1
fin-si

fin vHouse

Ejemplo 4.
2 1 ]
x= 13|, B=0.6286093, v= |—0.8862198
4 —1.1816264 |
0.3713907  0.5570860  0.7427814 5.3851648]
H = [0.5570860  0.5062994 —0.6582675|, Hx = |0
0.7427814 —0.6582675  0.1223100 0 |

En la mayoria de las aplicaciones no es necesario construir explicitamente la
matriz H. Lo realmente importante es poder efectuar de manera eficiente
el producto HA o AH. Para esto basta con conocer 3y v.

Algunas veces es necesario utilizar matrices de Householder definidas por
bloques. Si H es un matriz de Householder, también lo es una matriz de la

forma
I, 0
0 H

12



4.3 Matrices de Givens

Esta es otra clase de matrices ortogonales. Sea € un angulo y

¢ = cos(f)

s = sen(f),

La matriz de Givens, en R?*? es simplemente un rotacion definida en el
plano de las variables ¢ y k:

10 0 0 0
01 0 0 0
, 0 0 c s 0f
G=G(i,k,c,s8,q) =
00 —S c R
0 0 0 0 1]

El producto y = G"x se calcula muy facilmente:

cr; — ST sl j =1,
Y;j = § sx; +cxy  sioj =k,

T en los demés casos.

Si se desea que y; = 0, basta con tomar

X
= 2 2’
Ty + 73,
§= 2 2
Ty + T3,

En la préactica, es mejor utilizar la siguiente version para el célculo de ¢ y s

(ver [GoVa96]),

13



[c, s] =csGivens(a,b)

sib=0
c=1
s=0
sino
si |b] > |al
t=—a/b
s=1/V1+1?
c= st
sino
t=-b/a
c=1/vV1+1t2
s=ct
fin-si
fin-si

fin csGivens

Por medio de esta funcién

Ejemplo 5.

Para el vector

c = 0.5547002

a 2 . ., .
[ } = [_3} por medio de la funcién se obtiene < — 0.8320503

< T- )

4.4 Bidiagonalizacion de una matriz

y asi

Sea B una matriz m X n con m > n. Se dice que B es bidiagonal (superior) si
todos los elementos por fuera de la diagonal y de la superdiagonal son nulos.

El proceso de bidiagonalizacion utiliza matrices de Householder. Primero
se buscan ceros, por debajo de la diagonal, en la columna 1. Después se

14



buscan ceros, a la derecha de la superdiagonal en la fila 1. Después ceros en
la columna 2. Después ceros en la fila 2. Después ceros en la columna 3. ...

x x x x| [x x x x][x x X X
X X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X
X x ox x| | ox ox x| | x x x| X X
[x  x 1 [x x 1 [x x ]
X X X X X X
X X X X X X
X X X X
I x x| | x| | |

datos: A € R™*", m >n

B+ A
para k=1:n
si k<m-1

[B,v] = vHouse( B(k : m, k) )
B(k:m,k:n) <+ H(B,v)B(k:m,k:n)

fin-si

sik<n-—2
[8,v] = vHouse( B(k,k+1:n)")
B(k:m,k+1:n)<« B(k:m,k+1:n)H(B,v)

fin-si

fin-para

Si se desea obtener las matrices P y () ortogonales tales que B = PAQ,
entonces es necesario ir almacenando las operaciones que se efectiian sobre
B. Asi, inicialmente P = I,,. Las multiplicaciones por la izquierda que se
hacen sobre B, también deben hacerse sobre P. Por ejemplo

P(k:m,k:n) <« H(B,v) P(k:m,k:n)
De manera andloga, en ) se almacenan las multiplicaciones por derecha.

Ejemplo 6.
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3 2
-1 0
2 5
-1 4
4 -1
columna 1
beta = 0.461184
v'T: 1
H izq
0.538816 -0

-0.179605 0.
0.359211 0.

-0.179605 -0
0.718421 0.
B
5.567764 1.
0 -0
0 5.
0 3
0 -0
fila 1
beta = 0.796471
v'T: 1
H der
0.203529 0.
0.407057 0
0.890438 -0
B
5.567764 7
0 6
0 4
0 5
0 1
columna 2
beta = 0.289808
v'T: 1
H izq

0.710192 0.

0

5

3

1

4

0.389444
.179605 0
930054 0
139892 0
.069946 0
279785 -0
436842 2
.219318 6
438636 0
. 780682 2
.122727 -0
-0.511076
407057 0.
.791963 -0
.455082 0
.059654 0
.800750 2
.283588 1
.096197 1
.062053 -1
-1.543533
447328 0.

4
4
5
3
5
-0.778888
.369211 -0
.139892 -0
. 720215 0
.139892 0.
.559569 0
.873685 6
.119139 4
. 761722 3
.119139 3
.476555 1
-1.117979
890438
.455082
.004509
0
.5631349 -2
.352040 4
.446810 2
.082068 0
-1.836346
532188 0.

16

0.389444

.179605
.069946
.139892

930054

.279785

.286186
.890341
.219318
.890341
.438636

.957949
.510639
.419622
.114077

-1.557775

0.718421
0.279785
-0.559569
0.279785
-0.119139

-0.382697

110909



0.447328 0.309534 -0.821450 -0.171191
0.532188  -0.821450 0.022719  -0.203666
0.110909 -0.171191  -0.203666 0.957556

B
5.567764 7.059654 0 0
0 9.575934 3.052514 1.217372
0 0 0.547605 -1.934107
0 0 0.489771 -5.247711
0 0 -1.281516 -1.483804
fila 2
beta = 0.071143
v'T: 1 -5.206975
H der
0.928857 0.370437
0.370437 -0.928857
B
5.567764 7.059654 0 0
0 9.575934 3.286310 0
0 0 -0.207818 1.999363
0 0 -1.489020 5.055805
0 0 -1.740002 0.903521
columna 3
beta = 1.090373
v~T: 1 0.593855 0.693953
beta = 1.090373
v©T: 1 0.593855 0.693953
H izq
-0.090373 -0.647524 -0.756667
-0.647524 0.615465 -0.449351
-0.756667 -0.449351 0.474909
B
5.567764 7.059654 0 0
0 9.575934 3.286310 0
0 0 2.299560 -4.138108
0 0 0 1.411035
0 0 0 -3.355594

columna 4
beta = 0.612374
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v'T: 1 1.505317
H izq
0.387626  -0.921817
-0.921817 -0.387626

B
5.567764 7.059654 0 0
0 9.575934 3.286310 0
0 0 2.299560 -4.138108
0 0 0 3.640197
0 0 0 0

4.5 Calculo directo

Se puede suponer que A € R™*" con m > n . Sino es asi, se calcula la SVD
de A”.

El célculo se puede dividir en dos partes. En la primera parte, un proceso
finito, se bidiagonaliza A mediante matrices ortogonales de Householder. En
la segunda parte, proceso iterativo que converge rapidamente, se aplica el
algoritmo de Golub-Kahan para ir anulando paso a paso los elementos su-
perdiagonales. También es necesario tratar el caso de una matriz bidiagonal
con superdiagonal sin ceros y por lo menos un elemento diagonal nulo. Se
utilizan matrices ortogonales de Givens

4.6 Algoritmo de Golub-Kahan

Dada una matriz B € R"*"™, bidiagonal estricta (no tiene ceros en la diagonal
ni en la superdiagonal), este proceso iterativo utiliza matrices de Givens
buscando anular un elemento superdiagonal, el de la posicién (n — 1,n).

Dado € > 0 pequeno, se considera que B bidiagonal, es estricta, si

|b”’ Z €HB||, 1= 17 wy
biiv1| > € (|bii| + |big1,i4a]), 1=1,...,n—1.

18



datos: By € R"™*", ¢
B+ BO
mientras B es bidiagonal estricta
T+ B™B
obtener los valores propios de T'(n — 1:n,n—1:n)
it <— valor propio mas cercano a t,,
y—tln—p
Z 4 t19
para k=1:n—1
¢, s] < csGivens(y, z)
B« BG(k,k+1,¢,5)
Y < brk
2 4= bryik
¢, s] +— csGivens(y, 2)
B+ G(k,k+1,¢,5)" B
si k<n-—2
Y < byt
2 4= by pyo
fin-si
fin-para
fin-mientras

Este algoritmo esta basado en el algoritmo QR simétrico para la matriz B™B
pero sin utilizar explicitamente B" B.

La presentacion anterior del algoritmo es clara y precisa pero hay operaciones
ineficientes o que nunca se hacen explicitamente. Por ejemplo, no se debe
construir explicitamente 7. Tampoco se debe construir explicitamente G
para hacer el producto BG o GTB. Lo indispensable es, por ejemplo, poder
actualizar B como el resultado de BG.

Mejor aun, B se puede representar por medio de dos vectores, d con los
elementos de la diagonal y f con los elementos de la superdiagonal. Asi todo
el algoritmo se puede efectuar simplemente con d y f.
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.396356

.045272

.181088

096791

483955
976524

483955

[di fi 0
0 dy f
0 0 ds
B =
0 0 O
0 0 0
Ejemplo 7.
B inicial:
2 -3 0
0 4 -5
0 0 -6
0 0 0
iter. 1 -—-———————————————————
submatriz inferior derecha de
61 42
42 113
valores propios:
37.603644 136.396356
mu = 136.396356 y = -132
k= 1 ... . . .
c = 0.998975 s = -0
B:
1.862133 -3.087468 0
0.181088 3.995899 -5
0 0 -6
0 0 0
y = 1.862133 z = 0
c = 0.995305 s = -0.
B final k:
1.870918 -2.686205 -0.
0 4.275976 -4.
0 0 -6
0 0 0
y = -2.686205 z = -0.

20
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k= 2 ...
c = 0.984155 s = -0.177308
B:
1.870918 -2.729452 0 0
0 3.325845 -5.655839 0
0 -1.063851 -5.904932 -7
0 0 0 8
y = 3.325845 z = -1.063851
c = 0.952459 s = 0.304667
B final k:
1.870918 -2.729452 0 0
0 3.491851 -3.587918 2.132668
0 0 -7.347352 -6.667213
0 0 0 8
y = -3.587918 z = 2.132668
k= 3 ...
c = 0.859608 s = 0.510953
B:
1.870918 -2.729452 0 0
0 3.491851 -4.173898 0
0 0 -2.909210 -9.485347
0 0 -4.087627 6.876867
y = -2.909210 z = -4.087627
c = -0.579849 s = 0.814724
B final k:
1.870918 -2.729452 0 0
0 3.491851 -4.173898 0
0 0 5.017191 -0.102687
0 0 0 -11.715484
iter. 2 ————————————————
B final de iteracion:
1.770452 -2.547800 0 0
0 3.209002 -3.539764 0
0 0 5.768936 0.000000
0 0 0 -11.716056
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iter. 3 -------—-—»—-1+-—H—-"H----—————-
B final de iteracion:

1.687270 -2.406186 0 0
0 3.068430 -2.757695 0
0 0 6.330662 0
0 0 0 -11.716056
B final:
1.687270 -2.406186 0 0
0 3.068430 -2.757695 0
0 0 6.330662 0
0 0 0 -11.716056

4.7 Tratamiento de un elemento diagonal nulo

Sea B € R™ "™ una matriz bidiagonal con todos sus elementos superdiagonales
diferentes de cero y sea ¢ el mayor indice tal que b; = 0. Es necesario
considerar dos casos: 1 <n e i=n.

Supongamos que i < n. El objetivo es anular, paso a paso, toda la fila ¢ por
medio de matrices de Givens. Inicialmente b; ;41 # 0. Se busca anular b; ;1
pero aparece un elemento no nulo, b;;+2. Entonces se buscar anular b; ;o
pero aparece b; ;43 # 0. Y asi sucesivamente.

Ejemplo 8. Paran=5 e =2

X X

Para anular bo3:

[c, s] = csGivens(bss, bog)
B+ G(c¢,8,3,2)"B
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Entonces,

Sy
I
X X X

Para anular byy:

[c, s] = csGivens(byg, boy)
B+ G(c,5,4,2)"B

Entonces,
X X
0 X
B = X X
X X
X

Para anular bys:

[c, s] = csGivens(bss, bos)
B+ G(c,s,5,2)"B

Entonces,
X X
0
B = X X
X X
X

Asi acaba el proceso de tratamiento de elemento diagonal nulo.

Consideremos ahora el caso ¢ = n. El objetivo es anular, paso a paso, toda
la columna n por medio de matrices de Givens. Inicialmente b,,_1, # 0. Se
busca anular b,,_1, pero aparece un elemento no nulo, b,_2,. Entonces se
buscar anular b,_3, pero aparece b,_s3, 7# 0. Y asi sucesivamente.
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Ejemplo 9. Para i =n = 5:

Para anular bys:

Para anular b3s:

Para anular bys:

X X
X X
X X

o Xl

[c, s] = csGivens(byg, bys)
B+ BG(c,s,4,5)

X X
X X
X X
o O X

[c, s] = csGivens(bss, bss)
y B+ BG(e,s,3,5)

X X
X X
X X
o O O X

[c, s] = csGivens(bag, bos)
B+ BG(c,s,2,5)
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X X
X X

X X
o O O O Xl

Para anular b5:

[c, s] = csGivens(byy, bys)
B+ BG(c,s,1,5)

X X
X X
X X
o O O O O

Asi acaba el proceso de tratamiento del elemento diagonal nulo b,,,.

datos: By, 1
B+ BO
siit<n
para k=1+1:n
¢, s] = csGivens(by, bix)
B+ G(c,s,k,i)" B
fin-para
sino
para k=n—1:—-1:1
¢, s] = csGivens(by, brn)
B <+ BG(c, s, k,n)
b]m +~—0
fin-para
fin-si
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También este proceso se puede llevar a cabo con toda la informaciéon de B
en dos vectores d y f.

Ejemplo 10.

B
7 5 0 0 0
0 0 8 0 0
0 0 2 3 0
0 0 0 6 1
0 0 0 0 9

i=2

k=3

Datos para csGivens: B(3,3), B(2,3) : 2.000000 8.000000
c, S: -0.242536 0.970143
G(c,s,3,2)T B

B ..
7 5 0 0 0
0 0 0 2.910428 0
0 0 -8.246211  -0.727607 0
0 0 0 6 1
0 0 0 0 9
k=4

Datos para csGivens: B(4,4), B(2,4) : 6.000000 2.910428
c, S: 0.899735 -0.436436
G(c,s,4,2)T B

B ..
7 5 0 0 0
0 0 0 0 -0.436436
0 0 -8.246211  -0.727607 0
0 0 0 6.668627 0.899735
0 0 0 0 9

k=5

Datos para csGivens: B(5,5), B(2,5) : 9.000000 -0.436436
c, s: 0.998826 0.048436
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G(c,s,5,2)T B

B ..
7 5 0 0 0
0 0 0 0 0
0 0 -8.246211 -0.727607 0
0 0 0 6.668627 0.899735
0 0 0 0 9.010576
Ejemplo 11.
7 8 0 0 0
0 1 4 0 0
0 0 2 5 0
0 0 0 6 9
0 0 0 0 0
i=25
k=4

Datos para csGivens: B(4,4), B(4,5) : 6.000000 9.000000
c, S: -0.554700 0.832050

B G(c,s,4,5)
B ..
7 8 0 0 0
0 1 4 0 0
0 0 2 -2.773501 4.160251
0 0 0 -10.816654 0
0 0 0 0 0
k=3

Datos para csGivens: B(3,3), B(3,5) : 2.000000 4.160251
c, S: -0.433273 0.901263

B G(c,s,3,5)

B ..
7 8 0 0 0
0 1 -1.733093 0 3.605051
0 0 -4.616026 -2.773501 0

27



0 0 0
k=2
Datos para csGivens: B(2,2), B(2,5)
c, S: -0.267296 0.963615
B G(c,s,2,5)
B ..
7 -2.138366 0
0 -3.741175 -1.733093
0 0 -4.616026
0 0 0
0 0 0
k=1
Datos para csGivens: B(1,1), B(1,5)
c, S: -0.672246 0.740327
B G(c,s,1,5)
B ..
-10.412847 -2.138366 0
0 -3.741175 -1.733093
0 0 -4.616026
0 0 0
0 0 0
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816654

.000000

. 773501
.816654

.000000

. 773501
.816654

3.605051

.708916

O O O O N

7.708916

O O O O O



4.8 Algoritmo completo

datos: A € R™*" conm >n, ¢

B « bidiagonalizacién(A)
B+ B(l:n,1:n)
fin <0
mientras fin =0
para t=1:n—1
si [biiv1] < e ([bi] + [biv1ita]) ent biiq <0

fin-para
obtener B3, B2, B! cuadradas tales que:
Bl
e B= B?

BS
e B3 es diagonal
e la superdiagonal de B? no tiene ceros
si B3=DB
fin<+1
sino
si algin b2 = 0 (en la matriz B?)
i =max{i : b? =0}
tratamiento de elemento diagonal nulo para B2
sino
aplicar el algoritmo de Golub-Kahan a B?
fin-si
fin-si
fin-mientras
bii < | b;; | para todo i
ordenar de manera decreciente los valores singulares

Ejemplo 12.
A
2 3 4 5
6 7 8 9
10 11 12 -13
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14 15
18 19
bidiagonalizacion:
25.690465 38.352907
0 11.191634
0 0
0 0
0 0
iteracion 1
B~1 : []
B"2 :
25.690465 38.352907
0 11.191634
0 0
0 0
B~3 : []
FIN de Golub Kahan.
43.104656 -19.165800
0 3.576374
0 0
0 0
Nueva matriz B(1l:n,1:n)
43.104656 -19.165800
0 3.576374
0 0
0 0
iteracion 2
B~1 : []
B2 :
43.104656 -19.165800
0 3.576374
0 0
B~3 :
-29.959881
FIN de Golub Kahan.

16
-20

13.
10.

13.
10.

13.
.645441

501245
474484

501245
474484

.098407
.645441

.098407
.645441

098407
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-17
-21

0

0
-27.485191

2.523431

0

0

0
-27.485191

2.523431

o O O

-2

Xe]

.959881

o O O

-29.959881



47.197868 0.013213
0 -0.395548
0 0
Nueva matriz B(l:n,1:n)
47.197868 0.013213

0 -0.395548
0 0
0 0

iteracion 3

B~1 : []
B™2 :
47.197868 0.013213
0 -0.395548
B3 :
13.587131 0
0 -29.959881

FIN de Golub Kahan.
47.197870 0
0 -0.395548
Nueva matriz B(l:n,1:n)
47.197870 0

0 -0.395548
0 0
0 0

iteracion 4
B3 =B

13

.587131

.587131

.587131

o O O

-29.959881

o O O

-29.959881
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