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1 Definiciones

Sea A ∈ Cm×n. Su SVD (singular value decomposition), descomposición en
valores singulares, es:

A = USV ∗ (1)

donde,
U ∈ Cm×m es unitaria (UU∗ = Im),
S ∈ Rm×n es “diagonal”, con “diagonal” no negativa y no creciente,
V ∈ Cn×n es unitaria.

En lo que sigue, sea p = min{m,n}. Usualmente la definición de matriz
diagonal se aplica únicamente a matrices cuadradas. En este documento,
una matriz S rectangular es diagonal si sij = 0 para i 6= j. Su diagonal
está compuesta por los elementos diagonales, es decir, los elementos sii, i =
1, ..., p. Su diagonal es no negativa si sii ≥ 0 para i = 1, ..., p. Su diagonal es
no creciente si s11 ≥ s22 ≥ · · · ≥ spp.

El resultado fundamental indica que, toda matriz tiene descomposición en
valores singulares.
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Los valores sii se llaman los valores singulares de A (a veces los restringen
a los positivos). Frecuentemente los valores singulares se denotan σ1 = s11,
σ2 = s22, ...

Ejemplo 1.

A =

2 + 2 i 3 - i 4 + 3 i

5 6 + i 7 - 2 i

V =

-0.3878638 + 0.2684640 i -0.0941940 -0.1450840 i 0.1849632 + 0.8446038 i

-0.4517127 + 0.2478474 i 0.1193960 + 0.8382315 i -0.0681730 -0.1139840 i

-0.6663825 + 0.2606731 i 0.0307402 -0.5022408 i 0.0478029 -0.4821909 i

S =

12.116154 0 0

0 3.3464638 0

U =

-0.4842705 + 6.060D-18 i 0.8749183 + 4.397D-17 i

-0.7461752 + 0.4568420 i -0.4130107 + 0.2528637 i

Si A es real, U y V son ortogonales.

En lo que sigue, supondremos, mientras no se diga lo contrario, que A es
real y que m ≥ n. Cuando m ≤ n se considera AT.

Ejemplo 2.

A =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

U =

-0.2016649 0.8903171 0.4082483

-0.5168305 0.2573316 -0.8164966

-0.8319961 -0.3756539 0.4082483

S =

35.127223 0 0 0 0

0 2.4653967 0 0 0
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0 0 0 0 0

V =

-0.3545571 -0.6886866 -0.5407780 -0.1172445 0.3062890

-0.3986964 -0.3755545 0.7159048 0.4167279 0.1175510

-0.4428357 -0.0624224 0.2035532 -0.6740223 -0.5515977

-0.486975 0.2507097 -0.3917089 0.5668389 -0.4746133

-0.5311143 0.5638418 0.0130289 -0.1923000 0.6023711

Hay varias demostraciones de la existencia. Se puede hacer por inducción
utilizando la descomposición espectral de ATA [NoD88]. También se puede
hacer usando la descomposición de Schur [MaN99].

1.1 Otros tipos de SVD

• SVD delgada (thin) o económica:

A = UnSnV
T

Un = U(: , 1 : n) ∈ Rm×n

Sn = S(1 : n, 1 : n) ∈ Rn×n

Si m � n, esta descomposición se obtiene mucho más rapidamente y
utiliza menos memoria.

• SVD compacta:

A = UrSrVr
T

Ur = U(: , 1 : r) ∈ Rm×r

Sr = S(1 : r, 1 : r) ∈ Rr×r

Vr = V (: , 1 : r) ∈ Rn×r

con r = rango(A).

• SVD truncada:

At = UtStVt
T

Ut = U(: , 1 : r) ∈ Rm×r

St = S(1 : r, 1 : r) ∈ Rr×r

Vt = V (: , 1 : r) ∈ Rn×r
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con t ≤ r. Esta matriz At es la solución del problema da aproximación
matricial de rango bajo (ver adelante).

1.2 Algo de historia

La SVD fue desarrollada independientemente por dos geómetras diferenciales,
Eugenio Beltrami 1873 y Camille Jordan 1874. De manera independiente
James Joseph Sylvester obtuvo la SVD para matrices cuadradas reales en
1889 (multiplicadores canónicos). Autone, también de manera independiente,
llegó a la SVD, via descomposición polar.

Los principales nombres en el cálculo de la SVD son Kogbetliantz, Hestenes,
Gene Golub, William Kahan, Christian Reinsch.

2 Resultados varios

1. Si se conoce la SVD de A, se tiene inmediatamente la SVD de AT:

AT = V STUT .

2.

AV·j =

{
σjU·j , j = 1, ..., p

0 j = p+ 1, ..., n

Las columnas V·j , j = 1, ..., p se llaman los vectores singulares por
derecha de A.

3.

(U·j)
TA =

{
σj(V·j)

T , j = 1, ..., p

0 j = p+ 1, ...,m

Las columnas U·j se llaman los vectores singulares por izquierda de A.

4.
λi(AA

T) = λi(A
TA), i = 1, ..., p.

Para una matriz X con todos sus valores propios reales, éstos se pueden
denotar en orden decreciente: λ1 = λ1(X) ≥ λ2 = λ2(X) ≥ · · · .
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5. σi(A) =
√
λi(ATA) , i = 1, ..., p.

6. Sea r el número de valores singulares positivos.

r = rango(S) = rango(A).

7.
N (A) = gen{V· r+1, ..., V·n} ⊆ Rn×1

8.
R(A) = gen{U·1, ..., U·r} ⊆ Rm×1

9. Sea E el hiperelipsoide E = {Ax : ||x||2 = 1}. Los valores singulares
corresponden a las longitudes de los semiejes de E.

10. Expansión SVD de A.

A =
r∑

i=1

σiU·i V·i
T

11.

|||A|||2 = σ1 =
√
ρ(ATA) =

√
λ1(ATA)

norma generada por la norma euclidiana,

también llamada norma espectral.

||A||F = (σ2
1 + ...+ σ2

r)1/2 norma de Frobenius.

12. Cuando m ≥ n

min
x 6=0

||Ax||2
||x||2

= σn

13. Normas de Schatten o Schatten-Von Neumann

||A||Sq = ||σ||q =

(
p∑

i=1

σq
i

)1/q

||A||S1 = σ1 + · · ·+ σr norma nuclear o de Ky-Fan

= tr
(√

ATA
)

también llamada norma de la traza

||A||S2 = ||A||F
||A||S∞ = σ1 = |||A|||2
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Las normas de Schatten son realmente normas y son (sub)multiplicativas
(||AB|| ≤ ||A)|| ||B)||).
Si M es simétrica y semidefinida positiva, existe R simétrica tal que
RR = M ; se llama la ráız cuadrada de M y se puede denotar

√
M

14. Normas de Ky-Fan de orden q:

||A||KF
q =

q∑
i=1

σi ,

||A||KF
1 = σ1 = ||A||S∞ = |||A|||2 ,

||A||KF
r = ||A||S1

15. La matriz At definida en la descomposición truncada es la matriz que
mejor aproxima A entre las matrices m × n de rango no superior a t
utilizando la norma espectral o la norma de Frobenius:

At = argmin ||A−X||
X ∈ Rm×n

rango(X) ≤ t

16. Sea A ∈ Rm×n y A+ ∈ Rn×m la inversa generalizada de Moore-Penrose,

AA+ es simétrica,

A+A es simétrica,

AA+A = A

A+AA+ = A+

Entonces
A+ = V S+UT .

La obtención de S+ es muy sencilla, los elementos diagonales de S+

son de la forma (
S+
)
ii

=
1

σi
si σi 6= 0.

17. σ(αA) = |α|σ(A)

18. σ1(A+B) ≤ σ1(A) + σ1(B)
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19. σi(A+B) ≤ σi(A) + σi(B) ????

20. Si P y Q son ortogonales,

σ(A) = σ(PA) ,

σ(A) = σ(AQ) .

En Matlab y en Scilab, la función y sintaxis para la obtención de la SVD son
iguales:

s = svd(A) produce un vector columna con los valores singulares.

[U, S, V] = svd(A) produce la descomposición en valores singulares.

3 Aplicaciones

• Cálculo del rango

• Cálculo de la seudoinversa

• Procesamiento de señales

• Estad́ıstica

• Mı́nimos cuadrados

• Obtención del rango (recorrido de la transformación).

• Obtención del núcleo.

• Aproximación de matrices.

3.1 Ejemplos de tiempos

En las dos tablas siguientes están los tiempos aproximados de diferentes
procesos numéricos para matrices 1000 × 1000 y 2000 × 2000 usando Scilab
5.2, en Kubuntu 10.04, con un procesador Intel Core 2 Duo T5250. En cada
caso se corrió el proceso 5 veces.
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n = 1000
producto 2.4 2.4 2.4 2.4 2.4
inversa 2.3 2.2 2.2 2.2 2.2
solución Ax = b 0.8 0.8 0.8 0.8 0.8
matriz escalonada red. 22.6 22.5 22.5 22.5 22.5
determinante 0.7 0.7 0.7 0.7 0.7
seudoinversa 22.7 22.9 22.8 22.7 22.8
valores singulares 3.3 3.4 3.3 3.3 3.3
SVD 21.0 21.3 21.2 21.0 21.2
rango 3.4 3.4 3.3 3.3 3.4
valores propios complejos 11.0 11.2 11.0 11.1 11.1
valores propios reales 1.5 1.5 1.5 1.5 1.5
vectores propios reales 10.7 10.7 10.7 10.7 10.7

n = 2000
producto 19.7 21.5 40.8 21.5 45.2
inversa 17.9 19.8 42.0 19.9 18.8
solución Ax = b 5.3 6.1 6.5 6.1 5.0
matriz escalonada red. 178.1 184.4 198.9 185.0 183.2
determinante 5.2 6.2 9.6 6.1 6.2
seudoinversa 192.1 205.6 259.9 239.2 244.9
valores singulares 27.1 28.5 28.3 28.2 42.7
SVD 180.2 187.7 245.3 209.3 186.1
rango 27.8 28.6 41.1 28.1 28.3
valores propios complejos 79.0 80.8 99.9 80.5 98.6
valores propios reales 12.5 12.9 12.5 12.8 12.6
vectores propios reales 86.3 88.1 86.5 112.2 86.6

En un curso usual de Álgebra Lineal, una de las maneras enseñadas para
obtener el rango de una matriz consiste en determinar el número de filas no
nulas de la matriz escalonada reducida. Para matrices pequeñas lo anterior
funciona bien. Para matrices grandes, el método más rápido es por medio de
la obtención de los valores singulares.
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4 Cálculo de la SVD

4.1 Cálculo mediante la descomposición espectral

Los valores singulares de A se pueden obtener suponiendo que se conocen λ1
≥ λ2 ≥... ≥ λn los valores propios de ATA,

σi =
√
λi .

Supongamos ahora que se conoce la descomposición espectral de ATA, es
decir, se conoce una matriz diagonal Λ y una matriz ortogonal W ∈ Rn×n

tales que
ATA = WΛW T

En el caso trivial, A = 0, entonces U = Im, V = In, S = 0 ∈ Rm×n. Para
los demás casos, sea r el rango de A, o sea, el número de valores singulares
positivos. Inicialmente se construye una matriz U ′ ∈ Rm×r, de la siguiente
manera:

U ′(:, j) =
1

σj
AW (:, j) , j = 1, ..., r. (2)

Las columnas de U ′ son linealmente independientes. Se puede construir U ′′ ∈
Rm×m agregando columnas a U ′ de tal forma que las m columnas de U ′′

sean linealmente independientes (resultado clásico de Álgebra Lineal). En
seguida, a las columnas de U ′′ se les aplica el proceso de ortogonalización de
Gram-Schmidt para obtener la matriz U . La matriz V será simplemente W .

Ejemplo 3.

A:

-1 2 1

3 4 7

5 6 11

8 9 17

W:

0.373876 0.725868 0.577350

0.441682 -0.686719 0.577350
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0.815558 0.039148 -0.577350

val. propios: 691.579685 4.420315 0

val. singulares: 26.297903 2.102454 0

S:

26.297903 0 0

0 2.102454 0

0 0 0

0 0 0

rango = 2

U inicial:

0.050386 -0.979883

0.326918 -0.140426

0.512992 -0.028704

0.792102 0.138877

U completada:

0.050386 -0.979883 1 0

0.326918 -0.140426 0 1

0.512992 -0.028704 0 0

0.792102 0.138877 0 0

U ortonormalizada:

0.050386 -0.979883 0.193110 0

0.326918 -0.140426 -0.797849 0.486664

0.512992 -0.028704 -0.279501 -0.811107

0.792102 0.138877 0.498020 0.324443

V = W:

0.373876 0.725868 0.577350

0.441682 -0.686719 0.577350

0.815558 0.039148 -0.577350
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4.2 Matrices de Householder

Sea v ∈ Rq×1, v 6= 0, u = v/||v|| (vector columna de norma 1). Una matriz
de Householder es una matriz de la forma

H = Hv = H(v) = Iq −
2

vTv
v vT = Iq − 2uuT.

A veces, al mismo tiempo que se obtiene el vector v deseado, se calcula el
número

β =
2

vTv
,

entonces es común expresar H en función de v y de β, aunque β no es
ncesario. Simplemente, desde el punto de vista de eficiencia, si se conoce β
no es interesante volverlo a calcular (son 2n− 1 “flops”).

H = H(v, β) = In − βv vT .

La matriz H tiene dos caracteŕısticas importantes, es simétrica y ortogonal.

Además, si x ∈ Rq×1 se puede escoger v para que

Hvx ∈< e1 > .

es decir,

Hvx =


×
0
...
0


La deducción de cómo escoger v es sencilla. A continuación está un algoritmo
eficiente y que busca disminuir los errores de redondeo [GoV96].
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[v, β] = vHouse(x)
n = dim (x)
t = x(2 : n)Tx(2 : n)
v = [ 1 ; x(2 : n) ]
si t = 0

β = 0
sino

ν =
√
x21 + t

si x1 ≤ 0
v1 = x1 − ν

sino
v1 = −t/(x1 + ν)

fin-si
β = 2v21/(t+ v21)
v = v/v1

fin-si
fin vHouse

Ejemplo 4.

x =

2
3
4

 , β = 0.6286093 , v =

 1
−0.8862198
−1.1816264


H =

0.3713907 0.5570860 0.7427814
0.5570860 0.5062994 −0.6582675
0.7427814 −0.6582675 0.1223100

 , Hx =

5.3851648
0
0


En la mayoŕıa de las aplicaciones no es necesario construir expĺıcitamente la
matriz H. Lo realmente importante es poder efectuar de manera eficiente
el producto HA o AH. Para esto basta con conocer β y v.

Algunas veces es necesario utilizar matrices de Householder definidas por
bloques. Si H es un matriz de Householder, también lo es una matriz de la
forma [

Is 0
0 H

]
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4.3 Matrices de Givens

Esta es otra clase de matrices ortogonales. Sea θ un ángulo y

c = cos(θ)

s = sen(θ),

La matriz de Givens, en Rq×q, es simplemente un rotación definida en el
plano de las variables i y k:

G = G(i, k, c, s, q) =



1 0 · · · 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0 · · · 0
...

. . .

0 0 · · · c s 0
...

. . .

0 0 · · · −s c 0
...

. . .

0 0 · · · 0 · · · 0 · · · 1


i

k

El producto y = GTx se calcula muy fácilmente:

yj =


cxi − sxk si j = i,

sxi + cxk si j = k,

xj en los demás casos.

Si se desea que yk = 0, basta con tomar

c =
xi√

x2i + x2k
,

s =
−xk√
x2i + x2k

.

En la práctica, es mejor utilizar la siguiente versión para el cálculo de c y s
(ver [GoVa96]),
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[c, s] = csGivens(a, b)
si b = 0

c = 1
s = 0

sino
si |b| > |a|

t = −a/b
s = 1/

√
1 + t2

c = st
sino

t = −b/a
c = 1/

√
1 + t2

s = ct
fin-si

fin-si
fin csGivens

Por medio de esta función [
c s
−s c

]T [
a
b

]
=

[
×
0

]
.

Ejemplo 5.

Para el vector[
a
b

]
=

[
2
−3

]
por medio de la función se obtiene

c = 0.5547002
s = 0.8320503

y aśı [
c s
−s c

]T [
2
−3

]
=

[
3.6055513

0

]
.

4.4 Bidiagonalización de una matriz

Sea B una matriz m×n con m ≥ n. Se dice que B es bidiagonal (superior) si
todos los elementos por fuera de la diagonal y de la superdiagonal son nulos.

El proceso de bidiagonalización utiliza matrices de Householder. Primero
se buscan ceros, por debajo de la diagonal, en la columna 1. Después se
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buscan ceros, a la derecha de la superdiagonal en la fila 1. Después ceros en
la columna 2. Después ceros en la fila 2. Después ceros en la columna 3. ...

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×



× × × ×
× × ×
× × ×
× × ×
× × ×



× ×
× × ×
× × ×
× × ×
× × ×



× ×
× × ×
× ×
× ×
× ×



× ×
× ×
× ×
× ×
× ×



× ×
× ×
× ×
×
×



× ×
× ×
× ×
×



datos: A ∈ Rm×n, m ≥ n
B ← A
para k = 1 : n

si k ≤ m− 1
[β, v] = vHouse(B(k : m, k) )
B(k : m, k : n)← H(β, v)B(k : m, k : n)

fin-si
si k ≤ n− 2

[β, v] = vHouse(B(k, k + 1 : n)T )
B(k : m, k + 1 : n)← B(k : m, k + 1 : n)H(β, v)

fin-si
fin-para

Si se desea obtener las matrices P y Q ortogonales tales que B = PAQ,
entonces es necesario ir almacenando las operaciones que se efectúan sobre
B. Aśı, inicialmente P = Im. Las multiplicaciones por la izquierda que se
hacen sobre B, también deben hacerse sobre P . Por ejemplo

P (k : m, k : n)← H(β, v)P (k : m, k : n)

De manera análoga, en Q se almacenan las multiplicaciones por derecha.

Ejemplo 6.
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3 2 0 4

-1 0 5 4

2 5 3 5

-1 4 1 3

4 -1 4 5

columna 1

beta = 0.461184

v^T: 1 0.389444 -0.778888 0.389444 -1.557775

H izq

0.538816 -0.179605 0.359211 -0.179605 0.718421

-0.179605 0.930054 0.139892 -0.069946 0.279785

0.359211 0.139892 0.720215 0.139892 -0.559569

-0.179605 -0.069946 0.139892 0.930054 0.279785

0.718421 0.279785 -0.559569 0.279785 -0.119139

B

5.567764 1.436842 2.873685 6.286186

0 -0.219318 6.119139 4.890341

0 5.438636 0.761722 3.219318

0 3.780682 2.119139 3.890341

0 -0.122727 -0.476555 1.438636

fila 1

beta = 0.796471

v^T: 1 -0.511076 -1.117979

H der

0.203529 0.407057 0.890438

0.407057 0.791963 -0.455082

0.890438 -0.455082 0.004509

B

5.567764 7.059654 0 0

0 6.800750 2.531349 -2.957949

0 4.283588 1.352040 4.510639

0 5.096197 1.446810 2.419622

0 1.062053 -1.082068 0.114077

columna 2

beta = 0.289808

v^T: 1 -1.543533 -1.836346 -0.382697

H izq

0.710192 0.447328 0.532188 0.110909
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0.447328 0.309534 -0.821450 -0.171191

0.532188 -0.821450 0.022719 -0.203666

0.110909 -0.171191 -0.203666 0.957556

B

5.567764 7.059654 0 0

0 9.575934 3.052514 1.217372

0 0 0.547605 -1.934107

0 0 0.489771 -5.247711

0 0 -1.281516 -1.483804

fila 2

beta = 0.071143

v^T: 1 -5.206975

H der

0.928857 0.370437

0.370437 -0.928857

B

5.567764 7.059654 0 0

0 9.575934 3.286310 0

0 0 -0.207818 1.999363

0 0 -1.489020 5.055805

0 0 -1.740002 0.903521

columna 3

beta = 1.090373

v^T: 1 0.593855 0.693953

beta = 1.090373

v^T: 1 0.593855 0.693953

H izq

-0.090373 -0.647524 -0.756667

-0.647524 0.615465 -0.449351

-0.756667 -0.449351 0.474909

B

5.567764 7.059654 0 0

0 9.575934 3.286310 0

0 0 2.299560 -4.138108

0 0 0 1.411035

0 0 0 -3.355594

columna 4

beta = 0.612374
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v^T: 1 1.505317

H izq

0.387626 -0.921817

-0.921817 -0.387626

B

5.567764 7.059654 0 0

0 9.575934 3.286310 0

0 0 2.299560 -4.138108

0 0 0 3.640197

0 0 0 0

4.5 Cálculo directo

Se puede suponer que A ∈ Rm×n con m ≥ n . Si no es aśı, se calcula la SVD
de AT.

El cálculo se puede dividir en dos partes. En la primera parte, un proceso
finito, se bidiagonaliza A mediante matrices ortogonales de Householder. En
la segunda parte, proceso iterativo que converge rápidamente, se aplica el
algoritmo de Golub-Kahan para ir anulando paso a paso los elementos su-
perdiagonales. También es necesario tratar el caso de una matriz bidiagonal
con superdiagonal sin ceros y por lo menos un elemento diagonal nulo. Se
utilizan matrices ortogonales de Givens

4.6 Algoritmo de Golub-Kahan

Dada una matriz B ∈ Rn×n, bidiagonal estricta (no tiene ceros en la diagonal
ni en la superdiagonal), este proceso iterativo utiliza matrices de Givens
buscando anular un elemento superdiagonal, el de la posición (n− 1, n).

Dado ε > 0 pequeño, se considera que B bidiagonal, es estricta, si

|bii| ≥ ε||B||, i = 1, ..., n,

|bi,i+1| ≥ ε (|bii|+ |bi+1,i+1|) , i = 1, ..., n− 1.
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datos: B0 ∈ Rn×n, ε
B ← B0

mientras B es bidiagonal estricta
T ← BTB
obtener los valores propios de T (n− 1 : n, n− 1 : n)
µ← valor propio más cercano a tnn
y ← t11 − µ
z ← t12
para k = 1 : n− 1

[c, s]← csGivens(y, z)
B ← BG(k, k + 1, c, s)
y ← bkk
z ← bk+1,k

[c, s]← csGivens(y, z)
B ← G(k, k + 1, c, s)TB
si k ≤ n− 2

y ← bk,k+1

z ← bk,k+2

fin-si
fin-para

fin-mientras

Este algoritmo está basado en el algoritmo QR simétrico para la matriz BTB
pero sin utilizar expĺıcitamente BTB.

La presentación anterior del algoritmo es clara y precisa pero hay operaciones
ineficientes o que nunca se hacen expĺıcitamente. Por ejemplo, no se debe
construir expĺıcitamente T . Tampoco se debe construir expĺıcitamente G
para hacer el producto BG o GTB. Lo indispensable es, por ejemplo, poder
actualizar B como el resultado de BG.

Mejor aún, B se puede representar por medio de dos vectores, d con los
elementos de la diagonal y f con los elementos de la superdiagonal. Aśı todo
el algoritmo se puede efectuar simplemente con d y f .
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B =



d1 f1 0 0 0 0
0 d2 f2 0 0 0
0 0 d3 f3 0 0

0 0 0 0 dn−1 fn−1
0 0 0 0 0 dn


Ejemplo 7.

B inicial:

2 -3 0 0

0 4 -5 0

0 0 -6 -7

0 0 0 8

iter. 1 ------------------------------

submatriz inferior derecha de T

61 42

42 113

valores propios:

37.603644 136.396356

mu = 136.396356 y = -132.396356 z = -6.000000

k = 1 ....................

c = 0.998975 s = -0.045272

B:

1.862133 -3.087468 0 0

0.181088 3.995899 -5 0

0 0 -6 -7

0 0 0 8

y = 1.862133 z = 0.181088

c = 0.995305 s = -0.096791

B final k:

1.870918 -2.686205 -0.483955 0

0 4.275976 -4.976524 0

0 0 -6 -7

0 0 0 8

y = -2.686205 z = -0.483955
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k = 2 ....................

c = 0.984155 s = -0.177308

B:

1.870918 -2.729452 0 0

0 3.325845 -5.655839 0

0 -1.063851 -5.904932 -7

0 0 0 8

y = 3.325845 z = -1.063851

c = 0.952459 s = 0.304667

B final k:

1.870918 -2.729452 0 0

0 3.491851 -3.587918 2.132668

0 0 -7.347352 -6.667213

0 0 0 8

y = -3.587918 z = 2.132668

k = 3 ....................

c = 0.859608 s = 0.510953

B:

1.870918 -2.729452 0 0

0 3.491851 -4.173898 0

0 0 -2.909210 -9.485347

0 0 -4.087627 6.876867

y = -2.909210 z = -4.087627

c = -0.579849 s = 0.814724

B final k:

1.870918 -2.729452 0 0

0 3.491851 -4.173898 0

0 0 5.017191 -0.102687

0 0 0 -11.715484

...

iter. 2 ------------------------------

B final de iteracion:

1.770452 -2.547800 0 0

0 3.209002 -3.539764 0

0 0 5.768936 0.000000

0 0 0 -11.716056
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iter. 3 ------------------------------

B final de iteracion:

1.687270 -2.406186 0 0

0 3.068430 -2.757695 0

0 0 6.330662 0

0 0 0 -11.716056

B final:

1.687270 -2.406186 0 0

0 3.068430 -2.757695 0

0 0 6.330662 0

0 0 0 -11.716056

4.7 Tratamiento de un elemento diagonal nulo

Sea B ∈ Rn×n una matriz bidiagonal con todos sus elementos superdiagonales
diferentes de cero y sea i el mayor ı́ndice tal que bii = 0. Es necesario
considerar dos casos: i < n e i = n.

Supongamos que i < n. El objetivo es anular, paso a paso, toda la fila i por
medio de matrices de Givens. Inicialmente bi,i+1 6= 0. Se busca anular bi,i+1

pero aparece un elemento no nulo, bi,i+2. Entonces se buscar anular bi,i+2

pero aparece bi,i+3 6= 0. Y aśı sucesivamente.

Ejemplo 8. Para n = 5 e i = 2.

B =


× ×

×̄
× ×
× ×
×


Para anular b23:

[c, s] = csGivens(b33, b23)
B ← G(c, s, 3, 2)TB
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Entonces,

B =


× ×

0 ×̄
× ×
× ×
×


Para anular b24:

[c, s] = csGivens(b44, b24)
B ← G(c, s, 4, 2)TB

Entonces,

B =


× ×

0 ×̄
× ×
× ×
×


Para anular b25:

[c, s] = csGivens(b55, b25)
B ← G(c, s, 5, 2)TB

Entonces,

B =


× ×

0
× ×
× ×
×


Aśı acaba el proceso de tratamiento de elemento diagonal nulo.

Consideremos ahora el caso i = n. El objetivo es anular, paso a paso, toda
la columna n por medio de matrices de Givens. Inicialmente bn−1,n 6= 0. Se
busca anular bn−1,n pero aparece un elemento no nulo, bn−2,n. Entonces se
buscar anular bn−2,n pero aparece bn−3,n 6= 0. Y aśı sucesivamente.
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Ejemplo 9. Para i = n = 5:

B =


× ×
× ×
× ×
× ×̄

0


Para anular b45:

[c, s] = csGivens(b44, b45)
B ← BG(c, s, 4, 5)

B =


× ×
× ×
× × ×̄
× 0

0


Para anular b35:

[c, s] = csGivens(b33, b35)
y B ← BG(c, s, 3, 5)

B =


× ×
× × ×̄

y × × 0
× 0

0


Para anular b25:

[c, s] = csGivens(b22, b25)
B ← BG(c, s, 2, 5)
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B =


× × ×̄
× × 0
× × 0
× 0

0


Para anular b15:

[c, s] = csGivens(b11, b15)
B ← BG(c, s, 1, 5)

B =


× × 0
× × 0
× × 0
× 0

0


Aśı acaba el proceso de tratamiento del elemento diagonal nulo bnn.

datos: B0, i
B ← B0

si i < n
para k = i+ 1 : n

[c, s] = csGivens(bkk, bik)
B ← G(c, s, k, i)TB
bik ← 0

fin-para
sino

para k = n− 1 : −1 : 1
[c, s] = csGivens(bkk, bkn)
B ← BG(c, s, k, n)
bkn ← 0

fin-para
fin-si
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También este proceso se puede llevar a cabo con toda la información de B
en dos vectores d y f .

Ejemplo 10.

B

7 5 0 0 0

0 0 8 0 0

0 0 2 3 0

0 0 0 6 1

0 0 0 0 9

i = 2

k = 3

Datos para csGivens: B(3,3), B(2,3) : 2.000000 8.000000

c, s: -0.242536 0.970143

G(c,s,3,2)T B

B ..

7 5 0 0 0

0 0 0 2.910428 0

0 0 -8.246211 -0.727607 0

0 0 0 6 1

0 0 0 0 9

k = 4

Datos para csGivens: B(4,4), B(2,4) : 6.000000 2.910428

c, s: 0.899735 -0.436436

G(c,s,4,2)T B

B ..

7 5 0 0 0

0 0 0 0 -0.436436

0 0 -8.246211 -0.727607 0

0 0 0 6.668627 0.899735

0 0 0 0 9

k = 5

Datos para csGivens: B(5,5), B(2,5) : 9.000000 -0.436436

c, s: 0.998826 0.048436
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G(c,s,5,2)T B

B ..

7 5 0 0 0

0 0 0 0 0

0 0 -8.246211 -0.727607 0

0 0 0 6.668627 0.899735

0 0 0 0 9.010576

Ejemplo 11.

7 8 0 0 0

0 1 4 0 0

0 0 2 5 0

0 0 0 6 9

0 0 0 0 0

i = 5

k = 4

Datos para csGivens: B(4,4), B(4,5) : 6.000000 9.000000

c, s: -0.554700 0.832050

B G(c,s,4,5)

B ..

7 8 0 0 0

0 1 4 0 0

0 0 2 -2.773501 4.160251

0 0 0 -10.816654 0

0 0 0 0 0

k = 3

Datos para csGivens: B(3,3), B(3,5) : 2.000000 4.160251

c, s: -0.433273 0.901263

B G(c,s,3,5)

B ..

7 8 0 0 0

0 1 -1.733093 0 3.605051

0 0 -4.616026 -2.773501 0
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0 0 0 -10.816654 0

0 0 0 0 0

k = 2

Datos para csGivens: B(2,2), B(2,5) : 1.000000 3.605051

c, s: -0.267296 0.963615

B G(c,s,2,5)

B ..

7 -2.138366 0 0 7.708916

0 -3.741175 -1.733093 0 0

0 0 -4.616026 -2.773501 0

0 0 0 -10.816654 0

0 0 0 0 0

k = 1

Datos para csGivens: B(1,1), B(1,5) : 7.000000 7.708916

c, s: -0.672246 0.740327

B G(c,s,1,5)

B ..

-10.412847 -2.138366 0 0 0

0 -3.741175 -1.733093 0 0

0 0 -4.616026 -2.773501 0

0 0 0 -10.816654 0

0 0 0 0 0
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4.8 Algoritmo completo

datos: A ∈ Rm×n con m ≥ n, ε

B ← bidiagonalización(A)
B ← B(1 : n, 1 : n)
fin← 0
mientras fin = 0

para i = 1 : n− 1
si |bi,i+1| ≤ ε (|bii|+ |bi+1,i+1|) ent bi,i+1 ← 0

fin-para
obtener B3, B2, B1 cuadradas tales que:

• B =

B1

B2

B3


• B3 es diagonal
• la superdiagonal de B2 no tiene ceros

si B3 = B
fin← 1

sino
si algún b2ii = 0 (en la matriz B2)

i = max{i : b2ii = 0}
tratamiento de elemento diagonal nulo para B2

sino
aplicar el algoritmo de Golub-Kahan a B2

fin-si
fin-si

fin-mientras
bii ← | bii | para todo i
ordenar de manera decreciente los valores singulares

Ejemplo 12.

A

2 3 4 5

6 7 8 9

10 11 12 -13
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14 15 16 -17

18 19 -20 -21

bidiagonalizacion:

25.690465 38.352907 0 0

0 11.191634 13.501245 0

0 0 10.474484 -27.485191

0 0 0 2.523431

0 0 0 0

iteracion 1

B^1 : []

B^2 :

25.690465 38.352907 0 0

0 11.191634 13.501245 0

0 0 10.474484 -27.485191

0 0 0 2.523431

B^3 : []

FIN de Golub Kahan.

43.104656 -19.165800 0 0

0 3.576374 13.098407 0

0 0 -1.645441 0

0 0 0 -29.959881

Nueva matriz B(1:n,1:n) :

43.104656 -19.165800 0 0

0 3.576374 13.098407 0

0 0 -1.645441 0

0 0 0 -29.959881

iteracion 2

B^1 : []

B^2 :

43.104656 -19.165800 0

0 3.576374 13.098407

0 0 -1.645441

B^3 :

-29.959881

FIN de Golub Kahan.
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47.197868 0.013213 0

0 -0.395548 0

0 0 13.587131

Nueva matriz B(1:n,1:n) :

47.197868 0.013213 0 0

0 -0.395548 0 0

0 0 13.587131 0

0 0 0 -29.959881

iteracion 3

B^1 : []

B^2 :

47.197868 0.013213

0 -0.395548

B^3 :

13.587131 0

0 -29.959881

FIN de Golub Kahan.

47.197870 0

0 -0.395548

Nueva matriz B(1:n,1:n) :

47.197870 0 0 0

0 -0.395548 0 0

0 0 13.587131 0

0 0 0 -29.959881

iteracion 4

B^3 = B
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