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PROLOGO

Este libro es un reimpresién de Programacion Lineal, métodos y progra-
mas, publicado en 1997 por el Departamento de Matematicas de la Univer-
sidad Nacional de Colombia. Tiene los mismos temas, algunas correcciones,
ciertos cambios muy pequenos, un cambio de formato y algunos cambios de
nombre. A lo largo del libro se utiliza muy poco el término Programacion
Lineal, se usa preferentemente Optimizacién Lineal, nombre més diciente
sobre el tema del libro. Programacién Lineal ha sido el nombre tradicional,
pero se presta a confusién con programacion de computadores o lenguajes
de programacion.

Puede ser usado como texto o como libro de referencia para un curso de
Optimizacién Lineal para estudiantes de matematicas, ingenieria, economia
o administracion. Para su estudio o lectura se requieren conocimientos ele-
mentales de Algebra Lineal.

Dependiendo del interés del profesor o del lector, algunos temas pueden
ser complementados y profundizados, otros pueden ser vistos mas répida-
mente. En el libro hay pocas demostraciones, pero en cambio estan, por
un lado los teoremas y proposiciones que justifican los métodos, y por otro
lado hay bastantes ejemplos que muestran el desarrollo de los métodos y la
aplicacién de los teoremas.

Los temas tratados son los usuales: planteamiento de problemas, méto-
do gréfico, conjuntos convexos, teoremas de representacién y optimalidad,
método simplex y sus modificaciones, dualidad, problema del transporte y
analisis de sensibilidad. Estos tépicos pueden ser vistos comodamente en un
semestre.

Aunque algunos temas podrian ser suprimidos, por ejemplo, conjuntos
convexos, los teoremas de representaciéon y optimalidad y el estudio de la
dualidad, y de todas formas se alcanza a obtener una vision de la optimiza-
cién lineal, ésta podria tener cierto sabor a receta.

Es conveniente hacer a mano ejemplos pequetios para poder personalizar
los detalles de cada método y después si comparar los resultados con los de
los programas. En optimizacién lineal es muy facil crear ejercicios, y si son
de dos variables se pueden resolver también graficamente.



X PROLOGO

En la pagina del autor, el lector encontrard programas para la mayoria
de los métodos. Esta la versién para DOS que venia con la primera edicion.
Ademas hay una versién para Windows cuya parte gréafica fue hecha por el
ingeniero Pierre Torres a quien agradezco su colaboracion.

También encontrard una fe de erratas del libro, que se ird completando
a medida que los errores sean detectados. FEn esta pdgina también esta el
cédigo Fortran y otros documentos relacionados con el tema. Actualmente
la direccion es:

www.matematicas.unal.edu.co/ hmora/

Si hay reorganizacion de las paginas de la Universidad, serd necesario entrar
a la pagina de la Universidad

www.unal.edu.co

ir a la Sede de Bogot4, la Facultad de Ciencias, el Departamento de Ma-
tematicas y la pagina del autor.

En la version para DOS, los resultados salen generalmente en un archivo
y por lo tanto deben ser “vistos” con cualquier editor de archivos ASCII.
Mediante el programa leame (leame.exe), se tiene acceso a la informacion
sobre los diferentes programas. También se puede tener informacién sobre
los programas “mirando” el archivo pl.txt.

Quiero agradecer a los evaluadores de este trabajo, a los estudiantes del
curso Programacion Lineal de las carreras de Ingenieria de Sistemas y de
Matematicas, en especial a Patricia Jaime. Las sugerencias, comentarios y
correcciones de todos ellos, fueron muy ttiles. También doy gracias al profe-
sor Gustavo Rubiano, Director de Publicaciones de la Facultad de Ciencias,
quien me animé a preparar esta edicién y facilité su publicacién.

El texto fue escrito en KIEX. Quiero también agradecer al profesor
Rodrigo De Castro quien amablemente me ayuddé a resolver las inquietudes
y los problemas presentados.

El autor estard muy agradecido por los comentarios, sugerencias y co-
rrecciones enviados a:

hmora@matematicas.unal.edu.co hectormora@yahoo.com

Finalmente, y de manera muy especial, agradezco a Hélene, Nicolas y
Sylvie. Sin su apoyo, comprension y paciencia no hubiera sido posible escri-
bir este libro.



NOTACION

M(m,n) = R™*" = conjunto de matrices reales m x n, o sea, de m filas y n
columnas. Si A € M(m,n), entonces A es de la forma:

all a19 e A1n

any an N ¢ )
A=

aAml Am2 ... Omn

a;; = elemento o entrada de la matriz A, en la fila ¢ y en la columna j.
M(n,1) = R™! = { matrices columna de n componentes }.
M(1,n) = RY>" = { matrices fila de n componentes }.
RIX1 — R
AT = transpuesta de la matriz A.
R" = { (z1,22,...,2p ): xj € R Vj}.

R™ := M(n,1) = R™*!, es decir:

1
49
r=(21,22,...,2n ) = | .
xn
T
xh = [331 Ty ... xn]
A;. = fila i-ésima de la matriz A = [ail aig ... am].
a1j
C . azj
A.; = columna j-ésima de la matriz A = | |
Amj

A = A®) = matriz A en la iteracién k, k=0,1,2...



XII NOTACION

(Q)* = k veces el producto de la matriz @ por sf misma.

= inversa de la matriz @)

n = nuamero de variables.

m = numero de restricciones.

p = n—m = numero de variables libres (problemas en la forma estandar).

z= c'x = c1x1 +coxo+. ..+ cpx, = funcidén objetivo o funcién econémica
(generalmente para minimizacion).

c= (c1,¢2,...,¢p) = [cl cy ... cn]T = vector de costos.
z es acotado < z es acotado inferiormente (problema de minimizacién).
Aj.x = apx1 + apre + ...+ agpr, = lado izquierdo de la restriccién .
b; = término independiente o lado derecho de restriccion 1.
min z := minimizar z.
max z := maximizar z.

T >y & x>y S x; >y para todo .

r >0 < x>0 < x; > 0 para todo i.

¢; = costo reducido de z; (denotado algunas veces ¢; — z;).

A = matriz (m+1) x (n+1) obtenida a partir de A agregandole una tltima
fila de costos reducidos y una tultima columna de términos indepen-
dientes.

~ A b
A=|_
- o
r>0yxF 0 < x>0,3x; =0.
. " min z=c'z
min z=c"x sWieto a
Az =D = )
>0 Ax =
= x> 0.

|S| = ndmero de elementos del conjunto S.

XII



NOTACION XIII

F={xeR": Ar = b,z > 0 } = conjunto admisible de un problema en la
forma estandar.

z* = wvalor éptimo de z, cuando existe.

n
*
I

;Z:Argerglinf(m) ={zeS: f(z) < f(x), Yz € S}.

x* = argmin f(z) cuando Argmin f(z) = {z*}.
xeS zeS

|C

= #(C) = cardinal del conjunto C'.

En la escritura de numeros decimales, los enteros estdn separados de
los decimales por medio de un punto. No se usa la notacion espanola
(los enteros estén separados de los decimales por una coma). No se
utiliza un simbolo para separar las unidades de mil de las centenas.

XIII






Capitulo 1

INTRODUCCION

La optimizacion lineal o programacion lineal tiene como objetivo opti-
mizar (minimizar o maximizar) funciones lineales, de varias variables, con
restricciones (igualdades o desigualdades), también lineales.

La optimizacién lineal estudia y resuelve problemas dados por modelos
matematicos deterministas, con hipétesis de linealidad, aditividad y de no
negatividad de las variables.

Se entiende por modelo matemético una descripcién en términos mate-
maticos, lo mas fiel posible, de una realidad.

El término determinista indica un conocimiento exacto y preciso de los
coeficientes utilizados en la funcién objetivo y en las restricciones. Esta
condicién parece ser muy extrema y poco préactica, sin embargo, el andlisis
de sensibilidad permite usar la optimizacién lineal en los casos de datos no
muy precisos.

Cuando la funcién objetivo no es lineal sino cuadratica, se trata en-
tonces de optimizacion cuadratica. En general, si la funcién objetivo o las
restricciones no son lineales se habla de optimizacién no lineal.

La hipétesis de aditividad indica que el efecto total es obtenido por la
suma de los efectos particulares de cada variable.

Veamos a continuacién algunos ejemplos tipicos de problemas reales cuyo
modelo matemaéatico es un problema de optimizacion lineal.
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1.1. Un problema de asignacién de recursos

Una fabrica elabora dos productos diferentes P; , P> y utiliza tres maqui-
nas diferentes My , My, M3 . Ambos productos requieren el uso, sin importar
el orden, de las tres maquinas. Cada unidad del producto P; requiere una
hora en cada una de las tres maquinas. Cada unidad del producto Ps re-
quiere una hora en la maquina M; y dos horas en la maquina Ms. Las
disponibilidades mensuales de las maquinas M, Ms, M3 son 400, 580 y
300 horas, respectivamente. La materia prima necesaria para la fabricacion
de los productos es muy facil de obtener y se consigue en cantidades tan
grandes que se pueden suponer ilimitadas.

Después de hacer el cdlculo de todos los gastos necesarios para la fa-
bricacién, publicidad, distribucién, comercializacién y teniendo en cuenta el
precio de venta, se obtiene que el beneficio por cada unidad del producto P;
es $1000. Para el producto P, el beneficio unitario es $1400.

Al estudiar la demanda actual para los dos productos, la compania pien-
sa que puede vender toda su produccion. El gerente desea organizar su
produccién para que ésta sea Optima.

1.1.1. Modelacién del problema

A partir del momento en que se desea representar un problema por un
modelo matemaético, lo primero que se necesita es precisar lo que se busca,
es decir, hay que definir las variables del problema.

En el problema anterior, la adecuada organizacion de la produccién se
traduce por el conocimiento del nimero de unidades de cada producto que
hay que fabricar mensualmente.

Sean:

21 = numero de unidades del producto P; que deben ser fabricadas cada
mes.

ro = numero de unidades del producto P> que deben ser fabricadas cada

mes.

Una vez definidas las variables, se necesita expresar la funcién objetivo
o funcién econdémica utilizando estas variables.
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En este ejemplo, la compania desea maximizar el beneficio neto, es decir:
maximizar z = 100027 + 1400x5.

Es claro que las variables no pueden tomar todos los valores posibles, en este
ejemplo hay que tener en cuenta la disponibilidad mensual de las méquinas.

La maquina M; es usada una hora por cada unidad del producto P; y
una hora por cada unidad del producto P». Su disponibilidad es de 400
horas al mes. Esto se puede expresar mediante la siguiente desigualdad

1 + 22 < 400.

Cada unidad del producto P; requiere una hora en la maquina M- . Cada
unidad del producto P, requiere dos horas en esta maquina. Cada mes hay
580 horas disponibles en la maquina M» . Esta restriccién se puede expresar:

x1 + 229 < 580.
Finalmente, para la maquina M3 se tiene:
1 < 300.

Es claro que las variables x1 , 2 no pueden tomar valores negativos, ya que
no tiene sentido hablar, por ejemplo, de producir —5 unidades del producto
P> ; entonces

ry >
Ty 2 07
o también
z; >0, 1=1,2,
o simplemente
x> 0.

La no negatividad de las variables es una restriccién comun a casi todos los
problemas de optimizacion lineal.

En este problema se puede pensar que las variables x; , o deben tomar
valores enteros (no tiene sentido producir 249.2 unidades del producto P;).
Sin embargo, puesto que se trata de nimeros relativamente grandes y los
métodos usuales de optimizacién lineal suponen que las variables pueden
tomar valores no enteros, se puede hacer la aproximacién de un ntmero no

3
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entero al niimero entero mas préximo. Es decir, si al resolver el problema
se obtiene que la produccién éptima es de 75.8 y de 249.2 se puede tomar
como resultado éptimo x1 = 76, xo = 249.

Es obvio que si los valores de las variables y de las cantidades utilizadas
en el problema son pequenos, es muy importante tener en cuenta que las va-
riables deben ser enteras (por ejemplo, no se puede aproximar tan facilmente
una produccién de 2.6 cohetes espaciales a tres). En este caso se tratard de
un problema de optimizacién entera.

A lo largo de estas notas siempre se supondra, salvo mencion expresa de
lo contrario, que los valores de las variables pueden ser no enteros y que en
los casos en que deberian ser enteros, se trata de cantidades relativamente
grandes, que permiten aproximar el resultado final por valores enteros.

Hechas estas aclaraciones, el modelo final del problema es el siguiente:

max z = 1000x; + 140029
sujeto a
xr1 + T < 400
T + 2x9 < 580
1 < 300
x> 0.

Con el fin de hacer mas compacta la presentacién, sin perder precision, se
omitira de aqui en adelante “sujeto a”, o a veces, “tal que”, pero siempre el
significado serd: minimizar una funcién o valor z que depende de x1, ..., Z,,
donde ademds, x estd sujeto a las restricciones que siguen a la funcién
objetivo.

1.2. El problema del transporte

Una compania elabora un producto en dos fabricas F}, F» y tiene tres
centros de distribucién Dy, Do, D3 . La capacidad maxima de produccion
semanal de las fabricas F}, F5 es de 100 y 150 unidades. Las demandas
semanales en los centros de distribucién son 70, 80 y 90 unidades. Los
costos unitarios de transporte de las fabricas a los centros de distribucion
estdn dados en la siguiente matriz (en pesos). Las filas corresponden a las
fébricas y las columnas a los destinos.

15 18 24
32 17 11

4
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La compaiia desea organizar de la mejor manera posible el transporte de su
producto.

Sea x;; = numero de unidades del producto que deben ser llevadas
semanalmente de la fabrica F; al centro de distribucién D;, donde i = 1, 2,
j=1,23.

La funcién objetivo estd dada por la minimizacion del costo del trans-
porte:

minimizar z = 15x11 + 1812 + 24x13 4+ 32291 + 17222 + 112x23.

Hay dos clases de restricciones fuera de las de no negatividad: restricciones
con respecto a la produccién y restricciones con respecto a la demanda. Las
restricciones con respecto a la produccién son:

x11 + x12 + 213 < 100,
T21 + T2 + w23 < 150.

Restricciones con respecto a la demanda:

x11 + 221 = 70,
T19 + x99 = 80,
x13 + x23 = 90.

Restricciones de no negatividad:
x5 >0 para todo ¢ y para todo j.
En resumen:

min z = 15211 + 18x12 4+ 24x13 4+ 32291 + 17x99 + 112903
r11 + x12 + 13 < 100

To1 + xo9 + x93 < 150

x11 + 221 = 70
T12 + Too = 80
213 + w23 = 90
x;; > 0  para todo i, j.

5
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1.3. Un problema de dieta

Un ama de casa desea hacer un almuerzo equilibrado utilizando los si-
guientes productos: carne, papas, habichuela, leche y guayaba. Los precios
por kilo de estos alimentos son respectivamente: $700, $80, $250, $70 y $80.
Aqui estamos suponiendo que la leche se vende por kilos, o lo que es apro-
ximadamente lo mismo, que un litro de leche pesa un kilo. La familia esta
compuesta por 6 personas y cada persona debe consumir 800 calorias (en el
almuerzo). Para que la alimentacién sea equilibrada debe estar compuesta
de 20 % de proteinas, 30 % de grasas, 50 % de glicidos o carbohidratos. Es-
tos porcentajes estan dados con respecto a la materia seca, es decir, sin tener
en cuenta el agua contenida en los alimentos. Obviamente, hay muchas més
condiciones que se deben tener en cuenta y aqui se hace una simplificaciéon
para facilitar el planteamiento del problema. En la siguiente tabla se expresa
la composicién de cada alimento y su aporte caldrico.

% % % % Calorias

Proteinas | Grasas | Glicidos | Agua | por kilo
Carne 10 10 0 80 1300
Papas 2 0 20 78 880
Habichuelas 1 0 5 94 240
Leche 5 3 5 87 670
Guayaba, 1 0 15 84 640

El ama de casa desea saber cémo organizar su mercado de tal forma
que se cumplan las restricciones nutricionales y que, ademas, se minimice el
costo.

Sean:

x1 = cantidad (kilos) de carne que hay que comprar para el almuerzo de las
seis personas.

x9 = cantidad (kilos) de papa que hay que comprar..

(
xs = cantidad (kilos) de habichuela que hay que comprar..
x4 = cantidad (kilos) de leche que hay que comprar...

(

x5 = cantidad (kilos) de guayaba que hay que comprar..

6
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Funcién objetivo:
min z = 700x1 + 80x2 + 250z3 + 70x4 + 80zs.
Cantidad de calorias:
130021 4 880xy + 240x3 + 6704 + 64025 = 4800.
Porcentaje de proteinas:

cantidad de proteinas = 0.2(cantidad total de materia seca)

0.10z1 + 0.02z2 4+ 0.01x3 + 0.0524 + 0.01zs =
0.2(0.20z1 + 0.2229 4+ 0.06x3 + 0.13x4 + 0.16x5).

Multiplicando por 100 ambos lados de la igualdad:
10z; + 2x9 + 3 + bxgy + x5 = 0.2(202) + 2229 + 623 + 1324 + 1625).
Porcentaje de grasas:
1021 + 3x4 = 0.3(20z1 + 2229 + 623 + 1324 + 1625).
Porcentaje de glicidos:
20x9 + 5x3 + bxg + 1525 = 0.5(20x1 + 2229 + 623 + 1324 + 1625).
Condiciones de no negatividad:
x>0, 1=1,2,...,5.
En resumen:

minz = 700x1 + 80x9 + 250x3 + 70x4 + 80x5

1300x1 + 880x2 4 240x3 + 670x4 4+ 64025 = 4800
6x1 — 2.4x9 — 0.223 + 2.4x04 — 2.225 = 0
4r1 — 6.6x290 — 1.823 — 0924 — 4.825 =0

—10z1 + 929 + 223 — 1.524 + 725 = 0
x> 0.
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Con un poco de observacién se puede ver que la tltima restriccion es el
inverso aditivo de la suma de la segunda y tercera restriccién, por lo tanto
se puede suprimir esta ultima restriccion.

Por lo general, al plantear un problema no es prioritario tratar de ver
si hay restricciones redundantes o de averiguar si el problema es consisten-
te (hay puntos que cumplen todas las restricciones) o inconsistente. Estos
aspectos deben resultar durante la solucién del problema. Si el plantea-
miento del problema permite inmediata y facilmente suprimir restricciones
redundantes o afirmar la inconsistencia, seria una tonteria no hacerlo.

Plantear problemas de OL puede ser algo muy fécil, pero también llega
a ser muy complicado. Algunos problemas no parecen ser de OL, pero
mediante cambios ingeniosos pueden serlo. Para algunos “usuarios’de la
OL, el planteamiento de problemas es uno de los temas més importantes,
ya que requieren plantear problemas, entrar los datos a un computador e
interpretar los resultados. Plantear problemas requiere, entre otras cosas,
mucha préctica, intuicién, conocimiento del tema del problema y obviamente
un razonamiento consistente.

No parece posible llegar a conocer absolutamente todo sobre la modela-
cién de problemas, pero si se puede adquirir habilidad suficiente para enfren-
tar con éxito una gran cantidad de los problemas maés corrientes o semejantes
a ellos.

EJERCICIOS

1.1. Una cooperativa agricola debe planificar las siembras en n fincas. Para
la finca i, 4 = 1,...,n, se conoce:

S; : superficie (ha) de la finca.
A;: volumen (m?) de agua disponible por dfa.

Es posible sembrar m clases de cultivos. Para el cultivo j, j = 1,...,m,
se conocen los siguientes datos:

Hj : superficie maxima total (ha) que se puede sembrar.
.+ consumo diario de agua (m?) por hectarea.
: nimero de toneladas cosechadas en cada hectarea.

: precio de venta ($) de cada tonelada.

SN S QA

: cantidad inicial ($) que se debe invertir en cada hectérea.

8



1.3. UN PROBLEMA DE DIETA 9

1.2,

1.3.

1.4.

La compania desea conocer x;;, el nimero de hectédreas de la finca i
dedicadas al cultivo j, si se dispone inicialmente de M pesos para la
inversion inicial y se desea maximizar la ganancia (venta—inversién
inicial). Plantee este problema de OL.

Un campesino desea planear su cultivo de maiz por un periodo de 3
anos. Al empezar el primer afio tiene a kilos de granos de maiz y se
sabe que al sembrar un kilo de granos de maiz, al cabo de un ano,
se obtienen b (b > 1) kilos de maiz. Este campesino tiene mucha
experiencia y sabe o puede prever g;, ¢ = 1,...,4, la ganancia neta
correspondiente a la venta de un kilo de maiz al empezar el afio ©.
Al iniciar cada uno de los tres anos el campesino vende una parte del
maiz disponible y siembra el resto. Al finalizar el tercer afio, o sea, al
empezar el cuarto ano, él vende todo el maiz disponible. El campesino
desea saber cuantos kilos debe vender y cudntos sembrar al comenzar
cada uno de los tres anos de tal manera que maximice sus ganancias.
Plantee el anterior problema de OL.

Una compania metalirgica fabrica una aleacién de n metales. Esta
aleacion debe tener exactamente los porcentajes pi,po, ..., pn de esos
n metales. Como la aleacion estd compuesta tinicamente de estos n
metales, entonces p; + p2 + ... + p, = 100. Es posible conseguir en
el mercado local m clases de chatarra que tienen tnica y exactamente
estos n metales, pero en otros porcentajes. Después de un minucioso
estudio se obtuvieron los valores ¢;;, ¢ = 1,...,m, j = 1,...,n, corres-
pondientes al porcentaje del metal j en la chatarra clase ¢. Como
cada una de estas chatarras contiene tnica y exclusivamente estos me-
tales, entonces ¢;1 + gi2 + ... + ¢ip = 100, para todo valor de ¢. Los
costos, por tonelada, de las clases de chatarra son: c¢q, co, ..., ¢;, . La
compania desea conocer los porcentajes x1, x2, ..., T, de cada clase
de chatarra, que debe tener la aleacion, para que ésta tenga un costo
minimo. Plantee el anterior problema de OL.

Una compania de vigilancia evalué sus necesidades de vigilantes, por
periodos de 4 horas, en un gran conjunto residencial, de la siguiente
manera:
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1.5.

Periodo Cantidad
2am. a 6am 34
6am. a 10am 48

10am. a 2pm 37
2pm. a 6pm 35
6 pm. a 10 p.m 32

10 pm. a 2am 30

Cada vigilante trabaja 8 horas al dia, pero de manera continua. La
compania desea organizar la distribucién de sus vigilantes de tal forma
que el ntmero total de vigilantes sea minimo. Plantee el anterior
problema de OL.

El senior Ramoén Martinez tiene un negocio de distribucién de huevos
frescos (menos de 7 dias), en una pequenia bodega cerca de su casa
en Bogotd. Alli vende al por mayor y al detal, de lunes a viernes,
de 8 a.m. a 4 p.m. Todos sus proveedores son amigos o familiares,
que viven en un pueblo del oriente cundinamarqués, y le entregan,
de 7 a 8 a.m., la cantidad solicitada para cada dia por don Ramon,
garantizdndole que los huevos son stper frescos (menos de 48 horas).
La mayoria de las ventas las hace a hoteles, hospitales y cadenas de
restaurantes. Aunque solamente lleva unos meses con este negocio, ya
puede predecir, con bastante precisién, el niimero de cajas de huevos
vendidas cada dia de la semana y el precio al que él compra cada
huevo.

Cantidad | Precio ($)
Lunes 520 60
Martes 680 70
Miércoles 450 85
Jueves 800 80
Viernes 1500 90

De todas maneras don Ramén vende los huevos a $100. Las cajas de
huevos miden 30 cm. x 35 cm. X 40 cm. En su bodega, de noche,
hay espacio para guardar 2000 cajas. Durante el dia hay mucho mas
espacio pues no estdn las dos busetas que su cunado deja por las noches
en la bodega. Para garantizar que los huevos que él vende sean frescos,
don Ramén tomo la determinacién de no dejar huevos en la bodega
entre el viernes en la tarde y el lunes en la manana. Inicialmente don

10
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1.6.

Ramoén pagaba un vigilante para las noches y los fines de semana,
pero un vecino, que trabaja en una compania de seguros, lo convencié
para asegurar su mercancia y asi no tener que pagar vigilante. Don
Ramoén debe pagar $10 por cada caja (de 180 huevos) y por noche, esto
quiere decir, por ejemplo, que no paga nada por las noches de viernes,
sabado y domingo. Para maximizar la ganancia, pidié consejo a su
hijo Ramoncito, quien estudia en la universidad, y precisamente esta
tomando un curso de OL. Como esta materia es nueva para él, pidié
ayuda a su profesor, quien no le resolvié el problema, pero le sugirié
plantearlo facilmente con las siguientes variables: x1 : nimero de cajas
de huevos que compra el lunes; xo: numero de cajas que compra el

martes; ... x5: numero de cajas que compra el viernes; y;: nimero
de cajas que quedan en la bodega el lunes en la noche; 9 : ntimero de
cajas que quedan en la bodega el martes en la noche; ... y4: ntmero

de cajas que quedan en la bodega el jueves en la noche. Plantee el
anterior problema de OL.

Un negociante de frutas y verduras desea mandar tomate, zanahoria,
manzana y maracuyd, de Bogotd a Villavicencio. Para mandar estos
productos tiene la posibilidad de utilizar tres vehiculos: un camién,
un furgén y una volqueta. Las capacidades de estos vehiculos son:

peso (toneladas) | volumen (m?)
camion 20 12
furgén 15 7
volqueta 25 6

El tomate y el maracuya vienen en cajas de madera, la zanahoria viene
en bultos y las manzanas vienen en cajas de cartén: 20 manzanas por
caja. En la siguiente tabla aparecen los valores de: peso de cada
paquete (kilos), volumen necesario para cada paquete (cm?), beneficio
por paquete (pesos) y nimero maximo de paquetes de cada producto.

peso | volumen | beneficio | cantidad
tomate (caja de madera) 20 | 50000 2000 1000

zanahoria (bulto) 60 | 80000 3000 500
maracuya (caja de madera) | 15 | 50000 1500 2000
manzana (caja de cartén) 6 20000 2500 500

Plantee el anterior problema de OL, para maximizar el beneficio total.

11
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1.7.

Un negociante desea transportar m productos Pi, Pa,..., P,,, entre
dos ciudades, para lo cual hay n medios de transporte, Ty, To,..., T},.
Para cada transporte T se conoce:

¢j: capacidad maxima en peso (ton.).
v;: capacidad maxima en volumen (m?).
Para cada producto P; se conoce:

p; : peso unitario (ton.).

u; : volumen unitario (m3).

b; : beneficio unitario ($).

d; : disponibilidad méxima (unidades).

Plantee el anterior problema de OL, para maximizar el beneficio total.

12



Capitulo 2

DIFERENTES FORMAS
DE PROBLEMAS DE
OPTIMIZACION LINEAL

Los problemas de optimizacién lineal pueden ser problemas de minimiza-
cién o de maximizacién; las restricciones pueden ser igualdades, desigualda-
des >, o desigualdades <. Generalmente las variables son no negativas, pero
en algunos casos pueden ser no restringidas. Sin embargo, por convencion,
se supone que todos los problemas son de minimizaciéon y que las desigual-
dades, cuando las haya, siempre son de la forma >. Obviamente, se hubiera
podido tomar la convencién contraria, es decir, problemas de maximizacion
y desigualdades <.

Los problemas de optimizacién lineal pueden ser planteados en alguna de
las siguientes formas, algunas de las cuales son casos particulares de otras.
Como se vera mas adelante, mediante modificaciones o artificios, es posible
convertir un problema de una forma a otra forma.

En general, n indica el nimero de variables y m el ntimero de restric-
ciones. Se designard por M el conjunto de enteros {1,2,...,m} y por N el
conjunto de enteros {1,2,...,n}.

13



14 CAPITULO 2. DIFERENTES FORMAS DE PROBLEMAS

2.1. Forma general

Como su nombre lo indica es el caso méas general, algunas restriccio-
nes son igualdades y otras desigualdades; algunas variables deben ser no
negativas y otras no tienen restricciones.

minimizar z = c1x1 + cax2 + ... + cpTy
sujeto a las restricciones
a;171 + ai2T2 + ... + Qipy > b;, 1€ My C M
ainx1 + aipxo + ... + ainxy =b; 1€ M~ My
Zj > Oa J € Nl c N
z; €R, j&€ NNy

My es el conjunto de indices de las restricciones de la forma > .
M ~ M; es el conjunto de indices de las restricciones igualdades.
Ny es el conjunto de indices de las variables no negativas.

N N~ N; es el conjunto de indices de las variables no restringidas.

Utilizando la notaciéon matricial, un problema de optimizacién lineal en la
forma general es:
minz = c'x
Ajx>b;,, i€ M CM
Ajx=0b;, 1€ M~ M
z; >0, jJENCN
rj €R, j€ NN

2.2. Forma mixta

Es un caso particular la forma anterior, cuando todas las variables son
no negativas, es decir, cuando N; = N.
minz =c'x
Ajx>by, 1€ M CM
Ai.ZU:bZ', 1€ M~ M
x> 0.

14



2.3. FORMA CANONICA 15

2.3. Forma candnica

Esta forma es un caso particular de la forma mixta, cuando todas las
restricciones son desigualdades, es decir, cuando M7 = M.

minz = c'x
A;.x > b;, para todo i
xz >0,

y de manera ain mas compacta:

minz = ¢z
Ax >0
x> 0.

2.4. Forma estandar o tipica

Esta forma es un caso particular de la forma mixta, cuando todas las
restricciones son igualdades, es decir, cuando M1 =0y M ~ My = M.

minz = c'x
A;.x = b;, para todo i
x>0,

y de manera ain més compacta:

minz = ¢z
Ax =b
x> 0.

2.5. Equivalencia entre las diferentes formas

Antes de considerar la equivalencia entre las formas es preciso tener en
cuenta dos aspectos.

i) Todo problema de maximizacién puede ser considerado como un pro-
blema de minimizacién cambiando el signo a la funcién objetivo, es

15



16 CAPITULO 2. DIFERENTES FORMAS DE PROBLEMAS

decir, cambiando el signo a los coeficientes ¢y, co, ..., ¢,. Dicho de
manera mas precisa: los dos problemas siguientes

minz = c"x max ( = —c?

rzeS ’ resS

X

son equivalentes, en el siguiente sentido: un vector x es solucién 6ptima
de un problema si y solamente si es solucion 6ptima del otro problema.
Es obvio que el valor éptimo de z es el inverso aditivo del valor 6ptimo
de C.

1) Una desigualdad de la forma <, puede ser convertida en una desigual-
dad de la forma >, multiplicando ambos miembros de la desigualdad
por —1.

Para ver la equivalencia entre las diferentes formas es necesario poder
convertir igualdades en desigualdades y viceversa, y también convertir va-
riables sin restricciones en variables no negativas.

1. Una desigualdad

ai1r1 + ajprs + ... + ainxy > b,

se puede convertir en una igualdad mediante la introduccién de una
variable de holgura x,1, que debe ser no negativa. La idea es muy
sencilla: al lado izquierdo hay que quitarle una cantidad no negativa
para que quede igual al lado derecho.

a1 T1 + QT 4 .. + QinTy — Tl = b;.
Si la desigualdad es de la forma

ainxi + apxrs + ... + aipey, < by,

la variable de holgura z,11, no negativa, entra acompanada del signo
+.
a;1T1 + @222 + ... + QinTy + Tpe1 = b;.

Por cada desigualdad se introduce una variable de holgura diferente.

2. Una igualdad se puede expresar como dos desigualdades, es decir:

Ai.a: > bi,

Ajx = b es equivalente a x> b

16
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3. Una variable sin restriccion se puede expresar como la diferencia de
dos variables no negativas, es decir:

z; €R
se puede reemplazar por
z; = x; — :c;-’, x;,x;’ > 0.
Este reemplazo debe hacerse en todas las partes del problema donde

intervenga esta variable, es decir, en las restricciones y en la funcion
objetivo.

Estas modificaciones son muy ttiles y algunas veces indispensables. El
método simplex , la herramienta mas usada de la optimizacién lineal, re-
suelve unicamente problemas planteados en la forma estdndar (igualdades
y variables no negativas). El estudio de la dualidad se hace, por lo ge-
neral, para problemas en la forma candnica (desigualdades y variables no
negativas).

Ejemplo 2.1.
max z = x1 + 219 + x4

1 + 229 + x3 + Hry < 40
x1 + 329 + x3 + 44 = 30

r1 + 4zs + 23 > 15
x1 , 23, 142> 0
r9 € R.

Al convertirlo a la forma general de minimizacién se tiene:
min z = —x1 — 29 — x4

—x1 — 2x9 — x3 — by > —40

1+ 3x0 +x3 + 4y = 30
T1 + 4xo + x3 > 15
T, 3, x4> 0

9 € R.

Se obtiene la forma mixta cuando todas las variables son no negativas:
min z = —x; — 2xh + 220 — @y

—x1 — 2xh + 22 — x3 — bxy > —40
z1 + 3ah — 324 + x5+ dxgs = 30
z1 + dah — 4z + x3 > 15

/ !
r1, Ty, Ty, x3, T4=> 0.
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Al introducir variables de holgura se tiene el problema en la forma estandar:

min z = —x; — 225 + 2zl — x4
—x1 — 2xh + 22 — x5 — bxy — x5 =—40
x1 + 3xh, — 32 + x5 + 4day = 30
x1 + 4ol — 42 + 3 —xg= 15

/ 1
$1,$2,$2,$3,1‘4,x5,$62 0.

Se podria cambiar el nombre de las variables para tener, por ejemplo, ¥y,

Y2, ..

., y7. Por otro lado, si el objetivo final era llevar el problema inicial a

la forma estandar, entonces la restriccion

x1 + 229 + x3 + by < 40,

se hubiera podido convertir directamente en igualdad sumando la variable
de holgura x5

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

T1 + 2x9 +x3 + dxy + x5 = 40. O

EJERCICIOS

En los siguientes ejercicios haga los cambios necesarios para colocar el
problema propuesto en cada una de las cuatro formas de minimizacién.

Maximizar z = 3z +4x2, sujetoa x1+ 22 < 3, 221 +x2 =2, 1 > 0.
Maximizar z = 3z + 4xs, sujeto a a1+ 22 < 3, 201 + a2 =2, x > 0.
Maximizar z = 3z + 4xs, sujeto a a1+ 22 =3, 201 + 22 =2, x > 0.
Maximizar z = 3x1 + 429, sujeto a x1 +x2 >3, 221 + 22 > 2, x > 0.
Maximizar z = 3z + 4xa, sujeto a a1+ 22 < 3, 201 + a2 < 2, 2 > 0.
Maximizar z = 3x1 + 422, sujetoa 1 +x2 =3, 2x1 + 22 =2, ¢ < 0.
Maximizar z = 3x1 + 4x9, sujeto a x1 + 9 = 3, 221 + 22 = 2.

Maximizar z = min{x1, x2}, sujeto a z1+x2 < 3, 2x1+x9 < 2,2 > 0.

Maximizar z = min{3z1,4x2}, sujeto a x1 + z2 < 3, 221 + 22 < 2,
z > 0.

Maximizar z = 3x1 +4xs+x3, sujetoa z14+x2+x3 < 3, 201 +22 > 2,
T +x3 =2, 21,22 > 0.

18



Capitulo 3

METODO GRAFICO

El método grafico sirve para resolver, con una precisién aceptable, una
gran parte de los problemas de optimizacion lineal de dos variables. Tiene
dos etapas importantes, la primera es la determinacién de la regién ad-
misible o realizable o factible (el conjunto de puntos que cumplen todas las
restricciones) y la segunda es la busqueda del punto éptimo (o de los puntos
6ptimos) en la regién admisible.

La determinacién de la regién admisible es muy sencilla, pues se trata de
obtener la interseccién de semiplanos (desigualdades) y de rectas (igualda-
des). Como generalmente las variables son no negativas, el estudio se hace
Unicamente en el primer cuadrante. El conjunto admisible estard entonces
limitado por semirrectas (en este caso el conjunto admisible no es acotado)
o por segmentos de recta. Los valores de las coordenadas de los vértices
se pueden determinar graficamente o de manera mas precisa, analiticamen-
te, calculando la solucién de las dos ecuaciones (rectas) que determinan el
vértice (un vértice corresponde a la nocién, que se vera posteriormente, de
punto extremo de un convexo).

Una vez hallada la regién admisible se procede a buscar el 6ptimo. Se
necesita entonces saber como varia la funcién objetivo y, sobre todo, en qué
direcciéon mejora. Una manera sencilla consiste en dar dos valores arbitrarios
diferentes a z y dibujar las rectas (paralelas) correspondientes. Esto permite
saber en qué sentido mejora el valor de z. Para cualquier otro valor de z, la
recta correspondiente serd paralela. Unicamente queda por encontrar una
de estas rectas paralelas, con el mejor valor posible de z y que pase al menos
por un punto de la regién admisible.

19



20 CAPITULO 3. METODO GRAFICO

3.1. Region acotada

Ejemplo 3.1.
max z = x1 + 1.4x9

xr1 + x9 < 400
1+  2x9 < 580
T <300

x> 0.

x1 + 2 = 400

x1 = 300

N\(220,180)

N WQ = 580

400\

Figura 3.1

La determinacién de la regién admisible da como resultado un conjunto
delimitado por cinco segmentos, cuyos vértices son:

Al dar a z los valores 0 y 100, dos valores arbitrarios, se obtienen las rectas
0 =21+ 1.4,
100 = z1 + 1.4z9.

20



3.2. REGION NO ACOTADA 21

Al observar el dibujo y las dos rectas se puede saber en qué direccion se
debe mover una recta paralela para mejorar el valor de z (més o menos en la
direccién noreste), o sea, hasta el punto (220, 180), con un valor de z igual
a 472. Un mejor valor de z daria como resultado una recta que no pasa por
la regién admisible. Entonces

z* = (220,180),
2* =472. O

Cuando la regiéon admisible es acotada se puede, en lugar de dibujar dos
rectas correspondientes a dos valores diferentes de z, calcular el valor de
z para cada uno de los vértices y escoger el mejor vértice (o los mejores
vértices).

Ejemplo 3.2. En el ejemplo anterior la regién es acotada y el calculo de z
da los siguientes resultados:

( 0, 0)7 z= 0,
(300, 0), 2 =300,
(300, 100), =z = 440,
(220, 180), z = 472,
(0, 290), =z = 406.

Entonces el punto 6ptimo es x* = (220, 180) y el valor éptimo de la funcién
objetivo es z* =472. &

3.2. Region no acotada

Ejemplo 3.3.

min z = 3z + 1029

T+ 2m9> 4
S5r1 + 219> 12
x> 0.

21



22 CAPITULO 3. METODO GRAFICO

T1+2x9 =4

5x1 + 220 = 12

Figura 3.2

Dando a z los valores 0 y 30 se obtienen las rectas

3x1 + 10z = 0,
3x1 + 10x9 = 30.

y se sabe entonces que el valor de z mejora al desplazar las rectas en la
direccién suroeste (aproximadamente).

Los vértices de la figura son: (2,1), (4,0), (0,6). Sin embargo, la regién
admisible no estd totalmente determinada por estos tres vértices. Ademas,
es claro que el conjunto factible no es acotado, pero el valor 6ptimo de z se
obtiene en el punto z* = (4,0) con z* = 12. <&

22
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3.3. ()ptimo no acotado

Ejemplo 3.4.
max z = 10x1 + 8z

1+ 220 > 4
5r1 + 219 > 12
x> 0.

En este ejemplo la region admisible es la misma. La funcién z mejora en
la direccién noreste y no hay limite para encontrar una recta z mejor que
las anteriores y que pase por un punto admisible. En este caso hablamos de
un 6ptimo no acotado o no finito. Lo ideal es que x1, 22 tomen valores
muy grandes. <

3.4. Otros casos

Ejemplo 3.5.
min z = 8x1 + 16x9

1+ 220> 4
5r1 + 2390 > 12
xz > 0.

En este caso los puntos que estéan en el segmento que une (2,1) con (4,0),
para los cuales z = 32, son puntos 6ptimos. Un punto del segmento é6ptimo
es un punto de la forma

o= (1-A)(2,1) + A(4,0), Xel0,1].

En el ejemplo anterior hay un ntimero infinito de soluciones, pero este con-
junto es acotado. <

Ejemplo 3.6.
min z =Tz

x1+ 2290 > 4
5x1 + 2x9 > 12
x> 0.

En este caso los puntos de la semirrecta que parte del punto (0, 6) y sigue en
la direccion del eje xo, son puntos éptimos con un valor éptimo de z* = 0.

23
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Los puntos de esta semirrecta éptima son de la forma:
2" = (0,6) + p(0,1), u>0.

En este ejemplo, ni el conjunto admisible ni el conjunto de puntos éptimos
son acotados. <

Ejemplo 3.7.
min z = 7x1 + 9x9

T1 4+ 2x9 > 4
S5r1 + 2x9 > 12
1+ w2 < 1

x> 0.

Al hacer la interseccién de los conjuntos determinados por cada restriccién
se obtiene el conjunto vacio. Esto se ve con facilidad ya que se trata sim-
plemente del conjunto admisible de los anteriores ejemplos, intersectado con
el semiplano x; + x2 < 1. Es decir, no hay puntos que cumplan todas las
restricciones, o mas simplemente, el problema no tiene solucién. <

EJERCICIOS

Resolver por el método gréfico los ejercicios 3.1 a 3.10. Averiguar si hay
puntos factibles. Si hay puntos factibles averiguar si hay puntos éptimos. Si
hay puntos éptimos, encontrarlos todos.

3.1. Maximizar z = x1 + z2, sujeto a x1 <4, 1+ 222 <8, 22 < 3,z > 0.
3.2. Minimizar z = x1 + x9, sujeto a x1 <4, 11+ 222 <8, 20 <3, x > 0.

3.3. Minimizar z = —2x1 — 4x9, sujeto a x1 < 4, x1 + 2x5 < 8, x5 < 3,
xz > 0.

3.4. Minimizar z = —2x1 — 4x9, sujeto a x1 < 4, x1 + 222 < 8, 211 + 22 >
11, 20 <3,z > 0.

3.5. Minimizar z = bx; + 4z, sujeto a —x1 + 29 < 3, 1 + 22 > 4
x|+ 2x9 > 5, 2 > 0.

3.6. Minimizar z = 2x; + 4z, sujeto a —x1 + 9 < 3, x1 + x2 > 4,
1+ 2x9 > 5, x> 0.
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3.4. OTROS CASOS 25

3.7. Minimizar z = —2x; — 3x2, sujeto a —x1 + 22 < 3, x1 + T2 > 4,
T+ 229 > 5, x > 0.

3.8. Minimizar z = 3x; — 3z, sujeto a —x1 + x93 < 3, 1 + x2 > 4,
T1 + 229 > 5, x > 0.

3.9. Maximizar z = 2z + 3x2, sujeto a —x1 + 12 < 3, x1 + 3 > 4,
T+ 229 > 5, x > 0.

3.10. Maximizar z = —3x1 + 3x2, sujeto a —x1 +x2 < 3, 1 + 29 > 4,
x|+ 229 > 5, x > 0.
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Capitulo 4

CONJUNTOS CONVEXOS

Sea V el espacio vectorial R™. La mayoria de las definiciones y resultados
que siguen, se pueden generalizar ficilmente a otros espacios vectoriales.

4.1. Convexos, envolventes, combinaciones

convexo convexo convexo

no convexo no convexo no convexo

Figura 4.1

Definicion 4.1. Sea C' un subconjunto de V. Se dice que C' es convexo si
dados z,y en C, A un escalar en el intervalo [0, 1], entonces z = (1 —X)z+ Ay
también estd en C. Graficamente, un conjunto C es convexo si dados dos
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28 CAPITULO 4. CONJUNTOS CONVEXOS

puntos x,y en C, cualquier punto del segmento de recta que los une, también
esta en C.

Ejemplos triviales de conjuntos convexos son: V, (), {Z}.

Ejemplo 4.1. {(z1,22): 22 + 22 < 1} es convexo. <

<

Ejemplo 4.2. {(z1,72): 29 = 23} no es convexo ya que (0,1) = 1(1,1)
+3(—1,1) no estd en el conjunto. <

Definicion 4.2. Dados ¢ € R", ¢ # 0, a € R, se llama hiperplano al
siguiente conjunto:

H=H,,={zeR": c"z=a}
Este hiperplano genera dos semiespacios:

H" ={x € R": "z > a},
H ={zeR": "z < a}.

En R un hiperplano es un punto y los semiespacios semirrectas. En R?
los hiperplanos son las rectas y los semiespacios los semiplanos. En R3 los
hiperplanos son los planos.

Los tres conjuntos H, H*, H~ son convexos. Veamos que H es convexo.
Sean: z,y € H, A € [0,1], 2z = (1 — A\)z 4+ Ay. El punto z estd en H siy
solamente si ¢Tz = «; efectuando el cédlculo:

CTz=c"((1=Nz+Xy)=(1=Nc"z+A"y=(1-Na+I=a.

Luego z esta en H, luego H es convexo. En esta demostracién no se utilizd
que A € [0, 1], entonces no solo los puntos del segmento de recta estdn en
H, sino que todos los puntos de la recta que pasa por x y y también estdn
en H (H es una variedad lineal o variedad afin).

Sean: x,y € H™, A € [0,1], z = (1 — A)z + \y. Entonces ¢z > a,
cfy>a, A\, 1—-X>0.

CTz=c"(1=XNz+Xy) =(1=XNc"z+ A"y >(1-Na+Ia=a.

Entonces H' también es convexo, y de manera semejante se comprueba que
el semiespacio H~ es convexo.
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4.1. CONVEXOS, ENVOLVENTES, COMBINACIONES 29

Es facil demostrar que la interseccién de dos convexos es un conjunto
convexo. Sean: C, D convexos, x,y € CND, A€ [0,1], z = (1 — Nz + \y.
Como C' es convexo, entonces z € C. Como D es convexo z € D. Luego
zeCND.

Mads aun, la interseccién de cualquier familia de conjuntos convexos es un
convexo, independientemente de que la familia sea finita, infinita enumerable
o infinita no enumerable. En cambio no se puede afirmar que la unién de
dos convexos sea siempre un convexo.

Las restricciones de un problema de optimizacién lineal son igualdades,
es decir representan hiperplanos, o bien, son desigualdades y en este caso
representan semiespacios. Asi, cualquier conjunto admisible de un proble-
ma de optimizacién lineal es simplemente la interseccién de hiperplanos y
semiespacios, luego es un conjunto convexo. En particular

{r e R": Az = b},
{zr e R": Az > b},
{zr e R": Az = b, x > 0}.

son conjuntos convexos.

Definicién 4.3. Dados z!, 22, ..., 2™ en V, se llama combinacién conve-

xa de z!, 22, ..., 2™ a una combinacién lineal en la que todos los escalares

son no negativos y, ademas, su suma es uno, es decir:
m
x:)\lx1+)\2x2—|—...—i—)\mxm, A >0, Vi, E A = 1.
=1

Si todos los escalares son positivos la combinacion convexa se llama estricta.

La combinacién convexa es la generalizacién de la expresion (1—\)z+ Ay
con A en el intervalo [0, 1].

Ejemplo 4.3. Dados (1,0), (0,0), (0,1), son ejemplos de combinaciones
convexas:

(%7 %) — %(1,0) + %(0,0) + i(O, 1),

(0,1) = 0(1,0) 4 0(0,0) + 1(0,1). ©
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30 CAPITULO 4. CONJUNTOS CONVEXOS

Definicion 4.4. Sea A un subconjunto de V. Se llama envolvente conve-
xa de A, o convexo generado por A, o casco convexo de A, denotado co(A),
al conjunto convexo més pequeno que contenga a A. Esto quiere decir que si
C' es un conjunto convexo que contiene a A, entonces necesariamente co(A)
estd contenido en C.

Figura 4.2

La anterior definicién es descriptiva, pero no constructiva. El convexo ge-
nerado por A se puede caracterizar “constructivamentecomo la interseccion
de todos los convexos que contienen a A.

co(A) = ﬂ C.

C' convexo
ACC
Esta interseccién esta bien definida ya que por lo menos existe un conjunto
convexo que contiene a A: el espacio completo R™.

También se puede demostrar que co(A) es exactamente cc(A), el conjunto
de todas las combinaciones convexas de elementos de A, es decir, el conjunto
de todas las combinaciones convexas de subconjuntos finitos de A.
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4.2. PUNTOS Y DIRECCIONES EXTREMOS 31

Ejemplo 4.4. co({(1,0),(0,1),(0,0)}) = {(x1,22): 1 + 22 < 1,2 > 0}.
co({(z1,m2): T2 = 0,27 + 23 < 1,2 > 0}) =
{(xl,xg): 1+ < 1,2 > 0}.

co({(z1,m2): w2 = 23}) = {(z1,m2) : 22 > 23}, O

4.2. Puntos y direcciones extremos

Definicion 4.5. Sean: C convexo, x en C'. Se dice que x es punto extremo
de C| si no es posible expresar x como combinacién convexa estricta de dos
puntos distintos de C', es decir:

r=1=-Nu+ M
u,v € C } = U=v==x
A €]0,1]
punto punto

A extremo
\extremo

A\ puntos no

extremo “\extremos

Figura 4.3

Ejemplo 4.5. Dado el conjunto convexo

{(z1,20): 23 4+ 23 < 1},
(g, —g) es punto extremo.  El punto (0.2,0.4) no es punto extremo. <

Eéjemlilo 4.6. El punto (@, —\g) no es punto extremo de {(x1,z2): % +

Ejemplo 4.7. Dado el conjunto admisible del ejemplo 3.1, entonces: el
punto (300, 100) es punto extremo; (250, 150) no es punto extremo; el punto
(260, 150) no es extremo. <

Se puede mostrar que otra definicién equivalente de punto extremo es la
siguiente. Sean: C convexo, x en C. Se dice que z es punto extremo de C
si C\{z} ={y € C: y # x} es convexo.
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32 CAPITULO 4. CONJUNTOS CONVEXOS

Definicion 4.6. Sean: C un convexo, d en V', d # 0. Se dice que d es una
direccion de C si para todo « en C' y para todo p positivo, z + ud también
estd en C.

Es claro que un conjunto acotado no tiene direcciones y que un conjunto
con direcciones no es acotado.

Definicién 4.7. Dos direcciones d', d? son equivalentes si una es miltiplo
positivo de la otra, es decir, si d! = ud? con u > 0.

Definicion 4.8. Una direccién d de un convexo C, se llama direccién
extrema si no existen dos direcciones de C: d', d? no equivalentes, tales
que d sea combinacién lineal positiva de d', d2. Dicho de otra manera:

d= uldl + M2d2
d', d? direcciones de C } — d,d",d? son equivalentes .
B, 2 > 0

Ejemplo 4.8. Consideremos el conjunto admisible del ejemplo 3.3 , es decir,
el conjunto C definido por las siguientes restricciones:

1+ 229 > 4
5x1 + 219 > 12
x > 0.

Este conjunto es convexo, esto se puede observar al mirar la grafica corres-
pondiente (ejemplo 3.3) o se puede demostrar analiticamente.

Los puntos extremos de este conjunto son: (2,1), (4,0), (0,6).

Para el mismo conjunto, (1,4), (0,0.001), (345,0), (2, 8) son direcciones,
y no lo son (0,0), (—0.01,100), (—3,—4).

Son direcciones extremas (0,0.001), (10,0), o sus direcciones equivalen-
tes. <

Definicién 4.9. Se llama un politopo (convexo) a cualquier conjunto que
se pueda expresar como la interseccién de un numero finito de semiespacios
(o de semiespacios e hiperplanos). Cuando el politopo (convexo) es acotado
se llama poliedro.

Ejemplo 4.9. El conjunto admisible del ejemplo 3.1 es un politopo y tam-
bién es poliedro. <
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4.2. PUNTOS Y DIRECCIONES EXTREMOS 33

Ejemplo 4.10. El conjunto admisible del ejemplo 3.3 es un politopo. <

Ejemplo 4.11. El conjunto {(x1,z2): 3+ 22 < 1} se puede expresar como
interseccién de semiespacios (semiplanos):

ﬂ {(w1,22): cosfxy +senfry < 1},
0<0<2m

pero no se puede por un numero finito, luego no es un politopo. <

4.1.

4.2,
4.3.
4.4.
4.5.

4.6.

4.7.

4.8.

4.9.

EJERCICIOS

Determine si los siguientes conjuntos son convexos:
a) {(v1,72): 22 + 20 < 4}

b) {

c) {(z1, 70, 23): 3 < w9, 11 + 12 + 73 = 1}
) {(z1,22) : |21] + || <1}

e) {(z1,22): |x1 + 22| < 1}

(w1,79): 23 < w9, 11 + 12 = 1}

o,

Sea A un conjunto abierto. jMinimizar z = c¢*z, x € A, tiene solucién?
Sea A = {(r1,22): 22 < x5}. Halle co(A).
Sea A = {(x1,22): 23 = x3}. Halle co(A).
Sea A = {(x1,22): 23 < x5}. Halle co(A).

Sea A = {(x1,x2): ®1 > 0,z1]x2] > 1}. ;A es cerrado? Halle co(A).
..co(A) es cerrado? Dé condiciones suficientes para que si A es cerrado,
entonces co(A) sea cerrado.

Sea C' = {(z1,x2): |r1| < x2}. Halle los puntos extremos, las direc-
ciones y las direcciones extremas de C.

Sea C' = {(z1,22,23): x1 + 2 + x3 < 6, 1 + 229 + 3w3 < 12, z > 0}.
Halle los puntos extremos, las direcciones y las direcciones extremas
de C.

Sea C' = {(x1,22): ¥ < x5}. Halle los puntos extremos, las direccio-
nes y las direcciones extremas de C'.
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4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

Sea C = {(x1,22,73): 27 < 22,71 + o2 + 23 < 1}. Halle los puntos

extremos, las direcciones y las direcciones extremas de C'.

Sea C' = {(x1,x2): |z1| + |x2| < 1}. Halle los puntos extremos, las
direcciones y las direcciones extremas de C.

Sea C' = {(x1,22): |1 + 22| < 1}. Halle los puntos extremos, las
direcciones y las direcciones extremas de C.

Sea C un convexo, A una matriz m x n, D = {y:y = Az,x € C}.
Muestre que D es convexo.

Sea H = H,, un hiperplano y H™ uno de los semiespacios correspon-
dientes. Halle los puntos extremos y las direcciones extremas de H y
de HT.

Sea A C R™. Muestre que cc(A) = co(A). Puede usar las siguientes
etapas: mostrar que A C cc(A); mostrar que cc(A) es convexo; mos-
trar que co(A) C cc(A); mostrar por induccién, sobre el nimero de
elementos de una combinacién convexa, que cc(A) C co(A).
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Capitulo 5

CONVEXOS EN
OPTIMIZACION LINEAL

5.1. Puntos extremos

Se considerard de aqui en adelante (salvo indicacién contraria) que los
problemas de optimizacion lineal estan en la forma estandar:

min z = c'z
Axr =10
x>0,

o lo que es lo mismo:

min z = c'z

reF,

donde
F={x: Az =b,2 > 0},

A es una matriz m x n, m < n, rango(4) = r(A) = m; b es un vector
columna de m componentes; x es un vector columna de n componentes (las
variables); 0 es el vector columna de n componentes nulas. El conjunto F
formado por los puntos que cumplen todas las restricciones es convexo y es
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36 CAPITULO 5. CONVEXOS EN OPTIMIZACION LINEAL

llamado la regién o conjunto factible, admisible o realizable. Es claro que F
es un politopo y en algunos casos poliedro.

Siempre se puede suponer que r(A) = m. Sir(A) < m, entonces existen
una o varias filas de A que se pueden expresar como combinacién lineal de
otras filas. Dependiendo del valor de los b;, las restricciones correspondientes
son, o bien, redundantes y en ese caso se pueden suprimir o bien incompa-
tibles con las otras y en este caso no hay solucién del sistema Az = b y, por
lo tanto, tampoco hay solucién al problema de programacién lineal.

Ejemplo 5.1. Las restricciones

—_

r1+ x2+ x3=
1+ 2x2 + 313 =
3x1 +4xo + dx3 = 6

x> 0.

W

se pueden reemplazar por

1+ w2+ wz=1
1 + 2290 + 33 = 4

x> 0.

En cambio
T+ w2+ w3=1
T, + 220 + 323 = 4

3x1 +4xo + 5x3 = 5
x> 0.

es un sistema inconsistente, no tiene soluciéon. <

Definicion 5.1. Se llama base de A, a una matriz B m X m, invertible,
submatriz (matriz obtenida al quitar algunas filas o algunas columnas) de
A. Dicho de otra forma, B se obtiene escogiendo m columnas de A, lineal-
mente independientes y desechando las p = n — m restantes. Es cierto que
existe por lo menos una, ya que r(A) = m. Sea L la submatriz de A de
tamanio m X p, obtenida al quitar de A las columnas que conforman B. Las
columnas de B se llaman béasicas. Las columnas de L se llaman columnas
libres, no bésicas o independientes. Aqui la palabra independiente no se
refiere a independencia lineal, se refiere simplemente a que, como se vera
posteriormente, las variables bésicas se pueden expresar en funcién de las
variables libres o independientes.
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5.1. PUNTOS EXTREMOS 37

Es evidente que, salvo permutacion de columnas, la matriz A es exac-
tamente la matriz [B L], es decir, la matriz obtenida al colocar las m
columnas de B y a continuacién (a la derecha) las p = n — m columnas de
L, por lo tanto, se puede escribir

A=[B 1.

Las variables x1, 9, ..., z, también se pueden agrupar de manera semejante
y se llamardn basicas unas, y libres las otras (o no bésicas o independien-
tes). También, salvo permutacién de las variables, se puede escribir

v = (zp,2L) = B}i ] .

Entonces

es equivalente a

Bxg+ Lx;, =0
zp>0,2p >0.

Una solucién del sistema Az = b de la forma

zr, =0

zp solucién tnica de Bxg = b, es decir, x5 = B~ b,

se llama una solucion basica.

Aunque las expresiones Bxp = b,xp = B~'b son equivalentes desde
el punto de vista tedrico, en la practica es mucho mas sencillo resolver el
sistema Bxp = b que hallar una inversa y efectuar enseguida el producto.

Si ademas,

l‘BZO,
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entonces se tiene una solucién basica factible.

Si

xg >0,

la solucién se llama basica factible no degenerada.

Si

es decir, si se trata de una solucion béasica factible, pero alguna coordena-
da bésica es nula, la solucién se llama bésica factible degenerada. Una
solucion béasica factible no degenerada tiene exactamente m componentes
positivas, una solucién bésica factible degenerada tiene menos de m compo-

xp >0, peroxzp ¥ 0,

nentes positivas.

Ejemplo 5.2.

Sea

Entonces

min z = —x1 — 1.4x9
r1 + T2 + T3 = 400
r1 + 2x9 + 24 = 580
1 + x5 = 300
x> 0.
11100
A=11 2 0 1 0
1 00 01
1 00
B=[Ay A4 As]= |2 1 0| invertible.
0 01
11
L=JA, Aj]= 1 01,
10
1 00 T9 400
Bxp=12 1 0 T4 = | 580
0 0 1 Ts 300
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5.1. PUNTOS EXTREMOS 39

Luego
400
xp= | —220 |,
300
ademds

Se dice entonces que
x = (zp,zr) = (0,400, 0, —220, 300)

es una solucién béasica; pero como no se cumple que zp > 0, entonces no es
realizable.

Sea
1 0 0
B:[Ag A.4 A5]: 010 invertible.
0 0 1
Entonces
1 0 0 T3 400
Bxp=10 1 0 Ty = | 580
| 0 0 1 T5 300
400
rzg= | 580 | ,
| 300

x = (zp,xr) = (0,0,400, 580, 300),
es una solucién bésica, realizable, no degenerada. <
Ejemplo 5.3.

min z = 4x1 + 5x9

T1 + 229 — X3
21 + x9 — X4
T+ X2 —

P oo

5
X

AVANI
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Sea
1 2 0
B=[AjA2A4]l=|2 1 -1 invertible.
1 1 0
I 6
1 2 0
Brs=145 1 ”32_2’
11 T
2
rp = 2
0
Entonces
x=(2,2,0,0,0)

es una solucién bésica, realizable, degenerada. <

Los puntos extremos de F' (y en general de un politopo) son importantes
ya que, como se vera mas adelante de manera precisa, una funcién lineal
acotada inferiormente en F' siempre alcanza su valor minimo en un punto
extremo.

Proposicion 5.1. Sea F' el conjunto factible del problema de programacion
lineal en la forma estandar. Los puntos extremos de F' son exactamente las
soluciones bdsicas realizables.

Corolario 5.1. El conjunto F tiene un numero finito de puntos extremos.

Demostracién: El nimero maximo de posibles bases extraidas de A (sin
tener en cuenta el orden) es el nimero de combinaciones de m elementos
tomados entre n elementos = C)}, = n!/((n —m)!m!); de estas posibles esco-
gencias algunas pueden corresponder a una matriz B no invertible; ademas,
algunas de las soluciones bésicas obtenidas pueden ser no realizables. [

Estos resultados permiten utilizar un procedimiento preciso para calcular
los puntos extremos de F':
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5.1. PUNTOS EXTREMOS 41

= escoger m columnas independientes de A para formar B,
u $L = O,
= resolver Bxpg = b,

= si la solucién basica obtenida es realizable, entonces es un punto ex-
tremo.

Ejemplo 5.4. Hallar los puntos extremos de F' donde

12 -1 0 4
A=152 0 4 ]’ b= [ 12 ]'

Si

B=[Ay A= [ ;s ],

la solucién bésica correspondiente es x = (2, 1,0,0), que es realizable, luego
es un punto extremo de F'.

B=[A; Aj], x=1(24,0,-1.6,0) no es factible.
B=[Aq1 A4], z=(4,0,0,8) es admisible.
B=[A, Ags], 2=(0,6,8,0) es admisible.
B=[A, A ], = (0,2,0,—8) no es realizable.
B=[As A4], z=(0,0,—4,—12) no es realizable.
Luego los puntos extremos de F' son:

(2’ 17 070) 9

(4’ 0’ 078) 9

(0,6,8,0). ©

Ejemplo 5.5. Los puntos extremos del conjunto realizable del ejemplo 5.2

SOon:
(300, 100, O, 80 0),
(220,180, O, 80
(300, 0, 100, 280 0
(0,290,110, 0,300),

(0, 0,400,580,300). <

Proposiciéon 5.2. Si F' es un poliedro, es decir, si F' es acotado, entonces
todo punto de F es combinacion convexa de sus puntos ertremos.

)

)
)
)
)
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42 CAPITULO 5. CONVEXOS EN OPTIMIZACION LINEAL

5.2. Direcciones

Para la caracterizacién de los puntos de un politopo no acotado es ne-
cesario estudiar la obtencién de las direcciones y las direcciones extremas.

Proposicién 5.3. Sea F' # (0. d # 0 es direccion de F si y solamente si
Ad=0,d>0.

Demostracién: =) Sea d direccién de F. Para todo x en F, para todo
p>0
y =2+ ud estd en F,

es decir, Ay = b,y > 0, entonces b = Ay = A(x+pud) = Az+pAd = b+pAd,
de donde pAd = 0 para todo p > 0, luego Ad = 0; y > 0, es decir,
y; = x; + pd; > 0 para todo ¢ y para todo pu > 0, entonces d; > 0 para
todo ¢, o sea, d > 0.

<) La demostracién de esta implicacién es inmediata. [

Se deduce, segin la proposicién, que las direcciones de F' # () no depen-
den de b.

Ejemplo 5.6. Hallar las direcciones de F', donde

11100 400
A=|1 2 0 1 0| ,b=1] 580
10001 300
Estos datos son los mismos del ejemplo 5.2 | entonces F' # (). Para resolver

Ad = 0, hay que convertir la matriz [A 0] en una matriz equivalente,
escalonada reducida.

100 0 10
010 1/2 —1/2 0
001 —-1/2 —1/2 0

La solucién general se puede expresar en funcién de d4 y d5. Por ejemplo,
la segunda fila de esta matriz significa que dg + d4/2 — d5/2 = 0. Entonces
dy = —dy/2 + d5/2. Asi la expresion general de la posible direccién es:

d= (_d57 _d4/2 + d5/2ad4/2 + d5/27d4ad5) 2 0.
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Como —ds,ds > 0, entonces d5 = 0. Entonces —dy/2,ds/2
d4 = 0. Es claro que no hay soluciones de esta forma tales que d
Es decir, F' no tiene direcciones y, por lo tanto, es acotado.

0, luego

>
>0, d 0.

En este ejemplo particular hubiera sido muy sencillo intercambiar co-
lumnas para dejar primero las columnas tres, cuatro y cinco y enseguida las
correspondientes a di, do obteniéndose inmediatamente la matriz escalonada
reducida; entonces:

d = (d17 d27 _dl - d27 _dl - 2d27 _dl) 2 07
y las conclusiones finales son las mismas. <

Ejemplo 5.7. Hallar las direcciones de F', donde

12 -1 0 4
A=15 2 o —1] ’b{12]'

Estos datos son los mismos del ejemplo 5.4 , entonces F' # (). Al resolver
Ad = 0 (intercambiando las columnas 1 , 2 con las columnas 3 , 4 ) se
obtiene la solucién general:

d = (dy,da,dy + 2dy,5dy 4 2d2) > 0.

En este caso siempre que di, do > 0, di o do # 0, se tendra una direccion
de F. Por lo tanto, F' no es acotado. Por ejemplo: (1,0,1,5), (0,2,4,4),
(3,1,5,17) son direcciones de F" <

Ejemplo 5.8. Considere el conjunto F', donde

1 -1 1 0 1
A__[l -1 0 —1] ’b_'{—2}'
Entonces F # 0 (z = (0,2,3,0) € F) . Por ejemplo d = (1,1,0,0) es una
direccion de F' ya que Ad =0,d >0

Si los datos cambian ligeramente:

1 -1 1 0 1
A"[ 1 —-1 0 1} ’b"[z]’

aunque d = (1,1,0,0) cumple con Ad = 0,d > 0, no es direccién de F ya
que éste es vacio. <
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44 CAPITULO 5. CONVEXOS EN OPTIMIZACION LINEAL

Sea D el conjunto de direcciones de F De este conjunto se puede tomar
un representante de cada clase de direcciones equivalentes. Esta escogencia
puede hacerse por normalizacién, es decir, escogiendo de cada clase un re-
presentante cuya norma valga uno. Al utilizar como norma »_ |d;| y como
en este caso particular todos los elementos de d son no negativos, entonces
S |di] = 3> diSea D; el conjunto de direcciones de F' tales que la suma de
sus coordenadas sea uno, es decir,

Dy={d: Ad=0,d>0, dy+da+...+d, =1}.

Proposicion 5.4. El conjunto de direcciones extremas de F' es, salvo equi-
valencia, el conjunto de puntos extremos del conjunto D1

Dicho de otra manera, las direcciones extremas de F' son, salvo equiva-
lencia, las soluciones béasicas realizables del sistema:

a1 a2 ... Qip dy 0
asy asy ... aon dg 0
ds | =
aml am2 ... Omn 0
1 1 ... 1] |dy] [1]
d>0

Corolario 5.2. Las direcciones extremas de F' son, salvo equivalencia, so-
luciones no negativas de

Bdp = —A.; , A.r no forma parte de B,
dp,=1,

d; =0 en los demds casos,

para todas las posibles submatrices B, de tamano m X m invertibles y todas
las posibles escogencias de A..

Ejemplo 5.9. Utilizando la proposicion 5.4 , hallar las direcciones extremas

de F', donde
12 -1 0 4
A= 5 2 0—1]’b_[12]'

Para encontrar las direcciones extremas hay que empezar por hallar las
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5.2. DIRECCIONES

soluciones bésicas de:

1 2 -1 0 Zl 0

5 2 -1 d2 =10
3

11 1 1 Py 1

Estas son:
2/11, 5/11,8/11, 0),

(= )
( 2/9a_1/9a 07 8/9)7
( 1/7, 0, 1/7,5/7),
(0, 1/5, 2/5,2/5).

Las dos ultimas soluciones bésicas son realizables y, por lo tanto, son (salvo

equivalencia) las direcciones extremas de F. <

Ejemplo 5.10. Utilizando el corolario 5.2 para la misma matriz A y el

mismo vector columna b del ejemplo anterior se tiene:

Si B =[A1 As]ysi Bdg = —A.3, entonces dp = (—2/8,5/8) y
d=(—2/8,5/8,1,0) no es direccién extrema.

Si B =[Aq1 As]y —Ajg = —A., entonces dp = (—2/8,-1/8) y
d=(2/8,-1/8,0,1) no es direccién extrema.

Si B = [Aq1 As]ly —Ajy = —Ag, entonces dp = (—2/5,8/5) y
d=(-2/5,1,8/5,0) no es direccién extrema.

Si B =[Aq As]ly —Ay = —A.y, entonces dg = (1/5,1/5), d =
(1/5,0,1/5,1). Esta direccién es equivalente a (1/7,0,1/7, 5/7).

Asi, sucesivamente, se escogen todas las posibilidades para B y en

cada caso todas las posibilidades para —A. . Es posible que diferentes
parejas B, —A.p den lugar a direcciones iguales o equivalentes. <

EJERCICIOS

En los ejercicios 5.1 a 5.8 convierta el problema a la forma estandar,
halle los puntos extremos del conjunto factible, halle las direcciones,
halle las direcciones extremas usando la proposicién 5.4, halle las di-
recciones extremas usando el corolario 5.2.
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5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

Minimizar z = 1.1z1 4+ 1.2x2 con las restricciones x1 + zo < 5, 2z +
3xo < 14, 4z + 329 < 18, > 0.

Minimizar z = 1.1z 4+ 1.2x2 con las restricciones x1 + x5 > 6, 4z +
3xo < 18, 2z + 329 < 12, x > 0.

Minimizar z = 4x1 4 5x5 con las restricciones x1+xo > 12, 4x1+ 322
18, z > 0.

Y

IN

Minimizar z = 4x1+5x2 con las restricciones x1+xo > 12, 41— 319
18, x > 0.

Minimizar z = 4x1 4 5x5 con las restricciones x1+xo > 12, 421 —3x9 =
18, x > 0.

Minimizar z = 421 + 55 con las restricciones 4x1 — 3z < —2, —4x1 +
3xe <3, x> 0.

Minimizar z = 4x1 + 5x9 con las restricciones 4z — 3xo < —2, —4x1 +
3xo < 1,2 >0.

Minimizar z = 1.1z 4+ 1.2x2 con las restricciones x1 + o > 5, 2z +
3x9 < 12, 4z + 329 < 18, > 0.

Sea F/ = {x: Az > b, x > 0} # (. Encuentre una caracterizaciéon
para las direcciones de F’, andloga a la de la proposicién 5.3.
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Capitulo 6

DOS TEOREMAS

Los teoremas presentados en este capitulo son muy importantes en OL,
en especial para la justificacion del método simplex y para la deduccion
del método de descomposicién. El método de descomposicién de Dantzig
y Wolfe sirve para resolver problemas de OL muy grandes que tienen una
estructura angular por bloques [Las70].

6.1. Representacion

Proposicién 6.1. Teorema de representacion. Todo punto de F' (con-
Junto admisible de un problema de optimizacion lineal en la forma estdindar)
no vacio, se puede expresar como una combinacion convexa de los puntos ex-
tremos, mds una combinacion lineal no negativa de las direcciones extremas,
es decir, F' también se puede representar como

F:{:U:)\1331+)\2:E2—|—...+)\k:nk—|—p1d1—|—,u2d2—|—...+usd5:
Xi >0Vi A+ X+ + A =1, >0V},

2

siendo x', z%, ..., z¥ los puntos extremos (k > 1)

yd', d?, ..., d* las direcciones extremas (s >0) .

En particular F' es acotado si y solamente si s = (. Este teorema también
es valido sobre otros politopos.
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48 CAPITULO 6. DOS TEOREMAS

Ejemplo 6.1.

1 2 -1
A= 5 2 0 } [ ]
Los puntos extremos de F son: (2,1,0,0), (4, (),0 8), (0,6,8,0) y sus direc-
ciones extremas (salvo equivalencia) son: (0,1,2,2), (1,0,1,5).

El punto = = (2,3,4,4) estd en F ya que Az = b, x > 0.
x=0(2,1,0,0) + 1/2(4,0,0,8) + 1/2(0,6,8,0) + 0(0,1,2,2) + 0(1,0, 1, 5).
También
=1(2,1,0,0) 4+ 0(4,0,0,8) + 0(0,6,8,0) + 2(0,1,2,2) + 0(1,0,1,5). <
La expresiéon de un punto x de F', en funcién de los puntos extremos y
las direcciones extremas, no es necesariamente tnica.
Ejemplo 6.2. Sea C el conjunto de parejas (x1,x2) tales que

1+ 222> 3
201+ 19> 3
x > 0.

Sus puntos extremos son (1, 1), (3,0), (0, 3) y sus direcciones extremas (salvo
equivalencia) son (1,0), (0, 1).

Los puntos (1,1),(3,1) estan en C.

1(1,1) + 0(3,0) + 0(0, 3),
) = 0(1,1) + 1(3,0) + 0(3,0) 4+ 1(0, 1),
1(1,1) + 0(3,0) + 0(0,3) + 2(1,0). ©

Corolario 6.1. El conjunto F' es vacio si y solamente si no tiene puntos
extremos.

6.2. Optimalidad

Proposicién 6.2. El valor éptimo z* de minimizar z = c"x en F, es
acotado (inferiormente), si F' es acotado, o sea, si no tiene direcciones, o
bien, si para toda direccion extrema d de F se tiene que ¢'d > 0.
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6.2. OPTIMALIDAD 49

Demostracién: Supongamos que F' es acotado. Como F' es cerrado, en-
tonces es compacto y como z es continua, por el teorema de Weierstrass se
tiene que z alcanza su minimo en un punto de F'.

Supongamos ahora que F' no es acotado. De acuerdo con el teorema de
representacion, resolver el problema

minz = ¢

en F={x: Az =0b,2 >0},
es equivalente a resolver este otro problema

minz = c'x

Es decir, hay que minimizar el valor de z dado por:
k s k
z = Z:)\l-chZ —{—Z,uchdJ, Ai >0, Z)‘i =1, u; >0.
i=1 j=1 i=1

Sean z“, xV tales que

T,.u _ : T .0
¢zt = lrélilélk{c x'},
T U __ T 1
cz’ = lrglagck{c x'}.

Entonces, como A; > 0

k k k
Z NicTat > Z Nictzt =g Z N =ctzt
i=1 i=1 i=1
De manera andloga
k
Z NicTzt < ¢Ta?,
i=1
y asi
S S
'z’ + Zuchdj >z>clat + Zuchdj, wi > 0.
Jj=1 Jj=1

Luego, cuando F' no es acotado, el valor de z es acotado inferiormente, si y
solamente si, ¢c'd > 0 para toda direccién extrema d. [
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50 CAPITULO 6. DOS TEOREMAS

Corolario 6.2. Si el problema de minimizar z = c™x en F es acotado
(inferiormente), entonces el dptimo se obtiene en un punto extremo (por
ejemplo en z*).

Corolario 6.3. Si el problema de minimizar z = ¢z en F es acotado (in-
feriormente), entonces cualquier combinacion convexa de puntos extremos
optimos también es un punto optimo.

Proposicion 6.3. Teorema de optimalidad . Consideremos el problema
de minimizar z = cTx en F, con z acotado inferiormente. El valor éptimo z*
se obtiene en por lo menos un punto extremo, y todos los puntos dptimos se
pueden expresar como una combinacion convexa de puntos extremos optimos
(puede haber varios) mds una combinacion lineal no negativa de direcciones
extremas tales que ¢’d = 0.

Ejemplo 6.3. Minimizar z = ¢z en F = {x: Az = b,z > 0} donde A,
b estdan dados en el ejemplo 6.1 | para diferentes coeficientes de la funcién
objetivo.

a) c¢=(3,2,0,0)

b) = (3,0,0,0)

&) ¢=(-2,-1,0,0)

d) = (4,8,0,0) .

a)

CT$1 —
x? =12,
=12,
rdt =2,
Td? =3

Entonces z es acotado inferiormente.
2" =8, o* =2 =(2,1,0,0).
En este ejemplo la solucién éptima es Unica.
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6.2. OPTIMALIDAD 51

b)
CT{L‘l —
Tx? =12,
xd =0,
Tdt =
2 =3

Entonces z es acotado inferiormente.

=0, 2" =2"4pd =(0,6,8,0)+ u(0,1,2,2)
= (0,6 + u,84+2u,2u), con p>0.

El conjunto de soluciones 6ptimas tiene un ndmero infinito de puntos vy,
ademas, no es acotado.

c)

Tzl =5
Tt = -8
'z = —6,
Tdt = —1,
Td? = -2

d)
Tzl = 16,
Tx? = 16,
Tz = 48,
dt =8,
Td? =

Entonces z es acotado inferiormente.
25 =16, z* =Mzt + Xz, A, A >0, A+ =1.

El conjunto de puntos éptimos tiene un numero infinito de puntos y es
acotado. <©
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52 CAPITULO 6. DOS TEOREMAS

Ejemplo 6.4.

1 1100 400
A= 12 01 01(, b=| 580
10 001 300
a) ¢=(-1,-14,0,0,0),
b) ¢=(-2,-2,0,0,0).
Los puntos extremos de F son:
( 0, 0,400, 580, 300 ),
(300 0, 100, 280, 0),
(300 100, 0, 80, 0),
(220, 180, 0, 0, 80),
( 0 290, 110, 0, 300 ).

F' no tiene direcciones extremas, entonces es acotado y cualquier problema
de optimizacién lineal en este conjunto tiene 6ptimo acotado.

a)
Tt 0,
z? = —300,
Tz = —440,
Tt = —472,
T2 = —406,

2 =472, z* =z =(220,180,0,0,80).

En este ejemplo la solucién éptima es tinica.

b)
Tt =0,
Tz = —600,
c"z3 = —800,
Tzt = —800,
"z = —580,

52



6.2. OPTIMALIDAD 53

2* = —800, a*=\z>+ \oa?
— A1(300, 100, 0,80, 0) + A2(220, 180, 0, 0, 80),
A1, A2 >0, A1+ A2 =1

El conjunto de puntos 6ptimos de este ejemplo es infinito y acotado. <

Considérese la siguiente notacién:

P = conjunto de puntos extremos de F,

D = conjunto de direcciones extremas de F' salvo equivalencia (en
D no hay dos direcciones extremas equivalentes),

D~ ={de€D:c"d<0},
D° ={deD:c"d=0},
F* = conjunto de puntos 6ptimos de F' (cuando F' # () y z es acotado
inferiormente),
P ={zxeP#0: "z=min{c"y: y € P}},
cnn(X) = conjunto de combinaciones lineales no negativas (con escalares
no negativos) de elementos de X,

z* = valor 6ptimo de z, cuando F # () y z estd acotado inferiormente,
z* = —o00, cuando F # () y z no estd acotado inferiormente,
2* = 400, cuando F = ().

El teorema de representacién se puede expresar asi:

F#£) < P#£0,
F#() = F =cc(P)+ can(D).

El teorema de optimalidad se puede expresar asi:

F*4() < F#0,D =0,
F#0,D” =0 = F* = cc(P*) 4+ cun(D?).
Utilizando el teorema de optimalidad se puede resolver cualquier problema
de OL, de manera bien precisa. Este proceso finito se basa en el hecho de

que el nimero de puntos extremos y el niimero de direcciones extremas son
finitos. Méds atin, para hallar todos los puntos extremos, basta con estudiar
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54 CAPITULO 6. DOS TEOREMAS

todas las posibilidades para las soluciones bésicas. De manera semejante,
para hallar todas las direcciones extremas, basta con estudiar todas las po-
sibilidades de uno de los dos métodos (proposicién 5.4 y corolario 5.2). El
proceso para resolver un problema de OL en la forma estandar es el siguiente:

hallar P
siP=0 ent F=10
sino

hallar D, D, D°
si D™ #0 ent z*=—-c0
sino
si D° =10
F* es acotado
si |[P*=1 ent F*=7P*
sino |F*| = oo, F* = cc(P*)
sino
|F*| = 0o, F* no es acotado
F* = cc(P*) + cnn(D?)
fin-si
fin-si
fin-si

Los resultados anteriores sirven para entender mejor el método simplex y
para interpretar, de manera mas adecuada, algunos de sus resultados. Sin
embargo, salvo para ejemplos muy pequenos, estos resultados no son practi-
cos para resolver problemas de Optimizacién Lineal.

EJERCICIOS

En los ejercicios 6.1 a 6.10 convierta el problema a la forma estandar,
halle los puntos extremos del conjunto factible, halle las direcciones
extremas, y aplicando el teorema de optimalidad encuentre la solucién
del problema.

6.1. Minimizar z = —1.1z1 — 1.2x9 con las restricciones x1 + x2 < 5, 221 +
3xo < 14, 4z + 329 < 18, > 0.

6.2. Minimizar z = —0.8z1 — 1.2x5 con las restricciones x1 + 22 < 5, 2x1 +
3o <14, 41 + 329 < 18, x > 0.
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6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

Minimizar z = 1.1z1 + 1.2z9 con las restricciones x1 + x9 < 5, 2x1 +
3x9 < 14, 421 4+ 329 < 18, x > 0.

Minimizar z = 4x1+3x2 con las restricciones 1 +x9 > 12, bx1 — 229 <
4, x > 0.

Minimizar z = 5x1+5x9 con las restricciones 1 +x9 > 12, bx1 —2x9 <
4, x > 0.

Minimizar z = x1—2x4 con las restricciones x1+x2 > 12, 5x1—2x2 < 4,
x > 0.

Minimizar z = —2.5x1 + x2 con las restricciones x1 4+ o > 12, bx; —
209 < 4, x > 0.

Minimizar z = 1.1z1 + 1.2z9 con las restricciones x1 + x9 > 5, 2z1 +
3o <12, 4z + 329 < 18, z > 0.

Minimizar z = 1.1z1 + 1.2z5 con las restricciones x1 + x9 > 6, 2x1 +
3xe <12, 421 4+ 329 < 18, x > 0.

Minimizar z = 4x1 4+ bxs con las restricciones 4x1 — 3xs < —2, —4x1 +
3rxa < 1,2 >0.
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Capitulo 7

EL METODO SIMPLEX

Los teoremas y resultados vistos anteriormente permiten hallar el é6ptimo
de un problema de optimizacion lineal en la forma estandar, en un nime-
ro finito de pasos: buscar todos los puntos extremos (todas las soluciones
bésicas realizables) y entre ellos escoger el mejor o los mejores; ademads, es
necesario buscar las direcciones extremas para saber si el 6ptimo esta aco-
tado o no lo esta. Pero este proceso es muy dispendioso y largo, atin con la
ayuda de un computador. El método simplex, creado por G. B. Dantzig al
final de la década del cuarenta, permite hacer una busqueda de soluciones
basicas realizables, pero con la ventaja de ir siempre mejorando el valor de z
al pasar de una solucién bésica realizable a otra (si no hay soluciones bésicas
degeneradas), hasta llegar a un punto extremo 6ptimo o hasta saber que el
valor de z no es acotado (inferiormente).

Salvo indicacién contraria, se supondrd la ausencia de soluciones
basicas realizables degeneradas.

Recuérdese ademas que, de acuerdo con la notacién utilizada, siempre
que haya operaciones entre matrices (multiplicaciones o adiciones) se consi-
deran los vectores de R} como matrices columna, es decir, matrices [ x 1.

7.1. Condiciones de optimalidad

Antes de pasar al método simplex en si, es conveniente estudiar las con-
diciones de optimalidad para una solucién basica realizable cualquiera, sin
tener que compararla con otros puntos extremos.
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Considérese el problema de optimizacién lineal tal como se ha supuesto
hasta ahora, es decir, un problema de minimizacién en la forma estandar
con una matriz de coeficientes de tamano m x n, con m < n y de rango m.

Dada una matriz B, de tamano m x m, invertible, submatriz de A, tal
que la solucién béasica correspondiente sea realizable, es decir,

zp=B1b>0,
xr =0,
se desea saber si este punto extremo x = (zp,zr) es 6ptimo o no.

Como la matriz A es de rango m, entonces en el sistema lineal Ax = b
hay p = n—m variables independientes y m variables que dependen de ellas.
De esta forma, todo el problema se puede plantear tnicamente en funcién
de las variables independientes, llamadas también libres o no basicas.

El problema

min z=c'z
Ax =b
x>0,

se puede escribir

min  z = cprp +cirL
Bxp+Lx;, =b
rB = 07 rL > 05

entonces
tp =B 'b— B 'Lxy,

y asi se tiene el problema tUnicamente en funcion de las variables libres xy:
min z = cy(B b — B 'Lay) + cfxp
Ty, > 0.
La expresion de z se puede agrupar asi:
z2=cEB b — cEB ' Lay + cixyp,
=B+ (¢} — cEB 'L)xg,

= BB '+ (¢, — L"B Vep) xy.
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Si se define
~ 1T
¢ =cp — L"B™ ! ¢p,
entonces
z=c5B Wb+l

El vector ¢;, tiene exactamente p = n — m componentes, es decir, una por
cada variable libre; estos coeficientes se llaman usualmente costos reduci-
dos o relativos de las variables libres. También se les acostumbra a denotar
por ¢; — zj.

Es posible definir de manera analoga los costos reducidos para las varia-
bles basicas:
~ 1T
ég=cg—B"™B Ve =0.

Esta propiedad es una caracteristica muy importante: los costos reduci-
dos de las variables basicas son nulos.

Utilizando tnicamente las variables libres y sus costos reducidos, el pro-
blema de optimizacién lineal queda ahora asf:

min z = cyB b4 Eap
Ty, > 0.
Supongamos, por el momento, que las variables basicas son las m primeras
y que las p siguientes son las variables libres. Esta suposiciéon no es restric-

tiva, pues simplemente se puede considerar como un reordenamiento de las
variables.

. 1 ~ - -
min 2z =cgBT b+ Cma1Tmi1 + Cma2Tma2 + oo+ Cnp

Tm+1y Tm+25-+-5In > 0.
De lo anterior se puede deducir lo siguiente:
= 2z es igual a una constante (c;B~'b), més una expresién lineal de las
variables libres.

= Para la solucién bésica realizable en estudio, las variables libres son
nulas y el valor de z estd dado por c]TBBflb.

= 2 estd expresado unicamente en funcién de las variables libres y si se
considera que alguna de éstas cambia, tiene que ser necesariamente
aumentando su valor, es decir, pasando de cero a un valor positivo, ya
que ninguna variable puede ser negativa.
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= Si el costo reducido ¢; de una variable libre es negativo, al pasar ésta
de cero a un valor positivo, el valor de z disminuye indicando que si
es conveniente modificar esta variable libre x; aumentando su valor.

= Si los costos reducidos de todas las variables libres son no negativos,
ninguna de esas variables deberfa modificarse, es decir, la solucién
bésica realizable no debe ser modificada, es decir, es 6ptima.

Proposicién 7.1. Para una solucion bdsica realizable, si los costos reduci-
dos de las variables libres son no negativos, entonces esta solucion es optima.
Una solucion bdsica realizable no degenerada es éptima si y solamente si los
costos reducidos de las variables libres son no negativos

¢, =c, —L™B e >0.

Ejemplo 7.1.

min z=—x1 — 1l.4x9
1 + x9 + X3 =400
1+ 2x9 + 24 = 580
I + x5 = 300

x> 0.

Sea
B=[As A4 Aj.

La solucién bésica correspondiente es x = (0, 0,400, 580, 300).

_1T

o [a ~1.0 T v
C= G| T a1 20) |0 Y o1
‘ 00 1

w5 =[ 0] |

Luego este punto extremo (no degenerado) no es éptimo.

Para este mismo problema, si:

B=[A, Ay Aj =

_ =
SN =
= o O
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entonces
2 -1 0
Bl=|-1 10|, Blp= | 2%
_9 11 180
80

El punto extremo correspondiente es x = (220, 180, 0, 0, 80) ,

T

_ é3 0 1 00 2 -1 0 -1
= 1=1ol 1o 1o -1 10 —-1.4
“ 2 11 0
. || |06
CL_[Q]_[OA]
Luego este punto extremo es 6ptimo y el valor éptimo de z es: z* = —472,
valor que se puede obtener de dos formas:
220
180
z=c'z=[-1 -14 0 0 0| 0 | =—472,
0
80
220
z=cgB b= -1 —14 0] | 180 | =—472. ¢
80
Ejemplo 7.2. Considere el problema
min z=—1 — I9
x1 + 2x9 + 73 =3
21+ x2 + x4 =3
4z + Hxo +z5=9
x> 0.
y el punto
x=(1,1,0,0,0).

Esta solucién basica factible degenerada se puede obtener con
B:[A.l A.g A.4}.

Entonces al calcular los costos reducidos de las variables libres x5 y x5 se
obtiene

ao=1[-1/3 1/3].
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62 CAPITULO 7. EL METODO SIMPLEX

Como la solucion es degenerada, no se puede concluir que el punto no sea
optimo. Este mismo punto se puede obtener considerando

B=[A1 Ay As] yasi ¢=[é& & |=[1/6 1/6],

lo cual indica que el punto si es 6ptimo. <

7.2. Deduccién matricial del método simplex

La deduccién matricial del método simplex que aparece a continuacion,
es la que provee la justificacién de las tablas del simplex. . Sin embargo, en
la préactica, esta deduccién no se utiliza, pero en cambio, si se utilizan las
tablas. Para ayudar a la comprension de la deduccién puede ser 1til seguir
las diferentes partes del desarrollo del ejemplo 7.3 en las paginas siguientes.

Para aplicar el método simplex a un problema de minimizacién en la
forma estdndar se requiere ademds (ejemplo 7.3.1) :

= >0,

= se puede formar I, (matriz identidad de orden m) con m columnas

de A.

La primera suposicion es muy facil de cumplir, pues cuando hay un b;
negativo se multiplica toda la igualdad por —1. Maés adelante se vera como
tratar el caso en el que no se cumple la segunda suposicion.

Sean:
Al = A,
b =0b.
En esta primera iteracién es muy facil obtener la solucién béasica realizable
(ejemplo 7.3.1), pues basta tomar:
B'=1,
L' conformada por las columnas restantes,
v la solucién bésica realizable es:
rh = bl
1 _
T = O,

o' = (g, zp).
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Para pasar a la siguiente solucién bésica realizable 22, que, ademds, debe ser
mejor (su valor de z debe ser menor), tinicamente se cambiard una columna
de B': una columna de B' dejard de ser basica y pasard a ser libre y
también una columna de L' dejard de ser libre para convertirse en bésica.
De manera anéloga, una variable bésica se volvera libre, y una variable libre
se convertird en basica.

Ademas, se pasard del sistema

Az =b! donde B' =1,
bt >0,

a otro sistema equivalente (que tiene exactamente las mismas soluciones):
A%z = b? donde también B? = I,,,,
b >0

Este proceso se repite hasta llegar al 6ptimo o hasta saber que el éptimo no
es acotado.

Al precisar més estas ideas, es necesario detallar varios pasos:

= ;Cémo son las condiciones de optimalidad?

= ;Como se escoge la variable libre que se convierte en bésica (la variable
que “entra” a la base)?

= ;Cuéando el valor 6ptimo de z no es finito, es decir, el valor de z no es
acotado (inferiormente)?

» ;Cudl es la variable que deja de ser bdsica y se convierte en libre (la
variable que “sale”de la base)?

= ;Cémo se modifican los coeficientes de A, b* para pasar a A1, pEt1?

En lo que sigue sobre el método simplex, salvo indicacién contraria, para
no recargar demasiado las férmulas, se suprimird el superindice, es decir,
cuando no haya superindice se supondrd que es k y cuando el superindice
sea ’ (una comilla) se supondra que es k + 1.

Con las suposiciones del método simplex (B¥ = I,,,) el célculo de los
costos reducidos se simplifica bastante y las condiciones de optimalidad
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64 CAPITULO 7. EL METODO SIMPLEX

resultan muy sencillas. (ejemplo 7.3.3):
¢, =c;, — L% > 0.
Ademss, el valor de z es muy sencillo de calcular:
z=cpb

Sean: [ la m-upla formada por los indices de las columnas (y de las variables)
bésicas en el orden adecuado (para formar la matriz identidad), A el vector
de p = n — m componentes, formado por los indices de las columnas libres.

5 = (ﬁlaﬁ%"' 7Bm)>
A= (A1, A2,..., ),

entonces, por ejemplo,
B = (T8, Ty Thm)5
Ty = (x)\l,x)\Q, e ,a})\p).

El célculo de los costos reducidos de las variables libres (¢, — LTcp) se puede
explicitar asi:

[ (L)1
(LT)2.

¢, =cr, —

L (A.)\p)TCB.

El resultado anterior se puede presentar, individualmente, para cada costo
reducido:
e =coxn — (An) e i=1,...,p,
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o también
¢j=cj— (A )'ep =c¢j —cpA.,; parala variable libre z;.

La igualdad anterior es valida también para las variables basicas, pero para
estas variables no es necesario calcular el costo reducido ya que es nulo.
Efectuando el producto matricial se tiene:

¢j = cj — (arjcp, +azjeg, +... +amjcs,,)
m

= Cj - Zaijcm.
=1

Si 69? < 0 para alguna variable libre (y ¥ es un solucién basica realizable no

k

degenerada), entonces " no es una solucién 6ptima.

k

Si Eé“ > 0 para todas las variables libres, entonces z* si es una solucién

Optima.
En el caso éptimo hay dos posibilidades:

i) para todas las variables libres ¢; > 0,

ii) para alguna variable libre ¢; = 0.

En el caso ii) la(s) variable(s) libre(s) tal(es) que ¢; = 0 puede(n) tomar
valores positivos sin que esto haga aumentar el valor de z, es decir, el valor
6ptimo z* permanece 6ptimo al variar x; de cero a un valor positivo. Esto
quiere decir, si no se trata de una solucién realizable basica degenerada,
que hay varios puntos extremos éptimos, méas atun, hay un nimero infini-
to de puntos éptimos (cualquier combinacién convexa de puntos extremos
6ptimos).

En el caso i), si el punto no es degenerado, cualquier modificacién de una
variable libre z;, por pequena que sea, hace aumentar (empeorar) el valor
de z; o sea, el punto z* es el vnico éptimo.

Hay varios criterios para escoger una variable, entre las libres, con coefi-
ciente ¢; < 0, para que deje de ser nula y tome un valor positivo, volviéndose
también variable basica. Uno de estos criterios, tal vez el mas usado, es esco-
ger la variable con costo reducido méas pequeno, es decir, la de costo reducido
“maés negativo”. Asi se escoge la variable libre que hace disminuir mas la
funcién objetivo z por cada unidad que aumente esta variable libre.
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Otro criterio consiste simplemente en escoger cualquier variable libre con
costo reducido negativo, por ejemplo, la primera encontrada.

Finalmente, el mejor criterio es escoger la variable libre que maés hace
disminuir, en total, el valor de z. Por ejemplo, si ¢; = -3 y ¢3 = =5 y si 21
puede aumentar hasta 11 y x3 puede aumentar hasta 6, entonces es mucho
mejor escoger la variable x; pues produce, en total, una disminuciéon de
33. Aunque este criterio es el mejor, en la practica no se usa pues requiere
conocer el méaximo valor que puede tomar cada variable libre con costo
reducido negativo, y esto implica muchas méas operaciones y comparaciones.

Sea x. la variable que “entra” a la base.

¢e = min{é; : ¢ < 0}.
Al tomar z. un valor positivo, las variables bésicas pueden modificarse, pues
son funcién de las variables libres (ej. 7.3.4).
xp=B"'"0— B 'Lz, =b— Lz,
Ty,

xB:b—[L.l L.p]

Txp
p
=b-— Z L-z'fL')\,L-
=1

P
rp=b— ZA.)WCC)\Z..

=1

Como tunicamente la variable libre z. se vuelve positiva, las deméds variables
libres siguen siendo nulas, entonces

T =b— T A.,

xg, = by — Teje, 1=1,...,m.

La variable x., que vale cero, va a tomar valores positivos y entre mas grande
sea, mas disminuye el valor de z. Se puede presentar un inconveniente si
alguna (o algunas) variable bésica se vuelve negativa, pues esto no estd
permitido. Es claro que ello podria suceder tinicamente para las variables
bésicas con coeficiente a;. positivo. Entonces la solucién es muy sencilla,
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basta aumentar x. hasta cuando la primera variable basica con a;. positivo
se anule.
: b;
2, =0 sl Te=—-
Qe
El nuevo valor de z. serd el maximo valor que pueda tomar, o sea, el mayor
valor sin que ninguna variable basica sea negativa, o sea,

b(r . bz .
T, =—"=minq —: a; >0, i=1,...mp.
Gge Qe
Este hecho determina, al mismo tiempo, cudl es la primera variable basica
que se anula con valores positivos de z., es decir, cudl es la variable bésica
que “sale” de las bésicas (ejemplo 7.3.5). Si se llega a presentar “empate”
en el cociente minimo para dos o mas variables bésicas, se puede escoger
como variable béasica que sale cualquiera de las “empatadas”, por ejemplo,
la primera encontrada; en la siguiente tabla la soluciéon bésica realizable
)
obtenida sera degenerada.

x5 = xg, = variable que “sale” de las bésicas.

El subindice s indica la posicién de la variable de 1 a n; el subindice ¢ indica
la posicion de la variable de 1 a m, es decir, entre las variables béasicas.

Si la variable z, (u otra variable libre con coeficiente ¢; < 0) puede au-
mentar de manera ilimitada sin disminuir el valor de las variables bésicas,
entonces también el valor de z puede disminuir ilimitadamente y asi el 6pti-
mo no es acotado. Esto se tiene cuando todos los elementos de la columna
correspondiente A.. son menores o iguales a cero.

Si a;e <0 para ¢=1,2,...,m, entonces el 6ptimo no es acotado.

Lo que resta de una iteracién cualquiera del método simplex, es simple-
mente hacer las modificaciones adecuadas para pasar de A*, bF a AFH1 phtl
de tal manera que B! = I,,,.

En la iteracion k

/Bk = (617527"‘750’7"’ 7ﬂm)7
en la iteracién k+1 (ejemplo 7.3.6)

6k+1 — (617627' . 'aew"vﬂm)'

Al tomar las columnas de A correspondientes a 3* se tiene, obviamente, la
matriz identidad.

[ah, Ak, oAk, AR =1,
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Pero al tomar la columnas de A¥ correspondientes a 3**1 ya no se tiene la
matriz identidad.

(10 a¥, 0]
0 1 ak, 0
k k k k _ : _ Nk
(AR, AR Ak AR ] = 0 0 ok o=@
[0 0 ... akf, 1

Esta matriz QF es muy fcil de construir, se toma la matriz identidad de
orden m y se cambia su columna ¢ por la columna A.. .

El determinante de Q* es aye, valor no nulo (més aun, es positivo), enton-
ces QF es invertible (y (QF)~! también es invertible), asf el sistema AFz = bF
se puede premultiplicar por Qk_l, obteniéndose el sistema equivalente

k+1,. _ pk+1
ATy = p T

donde
Ak+1 _ (Qk)flAk’ bk+1 — (Qk)flbk
Entonces
k+1 k+1 k+1 k+1]
A./B1 A.B2 o AT A-,Bm = I,

que es exactamente lo deseado.

—1
Féacilmente se comprueba que Q¥  tiene la siguiente forma (ver ejemplo
7.3.7):

10 —ak Jak, ... 0

0 1 —ak Jak, ... 0

el R : o
(@) N 00 ... 1/ak, ... 0
00 ... —ak Jak, ... 1]
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Explicitando los productos (Q*)~1A* y (Q%)~1b*, se tiene:

ak a®.
k+1 _ k e 0] . . .
aj;  =ai— —%—, i=1,...,m, i1#0, j=1,...n,
aU@
kbk
E+1 _ gk %eb . :
b7 =b ———, i=1,..m, i #£ 0,
aO’E
k
ar .
k+1 _ "oJ R
Upi = 37 j=1,..n,
aoe
k
bk+1: ba‘
g ak

Se puede comprobar que las formulas anteriores pueden ser vistas simple-
mente como el resultado de efectuar operaciones elementales sobre las filas
de AF, b¥ utilizando la fila o, para obtener el valor uno en la posicién (o,€)
y el valor cero en las otras posiciones (i, €) de la columna e (ejemplo 7.3.8).

Con el nuevo sistema A¥1y = v+ se efectiia el mismo proceso y asi
sucesivamente (ejemplo 7.3.9).

En el método simplex, casi siempre se pasa de un punto z* a un punto

mejor ¥, En el peor de los casos z¥ y 2**1 son igualmente buenos. Mas
precisamente, si 2¥ no es degenerado, entonces ¢Tz**! < ¢"z¥. En general,
CT:L'k+1 < CT‘,Ek“

Puesto que el nimero de puntos extremos (soluciones bésicas realiza-
bles) es finito y (en ausencia de soluciones bésicas realizables degeneradas)
siempre se pasa de un punto extremo a uno estrictamente mejor, entonces
el método simplex es un proceso iterativo finito. Mas adn, las estadisticas
muestran [Dan63| que, para n bastante mayor que m, el nimero promedio
de iteraciones varia aproximadamente entre m y 3m, valores mucho meno-
res que CJt = n!/(m!(n —m)!) (nimero de combinaciones de m elementos
tomados dentro de n elementos).

En presencia de degeneramiento, ciertas reglas (perturbacion infinitesi-
mal, reglas lexicograficas, método de Bland) permiten evitar que en algin
momento el proceso se vuelva ciclico, impidiendo la obtencién del éptimo.
Ademds, en aplicaciones reales, el degeneramiento aparece muy pocas veces,
y de estas pocas veces, la mayoria de las veces no da lugar a un ciclo sin
fin. Més aun, casi todos los ejemplos de ciclos sin fin conocidos, han sido
construidos expresamente con esta finalidad. Por esta razén, casi siempre,
como en la mayoria de los programas de computador comerciales, no es ne-
cesario preocuparse por el ciclado. Sin embargo, si es 1til colocar un niimero
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maximo de iteraciones. Si se llegara a alcanzar este nimero maximo de ite-
raciones se tendria, o bien, un nimero maximo de iteraciones muy pequeno,
o bien, se trata posiblemente de un problema ciclico.

Ejemplo 7.3.
max z = x1 + 1.4x9

x1 + x9 < 400
1+  2x9 < 580
x> 0.

Introduciendo variables de holgura

min z = —x1 — 1.4x9
r1+ x2+ 3 =400
T1 + 229 + x4 = 580
T + x5 = 300
x> 0.
1 11 00 400
A=1]11 2 0 1 0|, b= 580
1 0 0 01 300

Ejemplo 7.3.1 : Es claro que se cumplen las condiciones del método sim-
plex: b > 0y las columnas tercera, cuarta y quinta de A forman la matriz

identidad.

Ejemplo 7.3.2 :

11 0
L'=1]1 2|, cg=1]0 ,c}—[:i‘ﬂ.
10 0 '

De manera inmediata se tiene el primer punto extremo (solucién bésica
realizable) dado por el método simplex.

vl = (3,24, 25) = (400, 580, 300),
2! = (0,0, 400, 580, 300),
z=c5bt =0 0 0! =0.

k

El paso que sigue es averiguar si 2" es éptimo.
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Ejemplo 7.3.3 :
=== ][5 0] |0

S -1.0
L= 14
luego 2! no es éptimo.

Ejemplo 7.3.4 : La variable que “entra” a la base es entonces

Te = I2.

Ejemplo 7.3.5 : Para escoger la variable que sale de la base hay que efectuar
los cocientes:

bl 400

—L = — =400,
Qo 1

bl 580

—2 ="~ =290,
A9 2

by

: 1
1 no se calcula ya que a3y < 0.
32

La variable que “sale” es la segunda variable bésica.

Tp, = Ty,

Ts = T4.

Ejemplo 7.3.6 : En la segunda iteracién las variables basicas seran: x3, x2, x5
y las variables libres x1, x4.

Ejemplo 7.3.7 :

1 1 0 1 —-1/2 0
Q=102 01|, @")?t=]0 1/2 0
001 0 0 1

Ejemplo 7.3.8 : Ahora se pasa a un sistema equivalente A%z = b?> donde
A2, b? se pueden obtener de dos maneras, bien sea premultiplicando Al b!
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por la matriz (Q1)~!, es decir, 42 = (Q1)~1AY b = (Q')~!b!, o bien, por
medio de operaciones elementales sobre las filas de A', b! para obtener un
uno en la posicién (2,2) y ceros en el resto de la segunda columna.

1/2 01 —=1/2 0 110
A2=1|1/2 1.0 1/2 0, v¥*=| 29
100 0 1 300

Ejemplo 7.3.9 :
z% = (3,12, x5) = (110, 290, 300),
2% = (0,290, 110, 0, 300),
z = —406.
El valor de 22 se puede obtener de tres maneras:
i) 22=c"2?=[-1 —-14 0 0 0][0 290 110 0 300",
i) 22=chb?=[0 —14 0][110 290 300 ]",

bl
i) 2=zl =2t elal =04 (—1.4)(290).

“age
0
o [-1] [ 1/2 12 1 iy
LT 0 ~1/2 1/2 0 P
2 _ [ —3/10
L 7/10 |’
luego 2% no es éptimo.
Te = T1,
b2 110
— = —— =220,
ai; 1/2
b2 290
—2 = = =580,
aj; 1/2
b2 300
— = "— =300,
az; 1
xﬁd = 3361,
Tg = 3.
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Ahora las nuevas variables bésicas seran: x1,x9,x5 y las variables libres
3, x4.

1/2 0 0 2 0 0]
Q*=11/2 10|, @*'=]|-110]|.
1 01 -2 0 1]
El nuevo sistema equivalente estd dado por:
10 2 =10 220 |
A=101 -1 10/, ¥= 180
00 -2 11 80. |

z3 = (x1, 12, x5) = (220, 180, 80),
3 = (220,180, 0,0, 80),
2 = —472.

3 0 2 —1 -2 —10
c7 = — —14
L 0 -1 1 1 ’

0
@ -[)

luego 23 s es 6ptimo ya que 6% > 0, entonces

x* = (220,180, 0,0,80) es el tinico punto éptimo ,
¥ =

—472 es el valor minimo de z.
Como el problema inicial era de maximizacion, entonces

2F=472. O

EJERCICIOS

En los ejercicios 7.1 a 7.6 convierta el problema a la forma estandar,
averigiie si cada uno de los puntos dados es factible. Si lo es, calcule
los costos reducidos para saber si el punto es 6ptimo.
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7.1.

7.2.

7.3.

7.4.

7.5.

Minimizar z = —1.1x1 — 1.229 con las restricciones z1 + xzo < 5, 2x1 +
3x9 < 14, 4z + 329 < 18, > 0.

a) x = (0,0)

b) x = (1,4)

c)x=(1,1).

d) = = (7,0)

Minimizar z = —1.1x1 — 1.1x5 con las restricciones z1 + o < 5, 2x1 +
3xo < 14, 4z 4 329 < 18, > 0.

a) x = (1,4).

b) x = (3,2).

c)xz=(1,1)

d) x = (2,3).

4, x > 0.

a) z = (0,12)

b) z = (4,8)

c) z = (5,10)

d) x = (2,10)

Minimizar z = —2x1 — 3x2 con las restricciones x1 + xo > 12, bx; —
2090 < 4, x > 0.

a) x = (0,12).

b) z = (4,8).

c) x = (2,10).

Minimizar z = —2.5x1 + 29 con las restricciones x1 + xo > 12, bz —
200 < 4, x > 0.

a) r = (4,8).

b) x = (0,12).

c) x = (6,13)

d) x = (8,18)

e) x = (10,20)
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7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

Minimizar z = 1.1x1 4+ 1.2x9 con las restricciones x1 4+ 2x2 > 3, 2x1 +
To >3, x1+x20>2,2>0.

a) z = (1,1).
b) z = (0,3).

En los ejercicios 7.7 a 7.12 convierta el problema a la forma esténdar.
Si se cumplen las condiciones, aplique el método simplex hasta encon-
trar el 6ptimo, o hasta saber que no hay éptimo acotado.

Minimizar z = —1.1x1 — 1.2x5 con las restricciones x1 +xs < 5, 221 +
3x9 < 14, 421 4 329 < 18, x > 0.

Minimizar z = 4x1+3x2 con las restricciones 1 +x9 > 12, bx; — 220 <
4, x > 0.

Minimizar z = x5 con las restricciones 1 + x9 — x3 + x5 = 12, br —
200 + x4 =4, x > 0.

Minimizar z = 4x1 + 3z9 con las restricciones o — dx3 — x4 = 8,
1 — 2523+ x4 =4, x> 0.

Minimizar z = 4x1 — 3x2 con las restricciones o — 5x3 — x4 = 8,
1 — 2523 +x4 =4, x>0.

Minimizar z = —1.1z1 — 1.1x5 con las restricciones x1 +x9 < 5, 221 +
31‘2 S 14, 4$1 + 32?2 S 18, X Z 0.
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Capitulo

8

TABLAS DEL METODO
SIMPLEX

8.1. Una primera tabla para el simplex

Los datos y valores del método simplex se pueden organizar en una tabla,
de tal manera que se facilite la solucién manual de un problema pequeno de

programacién lineal.

LB

L3y

L Bm

I i) I3 I,

C1 C2 C3 Cn
CB | a1 aiz2 a3 Ain | by
CBy | @21 Q22 G23 a2n | by
CBm |Om1 Am2 Am3 Amn| by,

1 ¢y X Cn z

bm

Ame

Algunos valores de esta tabla se obtienen de manera inmediata: ci, ca,

vy Cpy ve vy Qg veny bl,

, bm.

A la izquierda, fuera de la tabla, hay una columna indicando las variables
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béasicas xg,,...,xg,,. La primera columna, dentro de la tabla, contiene los
elementos de cp: cg,, ..., cg,,, es decir, los coeficientes de la funcién objetivo
correspondientes a las variables bésicas (en el orden adecuado). En la dltima
fila estan los valores ¢;. Para las variables bédsicas su valor es cero, y no hay
necesidad de calcularlo; se puede escribir el nimero 0 o también se podria
indicar con un signo X . Para las variables libres

E] =Cj — (C[Blalj + Cpy (25 +.o..+ Cﬁma’mj)7

es decir, es el valor de c; correspondiente, menos la suma de los productos,
término a término, de los elementos de la columna cp y la j- ésima columna

de A.

A partir de la tabla se sabe inmediatamente el valor de cada variable
xj. El valor de cada una de las variables basicas (las que estan senaladas
en la columna izquierda) es exactamente el valor del término independiente
b; que estd, al frente, en la Ultima columna de la tabla (a la derecha). Las
demads variables tienen valor 0 por ser libres.

El valor de z corresponde simplemente a la suma de los productos,
término a término, de los elementos de la columna cp y de la columna
de términos independientes (los b;), que estd al lado derecho.

z = Cﬁlbl + ngbz + ...+ Cﬁmbm.

Una vez calculados los costos reducidos ¢;j, se puede saber si la tabla es
6ptima o no. Recordemos que se tiene el 6ptimo si los costos reducidos ¢;
son no negativos, para todas las variables libres.

Si la tabla no es éptima se escoge la variable que entra a la base (aquella
cuyo coeficiente ¢; sea el menor). Para visualizar mejor, se resalta la columna
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correspondiente de A, es decir, A.c.

T

|

|

|

|

|

|
e i B -7
I |Qoell Qg |
- —

Los valores del extremo derecho de la tabla b;/a;e, son simplemente los
cocientes de los términos independientes b; y los elementos de la columna
resaltada (la columna que entra), cuando éstos son positivos. Cuando los
coeficientes a;e son menores o iguales a cero el cociente no se efectia (y se
puede indicar por un signo x ). La escogencia de la variable bésica que sale
xg, se hace buscando el minimo de los cocientes. De nuevo para visualizar
mejor, se resalta la fila correspondiente.

Si ninguno de los cocientes b;/a;. se efectiia, el valor de z no es acotado
(inferiormente).

Para empezar la iteracién siguiente uinicamente queda por calcular la
nueva tabla, con base en las férmulas, pero teniendo en cuenta algunas
simplificaciones:

= Las columnas de la nueva tabla correspondientes a las nuevas variables
bésicas forman la matriz identidad y, por lo tanto, no es necesario hacer
operaciones sino simplemente dar los valores adecuados.

= Para el cdlculo de la fila ¢ unicamente hay que dividir todos sus ele-
mentos por el elemento aye, lamado pivote.

» Para los otros valores

k k

aieacrj

ktl _ gk

ge
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80 CAPITULO 8. TABLAS DEL METODO SIMPLEX

es decir, el nuevo valor de a;; es igual al antiguo valor menos el pro-
ducto de los dos elementos “resaltadoscorrespondientes, dividido por el
elemento pivote a,.. Los elementos “resaltadosgorrespondientes son:
el elemento de la misma fila de a;; (la fila ) que estd en la columna de
la variable que entra (la columna e ), es decir, a;, y el elemento de la
misma columna de a;; (columna j ) que estd en la fila correspondiente
a la variable bésica que sale (fila o ), es decir, ag;.

Es claro que si en la fila resaltada (fila de la variable bdsica que sale)
hay un elemento nulo, entonces los elementos de esa columna no se alteran
al pasar a la siguiente tabla. De manera semejante, si en la columna resal-
tada (columna de la variable que entra) hay un elemento nulo, entonces los
elementos de esta fila no se alteran al pasar a la siguiente tabla.

Ejemplo 8.1.
min z = —x1 — 1.4x9

xr1 + T < 400
xr1 + 2x9 <580
T < 300

x> 0.

Ante todo se colocan en la primera tabla los valores “inmediatos”.

3 0 1 1 1 0 0 | 400

T4 0 1 2 0 1 0 | 580

s 0 1 0 0 0 1 | 300

z = (0,0, 400, 580, 300).
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Luego se calculan los costos reducidos.

3 0 1 1 1 0 0 | 400

ZTq 0 1 2 0 1 0 | 580

Zs5 0 1 0 0 0 1 | 300

-1 -14 0 0 0 0

Se averigua si la tabla es éptima. Si no lo es, se escoge la variable que entra
a la base.

Te x9.

F__I

3 | 0 1:1|1 0 0 | 400
II

Tl 0| 12,0 1 0 [58
II

x5 | 0 1§0:0 0 1 | 300

Si en la columna de la variable que entra hay elementos positivos, se efectiian

81



82 CAPITULO 8. TABLAS DEL METODO SIMPLEX

los cocientes b;/a;e para a;e > 0.

'___I

3| 0| 1 1 1 0 0 |400] 400
|[

Tl 0|1 270 1 0 |580]290
||

50| 1 10, 0 0 1 [300]|X
L

-1 -14 0 0 0 0

Se escoge la variable basica que sale.

LBy = TPy,

Ts = X4.

z3 | 0 1 ' 1 0 0 | 400 | 400

|

|

r""""+““"“l _________ I |
ze |0 |1 01 0 | 5801 200

|
x5 | 0 1 10" o0 0 1 1300 X
L _

Ahora hay que construir la nueva tabla. En ella se colocan los valores
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inmediatos. En las columnas 3, 2, 5 debe estar la matriz identidad.

-1 —-14 0 0 0

3 0 0 1 0
T2 |—1.4 1 0 0
Zs5 0 0 0 1
0 0 0

Se calculan los demés valores de A y de b. He aqui el ejemplo de un célculo:

1x 1
a2 =1 . ) 1),

-1 -14 0 0 0

3 0 [05 O 1 -05 0 |110

r2 |—=1.4] 0.5 1 0 05 0 |290

T5 0 1 0 0 0 1 | 300

0 0 0 |—406

z = (0,290,110, 0, 300).

Se calculan los nuevos costos reducidos, se verifica si la tabla es 6ptima, se
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escoge la variable que entra, se escoge la variable que sale, ...

r— - - - - - - - - - = =7 - =1

z3 | 0 o5, 0 1 -05 0 110:220

|
|
|
T2 |—14 0.5: 1 0 05 0 |290 580
|
|
|

0 0 0 1 | 300 | 300

I
I
I
x5 0o |
L

-03 O 0 07 0 |[—406

Te = X1,
Q:Ba :xﬁl’
Ts = I3.

-1 -14 0 0 0

1 | —1 1 0 2 -1 0 | 220

T2 |14 0 1 -1 1 0 | 180

5 0 0 0 -2 1 1 80

0 0 06 04 0 |—472

z* = (220, 180, 0, 0, 80).

Como los costos reducidos ¢3, ¢4 > 0, entonces el x obtenido es éptimo; este
xz* es 6ptimo tnico ya que ¢s, ¢4 > 0; el valor éptimo de la funcién objetivo
es z¥ = —472. &

Ejemplo 8.2.

min z = Ts + Xg
1 + 2x9 — 23 + z5 = 4
5x1 + 2x9 — X4 + x5 =12
x> 0.
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En este ejemplo también se puede aplicar directamente el método simplex,
ya que b > 0 y, ademads, con las columnas quinta y sexta se tiene la matriz
identidad.

0 0 0 0 1 1
s | 11,2 -1 0 1 0| 4] 4
e R - =
ze | 1 | 5 ' 2 0 -1 0 1 | 12124
L__l ______________ ___I
-6 -4 1 1 0 0 | 16
z = (0,0,0,0,4,12),
Le = I,
LBy = LBy
Ts = Xg.
0 0 0 0 1 1
|___l__l_ ___________ - T
x5 1 )0 116! -1 02 1 -02/161 1

1 0 1 1041 0 =02 0 021]124] 6

z = (2.4,0,0,0,1.6,0),

Te = X2,
'rﬁa :x517
Tsg = T5.
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86 CAPITULO 8. TABLAS DEL METODO SIMPLEX

T2 0

o

1 —5/8 1/8 5/8 —1/8| 1

T 0

—_

0 1/4 —1/4-1/4 1/4| 2

0 0 0 0 1 1 0

7* = (2,1,0,0,0,0).

Esta solucion basica realizable es 6ptima puesto que todos los costos redu-
cidos de variables libres son no negativos. Como, ademads, algunos de éstos
son nulos y la solucién no es degenerada, entonces se puede afirmar que hay
un nimero infinito de soluciones 6ptimas para este problema. <

8.2. Una tabla mas compacta para el simplex

La tabla del método simplex se puede ver de otra manera, muy semejan-
te, pero con la diferencia de que hay menos férmulas para pasar de una tabla
a la siguiente. Las pequenas diferencias se basan en los siguientes hechos:

Se puede demostrar que los costos reducidos de la tabla k& + 1 se pueden
calcular directamente a partir de los costos reducidos de la tabla k, mediante
la siguiente férmula:

kK

k1 _ k  CeYoj

Cj = Cj — & .
aae

Como se veia en el capitulo 7 , el nuevo valor de z se puede calcular direc-
tamente mediante la siguiente férmula:

~kpk
crh
ZkJrl —Zk-i- eka’
aO’B
o también:
ckvk
k+1 k eYo
—z =—2"——=
a

Si se supone que los costos reducidos forman la fila m+1, que el valor de —z
es el elemento en la posicién (m—+1,n+1) y que los términos independientes
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de las igualdades hacen parte de la columna n + 1, entonces se tiene una
matriz A¥ de tamafo (m + 1) x(n + 1) con la siguiente estructura:

r .k k k ko
al1€1 a]l€2 . a}gn b]%
az; A3y ... Gy, by
AR = : : : :
k k k
a’rﬁl an]zQ Amn bmk
L 4 € Cn  —27 ]
Asi las férmulas para calcular bf“, E;?H, —2F*1 se convierten en:
k k
aia
k+1 _ k e o,n+1 .
ai7n+1—ai7n+1—7]€ y Z—l,...,m,
aae
k k
k+1 _ k o am+1zeaaj _ 1 n
a’m—‘rl,j - am+1,j CLk ’ — Lyl
oe
k k
k+1 _ k Um+1,e% n+1

Aptin+l = Cmt1n+1 —

k
Uge

Esto quiere decir que las formulas del capitulo 7 son validas también para
t1=m+1yparaj=n+1.

ak a
k41 _ k . ; C_
a; =ag— —F—, t=1,..,m+1, i#£o, j=1,...,n+1,
ao‘e
k
a’ -
k+1 _ “oj -
Upi = 5~ » j=1...n+1.
aO’E

Mediante estas férmulas se calculan todos los elementos para pasar de la
tabla k£ a la tabla k + 1.

Queda por ver cémo se construye la primera tabla Al. Esta se puede
construir utilizando las formulas para calcular los primeros costos reducidos
y el valor de —z, o bien se puede obtener a partir de la construccién de una
tabla inicial A° donde estén A, b, los costos ¢; y el valor de —z = 0.

an a2 ... aip b
a1 ago e aon b2
o=
Aml Gm2 --.- Gmn bm
| co ... Cp 0 |
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Para pasar de A° a A?! basta con efectuar operaciones elementales sobre las
filas de A° de tal manera que en la fila m+1 se obtenga el valor cero para las
variables bésicas, es decir, se obtiene asi, al mismo tiempo, en la fila m + 1
los costos reducidos ¢; y el valor de —z.

Una convenciéon muy utilizada es resaltar el elemento pivote ay., ence-
rrandolo entre un circulo o un cuadrado, mostrando con esto al mismo tiem-
po la columna de la variable que entra y la fila de la variable basica que
sale.

Ejemplo 8.3. Consideremos los mismos datos del ejemplo 8.2:

min z = Ts5 + Xg
x1 + 2x9 — T3 + z5 = 4
5x1 + 2x9 — X4 + x5 =12
x> 0.

1 2 -1 010 4

A0 = 52 0 -1 0 1 12

00 0 011 0

La columnas que forman la matriz identidad 2 x 2 son la quinta y la sexta, en-
tonces hay que buscar, mediante operaciones elementales entre filas, el valor
cero en las posiciones (3,5) y (3,6). Esto se obtiene fdcilmente sustrayendo
de la tercera fila una vez la primera fila y una vez la segunda fila.

[ 1 2 -1 010 4
A g 2 0 -1 01 12
—z| -6 -4 1 100 —16

z=(0,0,0,0,4,12),

z = 16.
Te = T,
1’60 :x527
Ts = Tg-

Un ejemplo del calculo de los costos reducidos en la segunda tabla es:

11
a5y = ayy — L’lla A,
a21
—-6)(—1
a3y =1-— ()5() = —0.2.
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zs [0 [1.6] —1

A2 . il 1
-z 0

z = (2.4,0,0,0,1.6,0),

Te

6o
T2 0
A3 T 1
—210

O O =

2* =(2,1,0,0,0,0),

Z*

02 1 -02 16
—02 0 02 24
—02 0 12 -16
1/8 5/8 —1/8 1
~1/4 -1/4 1/4 2

0 1 10

Los costos reducidos ¢; son denotados frecuentemente como c¢; — z; o
también z; — ¢; (dependiendo de la convencién utilizada). También es muy
frecuente colocar la fila de costos reducidos como primera fila, es decir,

encima de las filas de A.

Ejemplo 8.4. Consideremos los mismos datos del ejemplo 8.1 , la matriz

inicial A es:

A =

o O o

S O = O

O = OO

400
580
300

0

Las variables bésicas son 3, x4, x5. En la cuarta fila se tiene el valor cero
para estas columnas, o sea, ya se tienen los costos reducidos, es decir, en
este caso la matriz A! es igual a la matriz A°.

T3

Al T4
: s

—Z

o O O

1

2]

0
—-14

O O = O

0 400
0 580
1 300
0 0



90

CAPITULO 8. TABLAS DEL METODO SIMPLEX

8.1.

8.2.

z = (0,0, 400, 580, 300),

z=0.
Te = T2,
'rBU:xﬁZ’
Ts = T4.
a3 01 —1/2 0 110
Az . 4p) 1/2 1 0 1/2 0 290
s 1 00 0 1 300
—z| =3/10 0 0 7/10 0O 406
x = (0,290, 110, 0, 300),
z = —406.
Te = I1,
$18117:37617
Ts = I3
z1 | 1 0 2 -1 0 220
A3 o | 0 1 -1 1 0 180
x5 | 0 0 =2 1 1 80
—z| 0 0 3/5 2/5 0 472

z* = (220,180, 0,0, 80).
2= 472, O

EJERCICIOS

En los ejercicios 8.1 a 8.6 convierta el problema a la forma estandar. Si
se cumplen las condiciones, aplique el método simplex hasta encontrar
el éptimo, o hasta saber que no hay 6ptimo acotado.

Minimizar z = —1.1x1 — 1.2x9 con las restricciones z1 + xo < 5, 2x1 +
3:E2 S 14, 4$1 + 3332 S 18, i Z 0.

Minimizar z = 4x1 4 3x5 con las restricciones x1+xo > 12, bz —2x9 <
4, x> 0.
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8.3.

8.4.

8.5.

8.6.

Minimizar z = x5 con las restricciones x| + x9 — x3 + x5 = 12, bx —
209 + x4 =4, x > 0.

Minimizar z = 4x1 + 3x2 con las restricciones o — bxy — x4 = 8,
] —2.bx3+x4 =4, x> 0.

Minimizar z = 4x1 — 3x2 con las restricciones o — bxrg — x4 = 8,
1 —2.5x3+x4 =4, x> 0.

Minimizar z = —1.1x1 — 1.1x5 con las restricciones x1 +xs < 5, 2x1 +
3x9 < 14, 421 4 329 < 18, £ > 0.
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Capitulo 9

METODO DE LAS DOS
FASES

9.1. Problema artificial

Para poder utilizar el método simplex se requiere tener términos inde-
pendientes no negativos (b > 0) y, ademds, poder obtener la matriz identidad
escogiendo adecuadamente m columnas de la matriz A. Esto no sucede con
frecuencia, pero se puede obviar este inconveniente mediante el siguiente
artificio.

Introducir tantas variables como se necesiten para que con las columnas
correspondientes se obtengan las columnas faltantes de la matriz identidad.
Estas se llaman variables artificiales y como han sido forzadas a hacer
parte de igualdades su valor deberia ser cero.

Con estas variables artificiales se obtiene una solucion bésica factible
de un problema artificial, pero no del problema real. Para obligar a estas
variables artificiales a anularse, en una primera fase, se minimiza una funcién
objetivo artificial cuyo valor es la suma de las variables artificiales.

Si al obtener el 6ptimo de la funcién objetivo artificial, éste no es cero,
es decir, en el 6ptimo artificial alguna(s) variable(s) artificial(es) no es(son)
nula(s), entonces el problema no tiene solucién, es decir, no hay puntos
factibles.

En el mejor de los casos al obtener el 6ptimo de la funcién objetivo
artificial todas las variables artificiales son libres (todas son nulas), se habra
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94 CAPITULO 9. METODO DE LAS DOS FASES

obtenido asi una solucién factible basica con variables basicas no artificiales.
Esto permite utilizar el método simplex con la funciéon objetivo original,
suprimiendo las columnas correspondientes a todas las variables artificiales
(libres y nulas). Esta es la segunda fase.

Si en la primera fase (minimizacién de la funcién objetivo artificial) se
desea disminuir el nimero de calculos, se puede, en cada iteracién, eliminar
la columna correspondiente a la variable que sale (variable basica que se
vuelve libre, nula ) si ésta es artificial.

De todas maneras hay que evitar en la primera fase y en la segunda fase,
que las variables artificiales libres vuelvan a ser bésicas.

Ejemplo 9.1.
min z = 3z + 10x9

T+ 2x9> 4

5z1 + 29 > 12

x> 0.

Introduciendo variables de holgura se tiene:
min z = 3x1 + 1029

1+ 230 — X3 = 4
51 + 2x9 —xy =12
x> 0.

En este caso no se tiene la matriz identidad y es necesario introducir dos va-
riables artificiales: x5, g para formar con sus columnas la matriz identidad
de tamano 2 x 2.

Primera fase:

min z, = T5 + Tg
1 + 229 — 3 + z5 = 4
5x1 + 2x9 — X4 + x5 =12
x> 0.

Estos datos de la primera fase corresponden exactamente a los ejemplos
8.2 y 8.3 resueltos anteriormente, con la tnica salvedad de que se hubieran
podido suprimir las columnas quinta y sexta a medida que salian de la
base. Entonces la tabla éptima de la primera fase, habiendo suprimido las
columnas de las variables artificiales que se volvieron libres (z5 y xg) es la
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siguiente:
) z [0 1 —5/8 1/8 1
A3 o oz |10 1/4 —1/4 2
-2, 0 0 0 0 0
xr=(2,1,0,0),
24 =0

Como todas las variables artificiales son nulas, entonces el problema si tiene
soluciones factibles; ademas, se tiene ahora la matriz identidad con variables
no artificiales.

Segunda Fase:

Ahora es necesario colocar en esta tabla los coeficientes de la verdadera
funcién objetivo:
x [0 1 -5/8 1/8 1

x| 1 0 1/4 —-1/4 2

3 10 0 0 0
En la ultima fila deberian aparecer los costos reducidos, en particular el
valor cero para las variables bésicas (la segunda y la primera); esto no se
tiene, pero se puede conseguir facilmente al sustraer de la tercera fila tres
veces la segunda fila y diez veces la primera fila.

2 | 0 1 —5/8 1

1 0 1/4 —1/4 2

~z 0 11/2 —1/2 —16
z = 16,
Te = T4,
LB, = Tpys
Ts = To.

4 |0 8 =5 1 8
z1 |1 2 -1 0 4
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Puesto que los costos reducidos son positivos, entonces el punto extremo
obtenido es la tnica solucion éptima. <&

Ejemplo 9.2.
min z = 3z + 4x9
r1+ 210 > 4

5x1 + 229 > 12
x> 0.

La primera fase es exactamente la misma del ejemplo anterior. La diferencia
estd en la fila de costos al empezar la segunda fase.

[0 1 —5/8 1/8 1
a1 0 1/4 —1/4 2
3 4 0 0 0

A la tercera fila hay que restarle tres veces la segunda y cuatro veces la
primera fila para obtener los costos reducidos.

[0 1 =5/8 1/8 1
x| 10 1/4 —1/4 2
—z| 0 0 7/4 1/4 —10

$* = (2’]‘707 0)7
2* =10.

El punto éptimo es tinico. En este ejemplo se obtuvo directamente el punto
optimo al finalizar la primera fase. <

9.2. Conjunto no factible

Ejemplo 9.3.
min z = 3x1 + 4x9

T, + 210 > 4
51’1 —|—2£L‘2 > 12

1+ x2< 1

x> 0.

96
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Introduciendo variables de holgura:

min z = 3z + 4x9

T, + 229 — 23 = 4
5x1 + 279 — Iy =12
Tl + X9 +z5= 1

x> 0.

Como no se tiene la matriz identidad de tamano 3 x 3 es necesario introducir
dos variables artificiales zg, T7.

Primera fase

min z, = T + X7
T1 + 229 — T3 + xg = 4
5x1 + 2x9 — X4 + 7 =12
1+ T2 + x5 =1
x>0
xe | 1 2 -1 0 01 0 4
Ao .o 5 2 0 -1 0 0 1 12
Coxs | 101 0 01 0 0 1
0 0 0 001 1 O

Para obtener los costos reducidos en la cuarta fila es necesario restarle una
vez la primera fila y una vez la segunda fila.

6 1 2 -1 0010 4
o, @ | 5 2 0-1001 12
a5 1 0 0100 1
~2,| -6 —4 1 1.0 0 0 —16
zq = (0,0,0,0,1,4,12),

zq = 16,

Te = T1,

‘/L‘ﬂcr:xf}?ﬂ

s = I5.
% [0 1 -1 0 -1 10 3
42 . @ [0 =3 0 -1 501 7
oz |1 1 0 0 100 1
—2 0 2 1 1 600 —10
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z, = (1,0,0,0,0,3,7),

z> = 10.

*
a
*
a
Aqui se tiene el 6ptimo de la funcién objetivo artificial, con variables artifi-
ciales no nulas (zg = 3, x7 = 7), esto quiere decir que el problema original
no tiene solucién, es decir, no hay puntos que cumplan todas las restriccio-
nes. El anterior ejemplo es exactamente el 3.7 resuelto mediante el método
grafico. <&

En resumen, para resolver el siguiente problema de OL con variables no
negativas y con restricciones <, =, o >,

min z=c"x

Ai.x bi, 1= 1,...,m,

0

IV VIA

X

el esquema general es el siguiente:

datos: : ¢, A, b, tipos de restricciones
modificar restricciones para que b; > 0, Vi
introducir variables de holgura
si B#I
introducir variables artificiales
resolver la primera fase
siz; >0
2* = +00, es decir, F = ()
parar
fin-si
fin-si
F#0
resolver segunda fase
en el resultado final hay dos posibilidades:
z* es finito

Zz¥ = —00

En la primera fase, cuando es necesaria, siempre 2z > 0, es decir, nunca se
da que z; = —oo. Sise puede llegar a la segunda fase, entonces no es posible
que z* = 4o0.
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9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

EJERCICIOS

En los ejercicios 9.1 a 9.7 convierta el problema a la forma esténdar.
Aplique el método simplex o el método de las dos fases.

Minimizar z = —x1 — 0.1z9 con las restricciones x1 + x9 < 4, 19 > 2,
T1 + 229 <6, x > 0.

Minimizar z = 1.1x1 + 1.229 + 1.3x3 + 1.4x4 con las restricciones xg +
2421, w0 +2w4 > 2, 21 + 324 > 3,2 >0.

Minimizar z = 8x1 4+ 4x9 + 223 + x4 con las restricciones x5 + x4 > 1,
To+2x4 > 2, 21 +3x4 >3, 2>0.

Minimizar z = 8x1 + 4x9 + 2x3 + x4 con las restricciones x3 + x4 > 1,
To+2x4 22,01 +304 >3, x1 +x2+23+ 204 <1, 22>0.

Minimizar z = 10xy + 11xs con las restricciones 2z + 3x9 > 12,
201 +x2 > 8, x > 0.

Minimizar z = 10x7 + 25x9 con las restricciones 2x1 + 3xo > 12,
201 +x2 > 8, x > 0.

Minimizar z = 10x1 + 2522 con las restricciones 2x1 + 3x2 > 12,
201+ a2 > 8, 21+ 22 <4, x> 0.
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Capitulo 10

CASOS ESPECIALES DEL
METODO SIMPLEX

10.1. ()ptimo no acotado

En un problema real generalmente no se presenta un éptimo no acotado,
pues es casi imposible aumentar sin limite las ganancias o disminuir de
manera indefinida los costos. Lo que si puede haber sucedido es que no
se tuvo en cuenta alguna restriccién. Sin embargo, es 1til poder hacer el
analisis del caso de 6ptimo no acotado.

A partir de la 1ltima tabla del método simplex, cuando el éptimo no es
acotado, se puede obtener, de manera inmediata, una direccién del conjunto
de puntos factibles, a lo largo de la cual la funcién objetivo disminuye inde-
finidamente. Para esto basta con tomar B = I y considerar como columna
A.;, la columna correspondiente a la variable que entra, en la cual no hay
ningin elemento positivo:

Bdg = —A.;, entonces
dp=—Af >0,
dip, =1,

d; =0 en los demds casos.

Se puede mostrar, ademas, que el valor ¢'d estd dado exactamente por el
costo reducido de la variable que entra ce.
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102 CAPITULO 10. CASOS ESPECIALES DEL METODO SIMPLEX

Ejemplo 10.1.
min z = —10z; — 8x9

1+ 229> 4
5x1 + 229 > 12

x> 0.
Introduciendo variables de holgura se tiene:
min z = —10x; — 8x2
T, + 229 — T3 = 4
51 + 2x9 —x4 =12
x> 0.

Como no se tiene la matriz identidad es necesario introducir dos variables
artificiales, x5 y xg. La primera fase para este problema es exactamente la
misma del ejemplo 9.1 y asi en el éptimo de la primera fase se tiene:

) 2 [0 1 —5/8 1/8 1
A3 oz |10 1/4 —1/4 2
—2, 1 0 0 0 00

Colocando los costos originales

A T9 0 1 -5/8 1/8 1
Ak oy 1 0 1/4 —1/4 2

-10 -8 0 0 0
Calculando los costos reducidos

2 [0 1 —5/8 1/8 1

AF a0 |1/4) —1a 2,

-z 0 0 -5/2 -3/2 28

x=(2,1,0,0),
z = —28,

Te = T3,

TBs = T

Tg = T1.

) [ 5/2 1 0 —1/2 6
AR g 4 01 -1 8],
—z| 10 0 0 -4 48
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10.2. CONJUNTO DE PUNTOS OPTIMOS INFINITO Y ACOTADO 103

xr = (07 67 87 O)’
z = —48,
Te = T4

En este caso, al buscar cudl variable sale de la base, se observa que no
hay coeficientes a;4 positivos, esto quiere decir que, cuando x4 aumenta,
ninguna de las variables basicas disminuye, entonces no hay restricciones
que impidan que x4 aumente indefinidamente, disminuyendo asi el valor de
la funcién objetivo también indefinidamente. Se dice entonces que el 6ptimo

no es acotado.
dn — dy | _ -1/2 | [ 1/2
B= 1 as | — -1 1]’

dy =1,
dj =0 en los demds casos,
d=1(0,1/2,1,1),
c'd= ¢, =c¢4 = —4.

Es decir, los puntos de la forma
z+ pd = (0,6,8,0) + u(0,1/2,1,1), >0,
son puntos factibles para los cuales la funcién objetivo vale

z=—48+pu(—4), p>0. <

10.2. Conjunto de puntos 6ptimos infinito y aco-
tado

Este caso se presenta cuando hay méas de un punto extremo 6ptimo, y
para todas las direcciones extremas (si las hay) ¢"d > 0.

Si en la tabla éptima del simplex el punto extremo éptimo no es dege-
nerado, y una variable libre tiene costo reducido nulo, y su columna tiene
algin elemento positivo, entonces con seguridad se puede obtener otro punto
extremo 6ptimo, entrando esa variable libre a la base. Si el punto extre-
mo 6ptimo es degenerado, entonces no hay seguridad de obtener otro punto
extremo optimo.
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104 CAPITULO 10. CASOS ESPECIALES DEL METODO SIMPLEX

Ejemplo 10.2.
min z = 8x1 + 1629

r1+ 2x9> 4
S5r1 + 219> 12
x> 0.

Estas restricciones son exactamente las mismas del ejemplo anterior. Enton-
ces es necesario introducir dos variables de holgura, dos variables artificiales,
efectuar la primera fase y colocar los costos originales.

A [0 1 -5/8 1/8 1
AF oz |1 00 174 —1/4 2
8 16 0 0 0

Calculando los costos reducidos

[0 1 -5/8 1/8 1

ARz 100 14 —1/4 2,
—2[0 0 8 0 -32
x* = (27 ]‘7070)7
2 = 32.

Como el costo reducido de la variable libre x4 es nulo y, ademas, la solucién
bésica no es degenerada, entonces se puede afirmar que hay un numero
infinito de soluciones 6ptimas.

La tabla del método simplex permite en este caso encontrar otro punto
extremo 6ptimo. Como la variable libre x4 tiene costo reducido nulo, enton-
ces al incrementar el valor de esta variable, entrandola a la base, el valor de
z = 32, que es 6ptimo, no se modifica, y entonces sigue siendo éptimo. Asi
se obtiene otro punto extremo éptimo. Efectuando combinaciones convexas
de puntos extremos éptimos se obtienen puntos éptimos.

Te = T4,
xﬁd:xﬁﬂ
Ts = I2.
) s [0 8 =5 1 8
Aozl 1 2 -1 00 4 |,
-zl 00 8 0 —32
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x* = (4,0,0,8), es otro punto extremo éptimo.

z* =32 (jobviamente!).

Las observaciones sobre la pentltima tabla son también validas para la tabla
anterior. Para obtener otro punto extremo 6ptimo se entraria a la base la
variable xo y saldria la variable x4. Al hacer las operaciones correspondientes
se tendria de nuevo la peniltima tabla.

En este sencillo ejemplo tinicamente hay dos puntos extremos optimos.
Sus combinaciones convexas dan todos los puntos éptimos.

¥ =(242)\,1-1,0,8)), A€0,1]. ©

10.3. Conjunto de puntos 6ptimos no acotado

Este caso se presenta cuando el valor de z es acotado, es decir, hay
6ptimo finito, pero hay por lo menos una direccién extrema tal que ¢*d = 0.

Si en la tabla éptima del simplex hay una variable libre con costo redu-
cido nulo y su columna no tiene ningun elemento positivo, entonces al tratar
de entrar la variable libre de costo reducido nulo, no se puede escoger una
variable que salga de la base. Esto permite obtener facilmente una direccién
extrema tal que ¢*d = 0.

Ejemplo 10.3.

min z = Tx

T] + 229 > 4
5x1 + 2x9 > 12
x> 0.
Estas restricciones son exactamente las mismas del ejemplo anterior. Enton-
ces es necesario introducir dos variables de holgura, dos variables artificiales,
efectuar la primera fase. En seguida hay que colocar los costos originales.

) [0 1 —5/8 1/8 1
AR x| 10 1/4 —1/4 2
70 0 00

Calculando los costos reducidos

e [0 1 =58 1/8 1

AR o 10—1/4 2|,

—2 0 0 -7/4 7/4 —14
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T = (2, 1,0,0),
z =14,
LTe = X3,
LBy = LBy
s = I
. x2 [ 5/2 1 0 —1/2 6
AF T3 401 -1 8],
—z 7 0 0 0 0
z* =(0,6,8,0),
Z¥ =0,
Te = T4.

La variable libre z4 tiene costo reducido nulo y, como la solucién no es
degenerada, entonces hay infinitos puntos 6ptimos. Para tratar de encontrar
mas puntos extremos éptimos habria que tratar de entrar la variable z4 a la
base. Sin embargo, no hay ningin elemento positivo en la cuarta columna,
esto quiere decir que no se puede escoger cual variable sale de la base. Asi
se puede obtener una direccién d, a lo largo de la cual el valor de z no se
modifica y, por lo tanto, sigue siendo éptimo.

ae[2]--[31- 1)

dy =1,
d; =0 en los demds casos,
d=(0,1/2,1,1),

c'd=c¢.=2¢,=0.
Es decir los puntos de la forma
z” +Md = (0a67870) + M(Ov 1/27 171)7 K > Oa

son puntos 6ptimos para los cuales la funciéon objetivo vale

(0), p>0,

z 0+ pu
Z¥=0. ©
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10.4. Variables artificiales basicas nulas

Un caso particular se presenta cuando se llega al éptimo de la prime-
ra fase con todas las variables artificiales nulas, pero algunas de ellas son
todavia basicas. Esto significa dos cosas importantes, la primera es que el
problema si tiene solucién, es decir, si tiene puntos que cumplan todas las
restricciones, la segunda es que no se tiene la matriz identidad con variables
no artificiales, ya que algunas variables artificiales son todavia bésicas.

En este caso hay dos posibilidades:

= la primera consiste en pasar a la segunda fase con las variables arti-
ficiales bésicas nulas, dandoles un costo nulo para la funcién objetivo
original, con la condicién de no volverlas a dejar entrar a la base, si en
algin momento se vuelven libres (por ejemplo, suprimiendo la columna
correspondiente al salir una variable artificial nula de la base).

= la segunda consiste en sacar primero las variables artificiales nulas de
la base, para empezar la segunda fase con todas las variables basicas no
artificiales. En esta opcién, después de haber suprimido las columnas
de las variables artificiales libres, para cada variable artificial basica
nula x;, se puede presentar uno de los dos casos siguientes:

e en la fila correspondiente a x; todos los coeficientes son nulos,
salvo el de la misma variable z; cuyo valor es uno. Esto quiere
decir que la fila expresa la siguiente igualdad: z; = 0. Lo anterior
es cierto, pero no tiene ninguna informacién adicional, luego esta
fila se puede suprimir. Se reduce asi el nimero de restricciones y
el orden de la matriz identidad en una unidad.

e en la misma fila, aparte del coeficiente uno para la misma variable,
hay otros coeficientes no nulos. En este caso mediante operacio-
nes elementales (“pivoteando”sobre uno de estos coeficientes no
nulos), se puede entrar a la base una variable no artificial y sacar
esta variable artificial nula. Entre las variables con coeficiente
no nulo en esta fila, se escoge la que entra a la base mediante uno
de los siguientes criterios:

o cualquier variable.

o aquella variable con costo menor.
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108 CAPITULO 10. CASOS ESPECIALES DEL METODO SIMPLEX

o aquella variable con coeficiente dominante (el mayor en valor
absoluto), para buscar precision numérica, ya que este co-
eficiente va a ser utilizado como divisor. Este es uno de los
pocos casos donde el pivote puede ser negativo.

Ejemplo 10.4.

min z =4z, + 2x9 + 5x3

1+ 22+ 3= 3
r1 + 229 + 3x3= 6
4x1 + dxo + 63 =15

x> 0.

Introduciendo 3 variables artificiales x4, x5, ¢, la tabla inicial de la primera
fase es la siguiente:

g1 11 1 0 0 3

A0 . s 123 010 6
x| 45 6 0 0 1 15
000111 0

La tabla 6ptima de la primera fase, después de suprimir las columnas de las
variables artificiales libres x4, x5 es la siguiente:

xr1 T2 T3 Tg
T 1 05 0 0 15
AP g 005 1 0 15
T6 0O 0 0 1 0
—z| 0 0 0 0 0

En este caso todas las variables artificiales son nulas, luego hay puntos fac-
tibles. Pero hay una variable artificial nula en la base: xg. Si se escoge la
opcién de ir directamente a la segunda fase, entonces se coloca la fila de
costos originales:

1 T2 I3 Tg
z1| 1 05 0 0 1.5
A . 23| 0 05 1 0 15
| 0 0 0 1 0
4 2 5 0 0
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Calculando costos reducidos:

T T2 I3 Tg
) z | 1 0 0 15
AF z3 | 0 05 1 0 1.5 |,
zg | 0 0 0 1 0
-z 0 25 0 0 —135
z = (1.5,0,1.5,0),
z = 13.5,
Te = T2,
T, = LBy
s = 1.
xr1 X2 I3 g
T 2 1 0 0 3
A o ozl -1 0 1 0 0},
T 0 0 0 1 0
—z| 5 0 0 -6
r* = (0,3,0),
2 =6.

Si en este mismo ejemplo se busca quitar las variables artificiales nulas de
la base, antes de pasar a la segunda fase, hay que sacar a xg de la base.
Veamos que pasa con la fila correspondiente, es decir, la tercera fila de la
ultima tabla de la primera fase. Esta fila indica simplemente que xg = 0,
luego se puede suprimir sin ninguna pérdida de informacién.

En este caso, desde el principio habia una restricciéon redundante. Se
puede ver, por ejemplo, que la tercera restriccién es simplemente la suma de
tres veces la primera y una vez la segunda. Sin embargo, en general, es dis-
pendioso, dificil o casi imposible averiguar si hay restricciones redundantes.
Ma3s atn, cuando se plantea un problema es preferible escribir restricciones,
que de pronto podrian ser redundantes, que pecar por ausencia de restric-
ciones.

El problema queda entonces con dos restricciones. Al colocar los costos
de la funcion objetivo real se tiene:

w1 1/2 0 15
5| 0 1/2 1 1.5
4 25 0
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Calculando costos reducidos:

) 1 [ 1 0 15
A = 3o 05 1 1.5 |,
—2| 0 -25 0 —13.5
z=(1.5,0,1.5),
z = 13.5,
Le = T2,
xﬁazajﬂl’
Tsg = T7.
) To 2 10 3
AP = gl -1 01 0],
—2 50 0 -6
z* = (0,3,0),
2 =6. ¢

Ejemplo 10.5.

min z=4x1 + 5x9+ x3+ 4x4+ 225+ x4

6x1 + Txo + 1023 + 11x4 + 145 + 1524 < 63
1+ 220+ 23+ x4+ x5+ 6= 6
1+ 229 + 3x3+ 4xy4 + Dxs + 6bxg > 21

x1 + a3 + x5 =3
3r1 +3x2 + bxr3+ dxy+ Txs+ Txg > 30
x> 0.

Para este problema es necesario introducir tres variables de holgura x7, xs,
xg, y cuatro variables artificiales x19, 11, 12, 13- Inicialmente la base esta
formada por las variables x7, x19, 211, Z12, 213. Al cabo de tres iteraciones
se obtiene la tabla 6ptima de la primera fase. Entraron las variables x5, xg,
x1. Salieron las variables x19, 11, 7. La tabla 6ptima, después de suprimir
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las columnas de las variables artificiales libres x12 y 11, es la siguiente:

x1 x2 x3 Ty X5 Te g xrg T9 T10 T13
x| 1 11/2 1/2 0 0 1/2 54 0 0 0 3
0 | 0 0 0 0 0 0 —1/3 0 1 0 0
16 0 1 0 1 o 1 1/3 2/3 0 0 0 3
s | 0 -1 1/2 -1/2 1 0 —1/2 —5/4 0 0 0 0
T3 | 0 0 0 0 0 0 -1/3 1/3 -1 0 1 0
2z | 0 0 0 0O 0 0 23 13 1 0 0 0]

Como el valor de z, es cero, entonces si hay puntos factibles, sin embargo,
hay variables artificiales basicas nulas. El objetivo es sacar las variables
artificiales de la base antes de pasar a la segunda fase, bien sea suprimiendo
la fila correspondiente, bien sea pivoteando para que una variable no artificial
entre a la base.

La segunda fila, la de la variable béasica x1¢, no se puede suprimir puesto
que hay valores no nulos (—1/3 y -2/3) fuera del valor uno en la columna de
x10- En este caso hay que escoger una variable entre x7 y xg para que entre
a la base. Se observa que en este caso (entrar z7 o xg), el pivote resulta
negativo.

Si el criterio es buscar mayor precisién numérica, debe entrar la variable
de coeficiente dominante (mayor en valor absoluto), es decir, la variable xg.

Si se desea entrar la variable de menor costo hay empate, pues en este
ejemplo ambas son variables de holgura y tienen costo nulo.

Al pivotear sobre el coeficiente -2/3, para que entre la variable zg y salga
la variable artificial x1g, se obtiene la siguiente tabla

1 T2 X3 T4 Ts Te L7 T8 L9 T13
1 1 11/2 12 0 0 -1/8 0 0 0 3
s | 0 0 0 0o 0 0 12 1 0 0 O
6 | 0 1 0 1 0 1 o0 0 0 3
s | 0 -1 1/2 -1/2 1 0 1/8 0 0 0 0
T 0 0 0 0 0 0 —1/2 0 1 0

Como de costumbre, no se calcula la columna de una variable artificial que
sale de la base.
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Para sacar la variable artificial z13 de la base, se puede pivotear sobre el
coeficiente —1 para que entre la variable xg.

Mo €2 xr3 T4 Ty T Trr Iy X9
x| 1 1 1/2 1/2 0 0 -1/8 0 0 3
zs | 0 0 0 00 0 1/2 1 00
6 | 0 1 0 1 0 1 0 0 03
s | 0 -1 1/2 —-1/2 1 0 1/8 0 0 0
9 | 0 0 0 00 0 1/2 0 10

Colocando los costos reales:

z [1 1 1/2 1/2 0 0 —-1/8 0 0 3
zs |0 0 0 000 1/2 10 0
e |0 1 0 101 000 3
zs |0 -1 1/2 —1/2 1. 0 1/8 0 0 0
g |0 0 0 000 1/2 01 0
4 5 1 4 2 1 000 O]
Calculando costos reducidos
xn[1 1 1/2 1/2 0 0 —-1/8 0 0 3]
2 | 0 0 0 000 1/2 10 0
6 | 0 1 0 1 01 000 3
x5 | 0 —1 [1/2] =12 1.0 1/8 00 0]
29 | 0 0 0 000 1/2 0 1 0
—z|0 2 =2 2 00 1/4 0 0 —15
$ = (37 0’ 0’ 0’ 07 37 07 07 0)7
z =15,
Te = I3,
LB, LBy,
Ts = XT5.
z [1 [2] 0 1 -1 0 —-1/4 0 0 37
zs |0 00 0O 00 1/2 1 0 0
qe. %6010 1 01 000 3
"z3 |0 =21 -1 20 1/4 0 0 0
z9 [0 00 0 00 1/2 0 1 0
-2 0 -2 0 0 40 3/4 00 —15 |
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z = (3,0,0,0,0,3,0,0,0),
z = 15.

En este caso se obtuvo el mismo punto de la tabla anterior. Simplemente
una variable nula que era basica se volvio libre y una variable libre se volvié
basica, pero nula. Obviamente, el valor de z no mejoré de una tabla a
la otra. Esta situacién se puede presentar tnicamente cuando la solucion
basica realizable es degenerada. Sin embargo, también es cierto que, atin en
presencia de soluciones degeneradas, puede haber mejoria de una tabla a la
siguiente.

Te = T2,

LBy = Ty,

Ts = T1.
2z [ 1/2 1 0 1/2 —1/2 0 —1/8 0 0  3/2 ]
8 0 00 0 0 0 1/2 1 0 0
z6 | —1/2 0 0 1/2 1/2 1 000 32
T3 1 01 1 1 0 1/8 0 0 3|’
Tg 0 0 0 0 00 1/2 0 1 0
—z| 100 1 30 1/2 00 —12 |

x* =1(0,3/2,3,0,0,3/2,0,0,0),
ZF=12. ¢

EJERCICIOS

En los ejercicios 10.1 a 10.5 convierta el problema a la forma esténdar.
Aplique el método simplex o el método de las dos fases. Estudie en
detalle la solucién (direccién extrema en 6ptimo no acotado, varios
puntos extremos Optimos, direccion extrema en conjunto éptimo no
acotado, variables artificiales bésicas nulas).

10.1. Maximizar z = 4x1 + 5xo con las restricciones 4x1 + 3x2 > 20, x1 +
2x9 > 10, x > 0.

10.2. Minimizar z = 1521 + 3022 con las restricciones 4z, + 3x2 > 20,
T1 + 229 > 10, x > 0.
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10.3. Minimizar z = 10x1 — 1022 con las restricciones 4z + 3x2 > 20,
T1+ 229 > 10, —x1 + 220 <7, 2 > 0.

10.4. Minimizar z = 2x1+8z5 con las restricciones 4x1 43z = 20, £1+2x9 >
10, 3xz1 +x2 > 10, x > 0.

10.5. Minimizar z = 2x1 + 829+ x3 con las restricciones 4x1 + 39+ x3 = 20,
1 + 229 + a3 = 10, 31 + 22 = 10, x > 0.

114



Capitulo 11

METODO DE
PENALIZACION

Este método también es conocido con los nombres: M-grande, gran-M
o big-M. Sirve para resolver, en un solo proceso (o fase), un problema de
programacién lineal. Al mismo tiempo que se busca anular las variables
artificiales para obtener un punto factible, también se puede tratar de que
ese punto factible no esté muy alejado del 6ptimo. De esta manera, es
posible que el nimero de iteraciones sea menor que la suma del ntimero de
iteraciones de la primera y segunda fase en el método de las dos fases.

11.1. Costos y costos reducidos

En el método de penalizacién se construye una funcion objetivo de pe-
nalizacién que tiene en cuenta tanto los costos originales o reales, como los
valores artificiales para las variables artificiales. Para las variables originales
el coeficiente en la funcién objetivo de penalizacion es simplemente el coefi-
ciente real. Para las variables de holgura el coeficiente es cero. Para cada
una de las variables artificiales el coeficiente es M, indicando un valor que
puede ser muy grande. De esta manera, cualquier costo o costo reducido (o
el valor de —z) se puede expresar de la forma:

5]' = pj —+ osz,
Se podria hablar de una parte real p; y de una parte artificial o;.
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Al comparar con cero (para las condiciones de optimalidad) un costo redu-
cido expresado en esta forma, se tiene:

aj >0,

¢;j >0 si o también si
aj=0 y p;>0.

c;j =20 si a;j =0y p;=0.
aj <0,

¢; <0 si o también si

aj =0y p; <O0.

Como cada costo o costo reducido necesita dos coeficientes: p; y o, entonces
es necesario tener dos filas para los costos reducidos (en lugar de una): una
para los coeficientes p; y otra para los coeficientes «;.

En el método de las dos fases durante la primera fase no se tienen en
cuenta, de ninguna manera, los verdaderos coeficientes de la funcién objeti-
vo. Esto hace que al obtener un punto factible al final de la primera fase,
éste pueda estar muy alejado de un punto 6ptimo, pues inicamente se han
tenido en cuenta los costos artificiales de las variables artificiales.

11.2. Escogencia de la variable que entra

Para la escogencia de la variable que entra a la base en el método de
penalizacion hay dos enfoques posibles:

1) Dar prioridad parcial a los coeficientes «; (provenientes de las varia-
bles artificiales) y al mismo tiempo tener en cuenta los coeficientes p;
(provenientes de los coeficientes reales de las variables originales). Esto
aumenta las posibilidades de que el primer punto factible encontrado
esté mas cerca de un punto éptimo. Asi el ndmero de iteraciones en
el método de penalizacion puede ser menor que la suma de iteraciones
de la primera y segunda fase en el método de las dos fases.

2) Dar prioridad absoluta a los coeficientes o y tener en cuenta los
coeficientes p; solamente cuando ya todos los «; se han anulado o
cuando ya no hay variables artificiales bésicas. Este enfoque es el
mismo del método de las dos fases, salvo que se hace en una sola fase
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mas general. Asi se favorece posiblemente la obtencién rapida de un
punto factible, pero éste puede estar alejado de un punto 6ptimo.

La escogencia de la variable que sale de la base se hace exacta-
mente como en el método simplex.

Dando prioridad parcial a los costos artificiales, se tiene el siguiente
criterio para escoger la variable libre, no artificial, que entra a la base.

Buscar entre las variables libres no artificiales con o; < 0, aque-
lla cuyo coeficiente p; sea minimo. Dicho de otra forma:

Ce = Pe + oM tal que Pe = min{pj sy < 0}

Si el anterior paso no es posible, es decir, si no hay variables libres no
artificiales con a;; < 0, entonces es necesario escoger entre las variables
libres no artificiales con a; =0 y con p; < 0, aquella con coeficiente
p; minimo:

Ce = pe + acM  tal que  p. =min{p;: a; =0,p; < 0}.

Si esto tampoco es posible, se concluye que la solucién actual es 6ptima
para el problema de penalizacién. Obviamente si hay variables artificiales
no nulas el problema real no tiene solucién.

De la misma manera que en el método simplex, cuando una variable
artificial se vuelve libre, se puede suprimir su columna. También se puede
suprimir toda la fila m + 2, la correspondiente a los coeficientes artificiales
o, cuando todas las variables artificiales sean libres.

Ejemplo 11.1. Son los mismos datos del ejemplo 9.1.

min z = 3x1 + 10x9

1+ 2x9 > 4
or1 + 210 > 12
x> 0.

Introduciendo variables de holgura y artificiales

1 + 2x9 — T3 + x5 = 4
5x1 + 2x9 — X4 +x6 =12
x>0
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La funcion objetivo de penalizacion sera:
min z, = 3z1 + 1022 + Mzxs + Mxg,

o también

min z, = (3 4+ 0M)z1 + (10 + 0M)xe + (0 + 0M )z
4 (0 4+ 0M)ag + (0+ 1M)zs + (0 + 1M ).

Entonces la tabla inicial es:

1 T2 I3 T4 Ty Tg
A zs| 1 2 -1 0 1 0 4
A 26| 5 2 0 -1 0 1 12
pil 3 10 0 0O 0 0 O
a| 0 0 0 0 1 1 0]

Para obtener costos reducidos se necesita obtener el valor cero para las
variables bésicas en las filas de p; y de o, es decir, la tercera y cuarta filas;
para esto basta con restar de la cuarta fila una vez la primera fila y una vez
la segunda fila.

1 T2 T3 T4 T5 Te
x| 1 2 -1 0 1 0 4
At 2 0 -1 0 1 12|,
pi| 3 10 0 0 0 0 O
aj| -6 -4 1 1 0 0 —16

x =(0,0,0,0,4,12),
zp = 16M.

Aqui las variables libres 1, 2 tienen coeficiente o; negativo y de ellas la de
menor coeficiente p; es la variable z1. Luego x1 va a entrar a la base. Asi
entonces sale de la base la variable xg.

Te = 1,
x/Bo :x/BQ’
Tsg = T6.

118



11.2. ESCOGENCIA DE LA VARIABLE QUE ENTRA 119

il X9 T3 T4 Iy
x| 0 1.6 —1 [02] 1 1.6
A*: x| 1 04 0 —02 0 24|,
pil 0 88 0 06 0 —7.2
aj| 0 -16 1 —-02 0 —16 |

z = (2.4,0,0,0,1.6),
2p = 7.2+ 1.6M.

Las variables libres x2, x4 tienen coeficiente «; negativo. De ellas la de
menor coeficiente p; es la variable z4. Luego x4 va a entrar a la base.

Te = T4,
xﬁozxﬂ17
Ts = T5.
z4 | 0 8 =5 1 8
1213' T 1 2 -1 0 4
Copi |04 30 —12 |7
aj 00 00 0
z* = (4,0,0,8),
*=12.

En el ejemplo anterior, hubo dnicamente dos iteraciones; en cambio la so-
lucién del mismo problema por el método de las dos fases (ejemplo 9.1)
requirié tres iteraciones: dos en la primera fase y una en la segunda. <

Si se da prioridad absoluta a los costos artificiales, se tiene el siguiente
criterio para escoger la variable libre no artificial que entra a la base.

Buscar entre las variables libres no artificiales con o; < 0, aque-
lla cuyo coeficiente «; sea minimo. Dicho de otra forma:

Ce = pe +acM  tal que o = min{e;: a; < 0}.

Si el anterior paso no es posible, es decir, si no hay variables libres no
artificiales con a;; < 0, entonces es necesario escoger entre las variables
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libres no artificiales con o;j = 0 y con p; < 0, aquella con coeficiente
p; minimo.

Ce = pe +acM  tal que p. =min{p;: a; =0,p; < 0}.

Si esto tampoco es posible, se concluye que la solucién actual es ptima
para el problema de penalizaciéon. Es obvio que si hay variables artificiales
no nulas el problema real no tiene solucion.

La aplicacion de la prioridad absoluta para los costos artificiales, como
se aprecia en el siguiente ejemplo, dara los mismos pasos del método de las
dos fases.

Ejemplo 11.2.
min z = 3z + 10x9

T+ 2x9> 4
S5r1+ 219> 12
x> 0.

Este es exactamente el mismo enunciado del ejemplo anterior, pero ahora se
dard prioridad total a los costos artificiales.

La tabla inicial es:

[ 21 22 73w @5 w6 ]
w51 2 -1 0 1 0 4
A% s | 5 2 0 -1 0 1 12

Pj 3 10 0 0 O 0 O
| 0 0 0 0 1 1 0
La tabla con costos reducidos es la siguiente:
BT r3 T4 Ty Te |
) x5 1 2 -1 0 1 0 4
Al oz 2 0 -1 0 1 12,
Pj 3 10 0 0 0 O 0
a | -6 -4 1 1 0 0 —16 |

z =(0,0,0,0,4,12),
Z2p = 16M.

Es claro que hasta aca no hay ninguna diferencia con el método anterior.
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Aqui las variables libres 1, z2 tienen coeficiente o; negativo. De ellas
la de menor coeficiente ay; es la variable x1. Luego x1 va a entrar a la base.

Te = T,
566022762,
Ts = Tg.

_.7)1 X9 I3 T4 I5 i
x| o0 [16] -1 02 1 16
A*: x| 1 04 0 —02 0 24|,

pil 0 88 0 06 0 —7.2
a| 0 —-16 1 —02 0 —16 |

z =(2.4,0,0,0,1.6),
2p =72+ L6M.

Las variables libres x3, 4 tienen coeficiente «; negativo. De ellas la de
menor coeficiente «; es la variable x2. Luego x2 va a entrar a la base.

xe:an
xﬁdzwﬂl’
Ts = T5.
2| 0 1 —5/8 1
B, w10 1/4 -1/4 2
pil 0 0 55 —05 —16 |
aj | 0 0 0 0 0
z=(2,1,0,0),
z = 16.

Como la fila de coeficientes o tiene tinicamente ceros se puede suprimir.

Te = T4,
xﬁa:xﬂﬂ
Ts = T9.
om0 8 -5 1 8
A*: oz |12 =10 4 |,
pj L0 4 3 0 —12

121



122 CAPITULO 11. METODO DE PENALIZACION

x* = (47 07 07 8)7
2 =12. ©

11.3. Conjunto no factible

Ejemplo 11.3.
min z = 3x1 + 4x9

1+ 210 > 4
5r1 + 2x0 > 12

r1+ 22< 1
x> 0.

Introduciendo variables de holgura x3, x4 y x5 y las artificiales zg y x7, se

tiene:
1 + 2x9 — 23 + z6 = 4
91 + 29 — T4 +x7 =12
1+ w2 — x4+ 25 =1
z> 0

La funcion objetivo de penalizacion sera:
zp = 3w1 + 412 + Mzxg + Mxr.

Entonces la tabla inicial es:

_ Tr1 X2 T3 T4 I5 T X7 i
Te 1 2 -1 O 0 1 0 4
A0. 7 5 2 0 -1 0 0 1 12
s 1 1 o o0 1 0 0 1
Pj 3 4 0 0 0 0 O0 O
Q; O 0 0O O o 1 1 o0
Calculando costos reducidos
[ 21 m w3 x4 x5 w6 7 1
Te 1 2 -1 O 0 1 O 4
Al T 5 2 0 -1 0 0 1 12
5 1 0 0 1 0 0 1|
Pj 3 4 0 0 0 0 O 0
aj | -6 —4 1 1 0 0 0 -16 |
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11.3. CONJUNTO NO FACTIBLE 123

z=(0,0,0,0,1,4,12),

zp = 16M,
Te = T,
xﬁa:mﬁB’
Ts = I5.
—xl To XT3 T4 Ty Tg I i
x| 0 1 -1 0 -1 1 0 3
Az,fw 0 -3 o -1 -5 0 1 7
x| 1 1 0 0O 1 0 0 1]’
pil 0 1 0 0 -3 0 0 -3
| 0 2 1 1 6 0 0 —10 |
r = (1,0,0,0,0,3,7),
z;:3—|—10M.

Todos los coeficientes «; de las variables libres son positivos, entonces los
costos reducidos son positivos, luego ya se alcanzé el éptimo. Como hay
variables artificiales no nulas, zg y x7, entonces se puede afirmar que el
problema no tiene puntos realizables, es decir, no tiene solucién. <

EJERCICIOS

En los ejercicios 11.1 a 11.12 convierta el problema a la forma estdndar.
Aplique el método simplex o el método de penalizacion.

11.1. Minimizar z = —x; — 0.1z9 con las restricciones 1 + x9 < 4, 29 > 2,
T1 + 229 <6, x > 0.

11.2. Minimizar z = 1.1x1 + 1.2x9 + 1.3x3 + 1.4x4 con las restricciones x3 +
r4 > 1, 204224 > 2, 21 +3x4 >3, 2 >0.

11.3. Minimizar z = 8x1 4+ 4x2 + 223 + x4 con las restricciones x5 + x4 > 1,
To+2x4 > 2, 21 +3x4 >3, 2>0.

11.4. Minimizar z = 8x1 4+ 4x2 + 2x3 + x4 con las restricciones x3 + x4 > 1,
To+2x4 22,01 +304 >3, x1+x2+23+ 204 <1, 22>0.
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11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

Minimizar z = 10x; + 11xs con las restricciones 2x1 + 3z9 > 12,
201 +x2 > 8, x> 0.

Minimizar z = 10x; + 25x9 con las restricciones 2x1 + 3z9 > 12,
201+ 290 > 8, > 0.

Minimizar z = 10x; + 2529 con las restricciones 2x1 + 3z9 > 12,
201 +x2 > 8, w1 +x2 < 4, 2 > 0.

Maximizar z = 4x1 + 5x9 con las restricciones 4z1 + 3z > 20, x1 +
2x9 > 10, x > 0.

Minimizar z = 15x; + 30xs con las restricciones 4x1 + 3zo > 20,
T + 229 > 10, 2 > 0.

Minimizar z = 10x; — 10x9 con las restricciones 4x1 + 3z5 > 20,
x1 + 222 > 10, —21 + 22 <7, 7 > 0.

Minimizar z = 2x1+8z5 con las restricciones 4x1+3xo = 20, x1+2x9 >
10, 321 + a2 > 10, x > 0.

Minimizar z = 221+ 8x5 + x3 con las restricciones 4x1 + 3z +x3 = 20,
x1 + 229 + x3 = 10, 31 + 22 = 10, x > 0.
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Capitulo 12

METODO SIMPLEX
REVISADO

12.1. Generalidades

En el método simplex, se parte de una matriz A° de tamafio (m+1)x
(n+ 1) y mediante operaciones elementales se construye A, después A2,...,
AF | hasta obtener una solucién oOptima, o hasta saber que el 6ptimo no es
acotado (inicamente en la segunda fase), o bien hasta llegar a la conclusién
de que el problema no tiene puntos realizables (inicamente en la primera
fase).

Las operaciones elementales que permiten pasar de Ak g flf“ se pueden
expresar mediante la premultiplicacién de A* por una matriz T*, de tamano
(m+1) x (m + 1), invertible.

Al — 7040
A2 =T"A"
Ak+1 _ Tk jk

Sea 70 la matriz que permite pasar de A0 a 1211, es decir, la que permite
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obtener los costos reducidos iniciales. Es facil comprobar que

0

T0 _ I, :
0

—Cp 1

De manera semejante, la matriz Tk que permite pasar de AF a Ak"’l, es
decir, la que permite obtener la matriz identidad para las nuevas variables
bésicas y al mismo tiempo actualizar los costos reducidos, es simplemente
una ampliacién de la matriz (Q*)~! definida en el capitulo 7:

0
0
0 —é&/ak, 0 1

Ejemplo 12.1. La obtencién de los costos reducidos para los datos del
ejemplo 8.3 se puede representar mediante la premultiplicaciéon de A° por
T° para obtener Al.

1 2 -1 010 4
A=|52 0 -101 12|,
(00 0 011 0
~ 1 0 0
T° = 0 1 0|,
-1 -1 1
o [ 1 2 -1 010 4
Al =T04° = 5 2 0 -1 01 121]. 9
| -6 -4 1 100 -16

Ejemplo 12.2. Para el mismo ejemplo 8.3 , la matriz T! representa el paso
de Al a A2.

o [1 =150
T"=10 1/5 0 |,
0 6/5 1

- 0 16 -1 02 1 —-02 1.6
A2=T'A'=1|1 04 0 —02 0 02 241|. <
|0 16 1 —-02 0 12 —1.6
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Todas las operaciones elementales efectuadas sobre la matriz A° se pue-
den agrupar de la siguiente manera:

Al =T04°
A2 =T'A' =TT A°

Ak = ph=1pk=2  p2pL70 40
Ak — Gk 40
donde
Sk — pk=1 pk=2  p2PL70

Por construccién S¥ es cuadrada, de orden m+1, invertible (por ser producto
de matrices invertibles) y representa todas las operaciones elementales que
se efectian sobre A%, para obtener A*. En particular

SO — dm+1,

gt — 70

Gk+1 _ Pk gk
Al comparar la tltima igualdad con la igualdad ARt — fkflk, se deduce que
para pasar de S¥ a S**1 hay que efectuar exactamente las mismas
operaciones elementales requeridas para pasar de AF a A*t1 | o sea,

para pasar de Gk o Gkl hay que utilizar férmulas sencillas iguales a las de
método simplex.

Se puede mostrar que la matriz S* tiene la siguiente forma:

~1
—CTBkBk 1

donde B* ! es la inversa de la matriz B* formada por las columnas de la ma-
triz A% = A, correspondientes a las variables bésicas en la k-ésima iteracién,
y cTBk es el vector fila formado por los costos (en el orden correspondiente)
de las variables bésicas.

127



128 CAPITULO 12. METODO SIMPLEX REVISADO

Ejemplo 12.3. Considérese la tabla A2 del ejemplo 8.3 . Alli las variable
bésicas son x5 y x1, entonces:

, 11
B _[0 5|
2—17 1 —02
B _[0 0.2]’
Ga=[1 0],
—eBY T = -1 02],
1 —-02 0
S? = 0 02 0
-1 02 1

FAcilmente se comprueba que A2 = G240 &

En el método simplex revisado, MSR, la matriz A° no se modifica, en
cambio, en cada iteracién se va construyendo explicitamente la matriz §k,
y algunas partes de Ak que son absolutamente indispensables para aplicar
el método simplex.

Las partes de la matriz A¥, que estrictamente se necesitan son:

= los términos independientes (incluyendo el valor de —z¥) : bk,
= Jos costos reducidos de las variables libres : c’z,

= la columna de la variable que entra : A% .

Entonces toda la informacién indispensable para el MSR se puede agru-
par en una matriz de tamano (m + 1) x (m + 3):

RF=| & B Ak

De manera mas explicita:

1 .

Rk — Bk :
- 0 bk ak,
T pk—1 k sk
—cpB 1 =2 ¢
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El valor de —z* se puede obtener como cualquier otro elemento de la matriz

RE. Pero también se puede hallar mediante la siguiente férmula (la misma
del método simplex).

—k = —cngk_lbO.
Esta formula se puede efectuar de dos maneras equivalentes:
) k= (=L B,
ii) —2F = —cTBk(BkilbO).

La primera forma consiste en multiplicar los m primeros elementos de la fila
m+1 de ﬁk, por los términos independientes iniciales y después sumar. La
segunda consiste en multiplicar —cEk (los costos de las variables bésicas de
la iteracién) por los términos independientes de la misma iteracién y después
sumar.

La columna m + 3 de R* , correspondiente a la variable que entra, no se
necesita cuando se llega al éptimo.

Conocer la matriz R, saberla utilizar y saberla modificar para obtener
RF*1 es, ni més ni menos, el MSR.

Antes de pasar a detallar el procedimiento para la construccién de RO
o de R! y de los pasos necesarios para pasar de RF a Ekﬂ, veamos en un
ejemplo las principales ventajas del MSR. Consideremos un problema en la
forma estandar con muchas mas variables que restricciones: 9 restricciones
y 99 variables.

= La tabla del método simplex tiene entonces 10 x 100 = 1000 elementos,
la mayoria de los cuales son modificados en cada iteracién. La tabla
del MSR tiene 10x 12 = 120 elementos que también son modificados en
cada iteracién. Obviamente es mucho més econémico (menos tiempo,
luego mas barato) modificar 120 elementos que 1000.

. . . . -1
= Es posible corregir o volver a calcular de manera més precisa B¥™~ al
cabo de cierto niimero de iteraciones.

= En problemas muy grandes puede suceder lo siguiente: AF 1o cabe en
memoria central (aunque si en disco) y, sin embargo, RO f cabe en
memoria central; es claro que el acceso a memoria central es mucho
mas rapido que a cualquier unidad de disco.
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Para empezar a aplicar el MSR, se requieren las mismas condiciones que
para empezar el método simplex:

1. problema de minimizacién en la forma estandar:

min z =c"x
Az =b
x>0,

2. >0,

3. m columnas de A forman la matriz identidad.

12.2. Algoritmo del MSR

A continuacién esté el esquema general del algoritmo del MSR y, poste-
riormente, estan los detalles sobre cada paso del algoritmo:

verificar que el problema cumple las condiciones
construir las primeras m + 2 columnas de la matriz Rl
calcular los costos reducidos de las variables libres
mientras la solucién no sea 6ptima
escoger la variable que entra
construir la columna de la variable que entra Ake
si el 6ptimo es no acotado, (Af“e <0), ent parar
escoger la variable que sale
modificar los elementos de las primeras m + 2 columnas de R
calcular los nuevos costos reducidos
fin-mientras

La construccién de RY no es necesaria; ademds, si se construyera no
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habria que hacer ningin calculo:

]/%0: I /607
[1 0 00 b 7]

. 0 1 Db

=1 00
00 ... 10 B
00 ... 01 0 7|

La tnica diferencia entre la tabla A° y la tabla A estd en la dltima fila: la
tabla A° tiene los costos c; y la tabla A tiene los costos reducidos ¢;j. Esto
hace que la unica diferencia entre RO y R esté en la dltima fila. Entonces
para obtener R! son necesarios los siguientes cdalculos:

T 1—1 T T
—CB1B = —CBll = —CB1,

1

—zt = —cTBlb1 = —c%lbo.

Hasta el momento se ha construido la mayor parte de ]:’,1, sélo falta por
obtener (cuando sea necesario) la columna de la variable que entra.

1 0 00 bh
0 1 0 0 b
Rl = | : : R :
0 0 ... 1 0 b,
R 1ot 7

Los costos reducidos de las variables libres, en cualquier iteracién, se obtie-
nen multiplicando escalarmente el vector fila conformado por los primeros
m + 1 elementos de la fila m + 1 de R, es decir, multiplicar ST’% 41, bor las

columnas de AY correspondientes a las variables libres de la iteracién k:
T _ Qk 70,k
CLk = Sm+17. L .

Asi el valor de un costo reducido esta dado por:
~ -1 70 -1 3
g = [ —et,BFT 1 }A.j = [ —etBFT 1 } [ ;

. T k=1 40
—cj—chB A,j.
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El criterio de optimalidad es exactamente el mismo del método simplex. Si
éLk Z 0,

entonces la solucion factible obtenida es 6ptima.

La escogencia de la variable libre que entra a la base se hace exactamente
de la misma forma que en el método simplex: aquella variable libre de costo
reducido minimo.

¢e = min {E;"’ : ¢ es variable libre}
1<j<n

e= argmin{éf : x; es variable libre}.

1<j<n
La columna de la variable que entra flke estd compuesta por AX y por &
en la posicién m + 1. El vector columna de m componentes Af“e se obtiene
multiplicando la matriz Bk_l, que ocupa las primeras m filas y las primeras
m columnas de R*, por la columna de A° correspondiente a la variable que
entra.

-1

Ak:[Afz]: B+ A9,

e ~k ~k
Ce Ce

Esta construccién es exactamente equivalente a:

Recuérdese que S* corresponde a las primeras m + 1 columnas de R*.

La escogencia de la variable basica que sale de la base, también se hace
de la misma forma que en el método simplex:

Ts = Tg,,
bk k i
g : 3
—— = min {— : a. >0
age 1<i§m{ ak ie }’
bk k
o =argmin{— : a;, > 0}.
1<i<m Gy,
En términos de elementos de RF:
k
T m+2

o = argmin{ rﬁm+3 > 0}.

1<i<m Timy3
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La actualizacién de la matriz R¥ para obtener las primeras m + 2 columnas
de RF+! se hace mediante operaciones elementales, tomando como elemento
pivote a¥, = r(]j’m 13, es decir, las férmulas son semejantes a las del método
simplex.

rk ok
k+1 _ _k oy’ ie . .
Ty =Ty t# o, j=1...,m+2,
rae
rk
k+1 _ 7) L
Toi = & , g=1,...,m+2.
Ta',m+3

Ejemplo 12.4. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 7.1:
min z = —x1 — 1.4x9
xr1 + x9 < 400
x1+ 2z2 <580
1 < 300
z> 0.

Introduciendo variables de holgura

min z=—x1; — 1.4z9
X1 + To + X3 =400
xr1 + 2x9 + x4 = 580
T + x5 = 300
x> 0.
La matriz A° es entonces:
1 1 1 0 0 400
A0 1 2 0 1 0 580
1 0 0 0 1 300
-1 —-14 0 0 O 0

Las variables bésicas en la primera iteracién son: x3, x4, 5. La obtencién
de la matriz RY es inmediata:

zz3[ 1 0 0 0 400 7

£o _ T4 01 0 0 580 7
zs| 0 0 1 0 300 7

0 0 01 0 7
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Para pasar a R! basta con colocar, en el sitio de los primeros m = 3 elemen-
tos de la fila m + 1 = 4, el vector fila —cp,. Ademds, es necesario calcular
el valor de —z! = —c}glbo.

—cp=[0 0 0],
400

—z'=-[0 0 0] 58 | =0.
300

En este ejemplo sencillo no hubo ninguna modificacién al pasar de RO a RY:

xz3 [ 1 0 0 0 400 ?
pl_ T4 01 0 0 580 7

x5 |0 0 1 0 300 7 [~

-z 0 0 0 1 0 7

x = (0,0,400, 580, 300),
z=0.

El céalculo de los primeros costos reducidos de las variables libres, 1 y x2,
da:

e, =811 =[0 0 0 1] =[-1 -14].

—_ = =

1
2
0
—-1.4

Esto indica que la solucién factible actual no es 6ptima y que la variable que
entra es T, = xa.

Ahora se requiere calcular la columna A.le:

. 1 0 0 1 1
AL=B""A%=10 1 0 2 | =2
0 0 1 0 0
Entonces
1
A 2
Al = e
—1.4
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z3 [1 0 0 0 400 1
pr_wa [0 100 580 |2
x5 |0 0 1 0 300 0
—2[0 001 0 —14

En esta iteracion no se puede afirmar que el éptimo sea no acotado, entonces
el proceso continua con la escogencia de la variable que sale de la base,
efectuando los cocientes

400 580
— =4 — = 290.
: 00, 90

La variable que sale es entonces

xﬁa‘ = xﬂ?’

Ts — T4.

Ahora se actualiza la matriz R modificando las m~+2 = 5 primeras columnas.
Se utiliza como pivote 7 43 = 126 = 2.

zs [1 =05 0 0 110 ?
2T 0 05 0 0 29 ?
T a5 | 0 01 0 30 ? |’
—z|l 0 07 0 1 406 ?
x = (0,290,110, 0, 300),
z = —406.
10
ap 1 1
~ 2702 _ _
Cl2=8;L%=[0 07 0 1] L o =[-03 0.7].
-1 0

Esto indica que la soluciéon factible actual no es 6ptima y que la variable que
entra es r. = x1.

Ahora se requiere calcular la columna A2%:

X 1 05 0 1 0.5
A2 =B*"A° =10 050 1{=1]05
0 01 1 1
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Entonces
0.5
A 0.5
=] %,
-0.3

1 -05 0 0 110 0.5
= z2 |0 05 0 0 290 0.5
0 0 1 0 300 1
-z 0 07 0 1 406 -0.3

En esta iteracién tampoco se puede afirmar que el 6ptimo sea no acotado,
entonces el proceso continua con la escogencia de la variable que sale de la
base, efectuando los cocientes

110 290 300
=22 = = = = 300.
o 0, p =080, == =300

La variable que sale es entonces

LBy = LBy,

Ty = X3.

Ahora se actualiza la matriz ]/3:, modificando las m + 2 = 5 primeras colum-
nas. Se utiliza como pivote 74 m43 = r16 = 0.5.

1 2 -1 0 0 220 7
ps o T2 -1 1 0 0 180 7

x5 | -2 1.1 0 80 7 |’

—z[ 06 04 0 1 472 7

x = (220,180, 0,0, 80),

z=—AT2.
10

s =S3L"* =06 04 0 1] 8 (1] =[06 04].
0 0

Esto indica que la solucién factible obtenida es éptima y tnica.

En cualquier iteracién del MSR se puede verificar la construccion de la
tabla. Esto, ademas de ilustrativo, podria ser 1til para detectar errores en
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ejemplos pequenios hechos a mano. La tultima tabla se puede tomar como
ejemplo para verificar: B~1, —c5B~!, b= B0, —z.

Las variables bésicas son x1, z2, x5. Al efectuar el producto de B (toman-
do de A° las columnas bésicas) por la matriz conformada por las primeras
m filas y m columnas de RF, se debe obtener la matriz identidad.

1 10 2 -1 0 1 00
1 20 -1 1 0(=]010]|. VvV
1 01 -2 11 0 01

En las primeras m posiciones de la fila m + 1 de RF debe esta el vector fila
—CTBBfl:

2 -1 0
—pB'=[-1 =14 0]| -1 1 0 |=[06 04 0].v
-2 11

Comprobacién de b, o sea, de los primeros m elementos de la columna m+2
RF:

2 -1 0 400 220
B =|-1 10 580 | = | 180 | . v
-2 11 300 80

La comprobacion del valor de —z se puede hacer de dos maneras:

400
—z=(—cgB )W’ =[06 04 0] | 580 | =—-472, v
300
220
—z=—cpBW)=-[1 14 0]]| 180 | =—472. ©
80

La tabla del MSR presentada aqui, puede diferir de las tablas presentadas
en algunos libros. Las diferencias pueden ser dos: con respecto a la columna
m+ 1y alafilam+1. Como la columna m + 1 siempre tiene la forma: 0 0
... 1, entonces puede ser suprimida. La fila m 4+ 1 algunas veces es colocada
como primera fila.
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12.1.

12.2.

12.3.

12.4.

12.5.

12.6.

EJERCICIOS

En los ejercicios 12.1 a 12.6 convierta el problema a la forma estdndar.
Si se cumplen las condiciones, aplique el MSR.

Minimizar z = —1.1x1 — 1.2x9 con las restricciones z1 + xzo < 5, 2x1 +
3o < 14, 41 + 329 < 18, > 0.

Minimizar z = 4x1 4+ 3x2 con las restricciones x1+xo > 12, bz —2x9 <
4, x > 0.

Minimizar z = x5 con las restricciones x1 + 9 — x3 + x5 = 12, 511 —
200 + x4 =4, x > 0.

Minimizar z = 4x1 4+ 3x2 con las restricciones xo — bx3 — x4 = 8,
1 —2bx3+x4=4, x> 0.

Minimizar z = 4x1 — 3x2 con las restricciones xo — bx3 — x4 = 8,
1 —2b5x3+x4=4,x>0.

Minimizar z = —1.1x1 — 1.1x5 con las restricciones z1 + o < 5, 2x1 +
3xo < 14, 4z + 329 < 18, > 0.
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Capitulo 13

EL METODO DE LAS DOS
FASES Y EL METODO
SIMPLEX REVISADO

13.1. De la primera a la segunda fase

La adaptacion del método de las dos fases al MSR es muy facil: en la
primera fase se trabaja con los coeficientes de la funcién objetivo artificial
y, ademas, no se calculan los costos reducidos para las variables artificiales
libres. Para pasar a la segunda fase (si hay soluciones factibles) es necesario
tener en cuenta los verdaderos coeficientes de la funcién objetivo, esto hace
cambiar en la tabla del MSR, tnicamente —cjB~! y —z.

Ejemplo 13.1. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 9.1 :
min z = 3x1 + 1029

T1+ 220> 4
51+ 2390 > 12

xz > 0.
Introduciendo variables de holgura se tiene:
min z = 3x1 + 1029
1+ 2x0 — X3 = 4
51 + 2x9 —x4 =12
x> 0.
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140 CAPITULO 13. EL METODO DE LAS DOS FASES Y EL MSR

Es necesario introducir variables artificiales y considerar durante la primera
fase la funcion objetivo artificial.

min z, = T5 + Xg
1+ 2we — 13 + x5 =4
91 + 29 — x4 + xg =12
x> 0.

La matriz A° es entonces:

1 2 -1 010 4
A=15 2 0 -1 0 1 12
00 0 011 0

Las variables bésicas en la primera iteracién son: x5 y zg. La obtencion de
la matriz R° es inmediata:

W

Is

100
RO=a25]0 1 0 1
00 1

\)

?
?
?

[an)}

Para pasar a R! basta con colocar en el sitio de los primeros m = 2 elementos

de la fila m + 1 = 3, el vector fila —c};; y ademds, calcular el valor de

—zl = chBlbO.

—cp=—[11]=[-1 -1],
IS 1}[13]?16-

En este ejemplo si hubo cambios al pasar de RO a RL.

~ x5 1 00 4 7

R' = x4 0o 10 12 7
2, -1 =1 1 —16 ?

z=(0,0,0,0,4,12),

zq = 16.

i

El célculo de los primeros costos reducidos de las variables libres, z1, z2, x3
v x4, da:

L 12 -1 0
=083 L%=[-1 -11]|5 2 0 -1
00 0 0

=[-6 -4 1 1].
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Esto indica que la solucién factible artificial no es 6ptima y que la variable
que entra es

Le = 1.

Ahora se requiere calcular la columna A,le:

A.16=B1_1A96:[(1) QH;]:[;].

Entonces

es [ 1 00 4 1

Rl=a2 | 0 10 12
2| -1 -1 1 —16 —6

En esta iteracién no se puede afirmar que el éptimo sea no acotado (en
la primera fase nunca se presenta el caso de 6ptimo artificial no acotado),
entonces el proceso continua con la escogencia de la variable que sale de la
base, efectuando los cocientes

La variable que sale es entonces

{B/Bcr = x,B2’

Ts = T6-

Ahora se actualiza la matriz R modificando las m+2 = 4 primeras columnas;
se utiliza como pivote 74 ;43 = 25 = 5.

s 1 —02 0 16 ?
R?*= 1 0 02 0 24 7],
—Za| -1 02 1 —-16 ?

x = (2.4,0,0,0,1.6,0),
zq = 1.6.
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Como la variable artificial xg se volvié libre, entonces no se le calcula su
costo reducido.

~ 2 -1 0
&, =83 =[-102 1]|2 0 -1
0 0 0

=[-16 1 -02].

Esto indica que la solucién artificial actual no es 6ptima y que la variable
que entra es:
Te = I9.

Ahora se requiere calcular la columna A..:

2 2—1 0 _ 1 —-0.2 2 o 1.6
Ac=B A'@‘[o 0.2“2 o4

Entonces
1.6

A2 = 04 |,
~1.6

5 1 -02 0 16

R2= 1 0 020 24 04
—2. | =1 02 1 —-16 —16

En esta iteracion no se puede afirmar que el 6ptimo sea no acotado, entonces
el proceso continua con la escogencia de la variable que sale de la base,
efectuando los cocientes

1.6 2.4

=1, =6
16 7 04

La variable que sale es entonces

LBy = LBy,

s = I5.

Ahora se actualiza la matriz R modificando las m~+2 = 4 primeras columnas;
se utiliza como pivote r4 ;43 = 115 = 1.6.

o 0.625 —0.125 0 1 ?
R¥= 2, | —0250 0250 0 2 ? |,
—Zq 0 010 ?
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z=(2,1,0,0,0,0),

zq = 0.

Como todas las variables artificiales son nulas se puede afirmar que ya se
obtuvo el 6ptimo de la primera fase con una solucién factible. De todas
maneras esto se puede comprobar mediante el calculo de los costos reducidos
de las variables libres no artificiales.

-1 0
=831 =00 1]] 0 -1
0 0

=[0 0].

Empezando la segunda fase es necesario modificar la matriz inicial A°, su-
primiendo las columnas de las variables artificiales libres, y tener en cuenta
los verdaderos costos. También es necesario efectuar cambios en la matriz

~

RF.
1 2 -1 0 4
A=|5 2 0 -1 12
310 0 0 0

La modificacién de la tltima fila de la matriz RF se obtiene mediante las
siguientes operaciones:

el 0.625 —0.125]
cgB'=-]10 3] { 0950 0250 ] =[-55 05 ],
—z=—c5B7 1 = (=c5B~HpY
4
=[-55 05 ] [ 19 } = —16.

Entonces la nueva matriz R es:

o 0.625 —0.125 0 1 ?
R =z, | —0.250 0.250 0 2 71,
—z —5.5 05 1 —16 ?
x:(2?17070)7

z = 16.
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El proceso contintia entonces normalmente con la obtencién de los costos
reducidos de las variables libres.

-1 0
=831 = -55 05 1] 0 -1
0 0

=[55 —05].

Esto indica que la solucion factible actual no es éptima y que la variable que
entra es:
Te = T4.

Ahora se requiere calcular la columna A..:

3 3—1 0 . 0.625 —0.125 0 . 0.125
Ade=B" A= —0.250 0.250 -1 | | —=0.250 |-
Entonces
0.125
A3 = | —0.250 |,
—0.5

o 0.625 —0.125 0 1 [0.125
R =121 | —0250 0.250 0 2 —0.250
—2 55 05 1 —16 —0.5

En esta iteracion no se puede afirmar que el 6ptimo sea no acotado, entonces
el proceso contintia con la escogencia de la variable que sale de la base; en
este caso unicamente puede salir xzs.

mﬁa = x/gl )

Tg = X9.

Ahora se actualiza la matriz R modificando las m+2 = 4 primeras columnas;
se utiliza como pivote r4 ;43 = 715 = 0.125.

oy 5 -1 0 8 7
RY= 1 1 00 4 71,
—z| -3 01 —-12 ?
33:(4,07078)7

z =12.
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De nuevo es necesario el calculo de los costos reducidos de las variables libres.

2 -1
Fy=8i1%=[-301]| 2 0
10 0

=[4 3].

Ahora si se puede afirmar que la solucion factible obtenida corresponde al
Unico 6ptimo. <&

13.2. Conjunto no factible

Ejemplo 13.2. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 9.3:

min z = 3z + 4x9

r1+ 2290 > 4
ox1 + 229 > 12
1+ w2 <1
x> 0.
Introduciendo variables de holgura:
min z = 3x1 + 4x9
T, + 229 — X3 = 4
5x1 + 279 — Iy =12
r1+ X2 +as= 1
xz > 0.

Como no se tiene la matriz identidad de tamafnio 3 x 3 es necesario introducir
dos variables artificiales xg, 7 y considerar durante la primera fase la funcién
objetivo artificial.

min z, = T + X7
T + 229 — 3 + Xg = 4
5r1 + 2x9 — X4 +xz7r =12
r1 + T2 + x5 =1
x>0
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12 -1 0010 4
fo_[32 0 -1001 12
11 0 0100 1
00 0 0011 0

Las variables basicas en la primera iteracién son: xg,x7,xs5. La obtencién
de la matriz RY es inmediata:

z[1 000 47
po_@r| 0100 127
2510010 17
0001 07

Para pasar a R! basta con colocar, en el sitio de los primeros m = 3 elemen-

tos de la fila m + 1 = 4, el vector fila —cp,, y ademds, calcular el valor de

_Zl = —cT bO

= —cpbY .
—cpp=—-[110]=[-1 -1 0],
4
—z'=—[110]| 12 |=-16.

1

En este ejemplo si hubo cambios al pasar de RO a RL.

6 1 0 00 4 7
pl_ T 0 1 00 12 7
5 0O 0 10 1 70’
-2, -1 -1 0 1 —16 ?
x=(0,0,0,0,1,4,12),
zq = 16.

El célculo de los primeros costos reducidos de las variables libres z1, x2, 3, 4
da:

12 -1 0
e, =8t = ~-1 -1 0 1] f f 8 !
00 0 0

=[-6 -4 1 1].

Esto indica que la solucién factible artificial no es éptima y que la variable
que entra es:
Te = T1.
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Ahora se requiere calcular la columna AL:

100 1 1
AL=B"'4% =10 1 0 =
0 1] [1 1
Entonces
L
. 5
Al = .
—6 |
Tg 1 000 4 1
Bl 7 0 100 12 5
T oz 0O 010 1
2| -1 =1 0 1 —-16 —6

En esta iteracién no se puede afirmar que el 6ptimo sea no acotado, entonces
el proceso continuia con la escogencia de la variable que sale de la base,
efectuando los cocientes

La variable que sale es entonces

x/Bcr = 1'183,

Ts = T5.

Ahora se actualiza la matriz R modificando las m+2 = 5 primeras columnas;
se utiliza como pivote rg 43 = 736 = 1.

z6 1 0 -10 37
p2_ T 0 1 -50 77

1 0o 0 10 1 7?7]|°

—2 | -1 -1 6 1 —10 ?

z = (1,0,0,0,0,3,7),
zq = 10.
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El proceso contintia entonces normalmente con la obtencién de los costos
reducidos de las variables libres zs, x3, T4 v 5.

2 -1 0 0
By PPN 2 0 -1 0
@zﬁﬁ%[44&61]1 0 01

0 0 00

=[2 11 6].

Los costos reducidos positivos indican que se tiene el 6ptimo de la primera
fase, sin embargo, hay variables artificiales no nulas (g = 3,27 = 7), es
decir, el problema no tiene solucién: es inconsistente. <

13.3. Conjunto 6ptimo no acotado

Ejemplo 13.3. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 10.1 :
min z = —10x; — 8z

T, + 210 > 4
5x1 + 219 > 12

x> 0.
Introduciendo variables de holgura se tiene:
min z = —10x; — 8x9
T1 + 229 — T3 = 4
521 + 279 —x4 =12
x> 0.

Como no se tiene la matriz identidad es necesario introducir dos variables
artificiales x5 y x¢. La primera fase para este problema es exactamente la
misma del ejemplo 13.1 . Entonces los cambios se presentan en la segunda
fase. Al empezar la segunda fase es necesario modificar la matriz inicial
A®, suprimir las columnas de las variables artificiales y tener en cuenta los
verdaderos costos. También hay que efectuar cambios en la matriz RF.

AV = 5 2 0 —1 12
10 -8 0 0 0
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La modificacién de la tltima fila de la matriz RF se obtiene mediante las
siguientes operaciones:

0.625 —0.125

T -1 _ o .
—epBT =—[ -8 —10 ]| _gos0 (50

}:[2.5 15 ],

—2=—cEBN = (~cEB O’ =[ 25 1.5 ] [ 1;1 } = 28.

Entonces la nueva matriz R es:

_x [ 0625 —0125 0 1 ?
RF=12,| -0250 0250 0 2 7|,
—z 2.5 1.5 1 28 7

r=(2,1,0,0),
z = —28.

El proceso contintia entonces normalmente con la obtencién de los costos
reducidos de las variables libres.

-1
Fy =831 =[25 15 1]| 0 -1
0
=[-25 —15].

Esto indica que la solucion factible actual no es éptima y que la variable que
entra es:
Te = I3.

Ahora se requiere calcular la columna A..:

3 .31, | 0625 —01257[ -1 [ —0.625
Ade=B" A= —0.250 0.250 0| 0.250 |°
Entonces
R —0.625
A3 = 0.250 |,
—2.5

T 0625 —0.125 0 1 —0.625
RF =2, | —0250 0250 0 2 0.25
—z 2.5 1.5 1 28 —25
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En esta iteracion no se puede afirmar que el 6ptimo sea no acotado, entonces
el proceso contintia con la escogencia de la variable que sale de la base; en
este caso unicamente puede salir x.

Q:Ba = ‘TBZ’

Ts = I7.

Ahora se actualiza la matriz R modificando las m~+2 = 4 primeras columnas;
se utiliza como pivote rg 43 = 125 = 0.25.

N 0 05 0 6 ?
Rr=uz3| -1 10 8 7],
—z 0 4 1 48 ?

z = (0,6,8,0),

z = —48.

De nuevo es necesario calcular los costos reducidos de las variables libres.

1 0
=81 =10 4 1] 5 -1
~10 0

=[10 —4].

Esto indica que la solucion factible actual no es éptima y que la variable que
entra es:

Te = X4.

Ahora se requiere calcular la columna A..:

4 a1, | 0 05 0] [ -05
e I )

Entonces
) —0.5
AL = -1,
—4
R T9 0 05 0 6 -—-05
Rr=a23| -1 10 8 -1
—z 0 4 1 48 —4
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Aqui es claro que no se puede escoger una variable que salga de la base,
es decir, el 6ptimo no es acotado. De igual manera, como en el método
simplex, se puede construir una direccién a lo largo de la cual la funcion
objetivo disminuye.

d=(0,0.5,1,1).

Entonces los puntos de la forma

(0,6,8,0) + u(0,0.5,1,1), >0,

son factibles. Para ellos la funcién objetivo vale —48 + u(—4), es decir,
decrece indefinidamente. <

13.1.

13.2.

13.3.

13.4.

13.5.

13.6.

13.7.

EJERCICIOS

FEn los ejercicios 13.1 a 13.7 convierta el problema a la forma estandar.
Aplique el MSR, una o dos fases.

Minimizar z = —x1; — 0.12z9 con las restricciones x1 + x9 < 4, 29 > 2,
T+ 229 <6, x > 0.

Minimizar z = 1.1x1 + 1.2z + 1.3x3 + 1.4x4 con las restricciones xg -+
T4 > 1, 204224 > 2, 21 +3x4 >3, x > 0.

Minimizar z = 8x1 + 4x9 + 2x3 + x4 con las restricciones x3 + x4 > 1,
To+2x4 2> 2, 21 +3x4 >3, x>0.

Minimizar z = 8x1 + 4x9 + 2x3 + x4 con las restricciones x5 + x4 > 1,
To+2x42>2, 21 +3x4 >3, x1+x0+23+ 2204 <1, 2>0.

Minimizar z = 10x1 + 11xo con las restricciones 2xy + 3x2 > 12,
201 +x2 > 8, 2 > 0.

Minimizar z = 10x1 + 25x2 con las restricciones 2xy + 3x2 > 12,
201 +x2 > 8, x > 0.

Minimizar z = 10x7 + 2bx9 con las restricciones 2x1 + 3xo > 12,
201 + 22 > 8, w1 +x2 < 4, x> 0.
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Capitulo 14

DUALIDAD

14.1. El problema dual

Considérese un problema de programacion lineal en la forma general de
minimizacién (con desigualdades >), es decir:

min z=c"z
Apz>b;, i€ My CM
Ajx=b;, i€ M~ M
2;>0, jEN CN
z; €ER, j&€ NN Ny

Se define su problema dual, PD, de la siguiente manera

max w=>"b"y
Ajy<c, jENICN
Ajy=cj, jENNN
¥ 20, i€ My CM
yi €R, i€ M~ M.

Recordemos que el problema inicial, llamado también el problema princi-
pal, primario o “primal” (este término puede ser anglicismo, pero es bastante
usado en el lenguaje técnico), denotado simplemente por PP | tiene n va-
riables y m restricciones, M = {1,2,...,m}, N = {1,2,...,n}, My es el
conjunto de subindices de las desigualdades del problema primal, M ~ M,
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es el conjunto de subindices de las igualdades del problema primal, N7 es el
conjunto de subindices de las variables no negativas en el primal, y N — N
es el conjunto de subindices de las variables no restringidas en el primal.

De la definicién del problema dual se deducen ciertas analogias y corres-
pondencias entre el problema primal y el dual:

PRIMAL DUAL

problema de minimizacién problema de maximizacién

desigualdades > desigualdades <

m = numero de restricciones m = numero de variables

n = numero de variables n = numero de restricciones

A = matriz de coeficientes AT = matriz de coeficientes
de las restricciones de las restricciones

una desigualdad > una variable no negativa

una igualdad una variable no restringida

una variable no negativa una desigualdad <

una variable no restringida una igualdad

¢; = coeficiente de la funcién ¢; = término independiente
objetivo

b; = término independiente b; = coeficiente de la funcién

objetivo

Hasta ahora, segin la definicién, unicamente se puede hallar el dual de
un problema de minimizacién con desigualdades >. Si se trata de un pro-
blema de maximizacién, habria que convertirlo primero en un problema de
minimizacién. Maés adelante se verda que también se puede hallar directa-
mente el dual de un problema de maximizacién con desigualdades <.

Ejemplo 14.1. Hallar el problema dual del siguiente problema primal:

min z=x1+ 2x9+ 3x3+ 44

5r1+ 6xo+ Txg— 8xg4> 9
1521 + 1629 4+ 1723 + 1824 = 19
10z1 + 11z + 1223 + 1324 < 14
;> 0, 5=2,34,
r1 € R.

El primer paso es convertir este problema en uno equivalente de minimiza-
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cién con desigualdades > .

min z=x1 + 2x9+ 3r3+ 44

5r1+ 6xo+ Tx3 — 814 > 9
1521 + 16z9 + 1723 + 1824 = 19
—101’1 — 11]]2 — 121’3 — 13$4 Z —14
2;> 0, j=234,
z1 € R

Su dual es entonces:

max w = 9y; + 19y — 14y3

5y1 + 15y2 10y =1
6y1 + 16y2 — 1lyz < 2
Tyr +17ys — 12y3 < 3
—8y1 + 18y2 — 13y3 < 4
y1,y3 > 0

Yo € R

Ejemplo 14.2. Hallar el dual de un problema en la forma mixta:

min z=c'x
Az > by, i€ My C M
Ajx=0b;, i€ M~ M
xz > 0.

Su dual es:

max w=">0"y
ATy <e
yi 20, te M1 C M
yi €R, i€ M~ M. ©

Ejemplo 14.3. Hallar el dual de un problema en la forma estandar:

min 2z =c'x
Axr =10
x > 0.
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156 CAPITULO 14. DUALIDAD

Su dual es:

max w=>"b"y
Aty <ec
yeR™ O

Ejemplo 14.4. Hallar el dual de un problema en la forma canénica:

min z=c'z
Az > b
x> 0.

Su dual es:

max w="b"y
ATy <ec
y>0. <

Es interesante observar que, de estos ultimos tres ejemplos, inicamente
el dual de un problema en la forma canénica también estd en una de esas
formas y, méds exactamente, también estd en la forma candnica. Por esta
razén, la mayoria de los teoremas y resultados de dualidad estan dados para
problemas (primal y dual) en la forma candnica. De ahora en adelante, salvo
que se diga expresamente lo contrario, cuando se hable de problema primal

y problema dual, se tratard de problemas en la forma candnica.

14.2. Propiedades

Proposicion 14.1. FEl dual del dual es el primal.

Demostracion: El problema primal en la forma general es:

min z=-c'z
Az >bi, i€ My CM
Az = bi, i€ M~ M
2;>0, jEN CN
2 €R, j €N~ N
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Su dual es:
max w=>b"y
Ajy<cj, jENICN
Ajy=cj, JENNDMN
yi >0, 1€ M1 C M
v, €R, i€ M~ M.

Para hallar el dual de PD, por ahora, hay que colocarlo en la forma de
minimizacién con desigualdades > :
min w = —b"y
—Ajy>—cj, jJENICN
—A]T~,y = —¢j, JENNDN
yi >0, i€ My CM
yi €R, i€ M~ M.

El dual del dual es:
max (= —c'¢
—AT;ljf < —bi, 1€ M1 - M
—Ang =—b;, 1€ M~ M
§ =20, JENICN
ijR, j €N~ Nj.

Al convertir el problema anterior en un problema de minimizacién con de-
. . T .
sigualdades > y teniendo en cuenta que AT" = A, se tiene:

min ( =c"¢
Al >b,, ie M CM
A€ = b, i€ M~ M,
§ >0, jeN CN
& ER, j€N~N.

Lo anterior es, salvo el nombre de las variables, el problema primal. [

El teorema anterior es valido, salvo equivalencia, para problemas prima-
les en formas diferentes a la general. Esto permite hallar directamente el
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158 CAPITULO 14. DUALIDAD

dual de un problema que estd en la forma de maximizacién con restricciones
<, sin tener que convertirlo primero en un problema de minimizacién con
desigualdades > . La demostraciéon se puede hacer directamente o utilizando
el siguiente resultado.

Proposicion 14.2. El problema dual de un problema equivalente al primal,
es equivalente a su dual.

Ejemplo 14.5. Hallar el dual de

max z = x1 + 1.4z

—r1 — xI9 Z —400
1+ 229 < 580
T1 < 300

T > 0.

En este ejemplo basta con cambiar el signo de la primera desigualdad y ya
queda listo para hallar su dual:

max z = x1 + 1.4x9

xr1 + To < 400
1+ 229 <580
T < 300
x> 0.
Entonces su dual es:
min w = 400y; + 580y2 + 300y3
nt+ oyt ys>1

y1+ 2y2+ 3ys> 1.4
y > 0.

Proposicion 14.3. Teorema de dualidad débil: Si T es solucion factible
de PP 1y 14 es solucion factible del PD, entonces

by < c'z.

Demostracién : Como £ y ¥ son soluciones factibles, entonces:

AT > b,
>0,
Aty <ec,
y > 0.
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En particular

Luego

Entonces

es decir,

o sea,

Partiendo de

se llega a

Ejemplo 14.6.

Su dual es

(Az); > by,
yi > 0.

TTATy <zc=c"z.

min z = 3x1 + 4x9

1+ 229> 4
5x1 + 219 > 12
x> 0.

max w = 4y; + 12y

y1+ dy2 < 3
21 + 2y < 4
y > 0.
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Sean: T = (4,3), y = (1,0). Se puede verificar que T es una solucién factible
de PP, es decir, cumple las dos restricciones y, ademads, sus componentes
son no negativas. Por otro lado, § es una solucién factible de PD. Ademas,
z=c"Z =24, w = b"yj = 4. Esto concuerda con el teorema. <

Ejemplo 14.7. Consideremos los mismos PP y PD del ejemplo anterior.

Sean: T = (4,3), y = (10,0). El punto Z es una solucién factible de PP;
z=c"% = 24; w=b"y = 40. Luego y no puede ser una solucién factible de
PD, pues si lo fuera contradiria el teorema. <

Las dos proposiciones siguientes se deducen inmediatamente de la tltima
proposicion.

Proposicion 14.4. Sean: T solucion factible de PP y i solucion factible de
PD. Sib™y = c"z, entonces T es punto dptimo (minimizador) de PP y g es
punto optimo (mazimizador) de PD.

Proposicién 14.5. Si uno de los dos problemas, el primal o el dual, tiene

soluciones factibles con dptimo no acotado , entonces el otro problema no
tiene soluciones factibles.

Ejemplo 14.8. Consideremos el PP y el PD del ejemplo 14.6

Sean: T = (2,1), y = (7/4,1/4). Se puede verificar que Z es solucién
factible de PP. También ¢ es solucién factible de PD. Ademaés, ¢Tz = 10,
b™y = 10. Entonces T es solucién 6ptima de PP y ¢ es solucién 6ptima de
PD. &

Ejemplo 14.9. Consideremos el problema de los ejemplos 3.4 y 10.1 .
min z = —10x; — 8x9

1+ 229> 4
5x1 + 229 > 12
x> 0.

Su dual es
max w = 4y; + 12y

y1+ Sy2 < —10
21 + 2y < =8
y=> 0.

Como se veia en los ejemplos 3.4 y 10.1, el PP tiene 6ptimo no acotado. Esto
permite afirmar que el PD no tiene soluciones factibles. Para este caso es
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facil comprobar que no existen valores de y1,y2, no negativos, que cumplan
con las dos restricciones. <

Proposicién 14.6. Teorema de dualidad fuerte: Si el PP tiene pun-
to dptimo (minimizador) x*, entonces el PD también tiene punto dptimo
(mazimizador) y* y ademds c"x* = b"y*.

Demostracion : Para resolver el PP, es necesario introducir variables de
holgura y obtener el problema PP’ en la forma estandar.

minz =c'x
Ax—Th=1»
x,h > 0.
Este problema se puede escribir como
minz =" 2’
Az =b
' >0,
donde 2/ = [z A"]|" es un vector columna (n 4+ m) x 1, ¢ = [¢* 0] es

un vector columna (n+m) x 1, A’ =[A — I] es una matriz m x (n +m).

Como el PP tiene punto éptimo, los costos reducidos correspondientes
son no negativos:

d=¢d-A"B "y >0
T
][ &=

Sea y = B_chjB. Entonces al expresar la tltima desigualdad por bloques se
tiene:

C_ATyZO7
0——Iy>0.

Es decir, y es admisible para el PD. Por otro lado, en el simplex, z* =
5B~ = y™b = by, luego y no solo es admisible, sino que también es
o6ptimo. [

Si se utiliza el MSR, se tiene directamente y* en las m primeras posicio-
nes de la fila m + 1 de la tabla del MSR.
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Ejemplo 14.10. Considere el problema

min z = 3x7 + 1029

5r1 + 2x9> 12
r1+ 19 >3.5
T+ 220> 4

x> 0.

Para resolver este problema se introducen 3 variables de holgura (y 3 artifi-
ciales) y se obtiene
¥ =(4,0,8,1/2,0).

Esto indica que las variables bésicas son x1, £3 y x4. Entonces

5 -1 0 0 01
B=|1 0 -1], Bl=]-1 05
1 0 0 0 -1 1

Luego un punto 6ptimo de PD esta dado por:

3 0
y=BYeg=B"|0|=]0
0 3

Por otro lado, si se emplea el MSR, se obtiene y 6ptimo directamente de la
ultima tabla (los 3 primeros elementos de la fila 4):

o[ 0 0 10 4
z3| -1 0 50 8|
x| 0 -1 1 0 1/2

-z 0 0 -3 1 -12

Corolario 14.1. Dos puntos x, y, factibles para el PP y el PD respectiva-
mente, son dptimos si y sélo si ¢’z = bTy.

Cuando uno de los dos problemas, el primal o el dual, no tiene soluciones
factibles no se puede afirmar que necesariamente el otro tenga éptimo no
acotado. La proposicién 14.5 presenta una implicacién y no una equivalen-
cia. En realidad hay dos posibilidades (para el otro problema): o bien tiene
optimo no acotado, o bien tampoco tiene soluciones factibles.

La primera posibilidad se presenta en el ejemplo 14.9 , viendo que el dual
no tiene soluciones factibles y el otro tiene 6ptimo no acotado. La segunda
posibilidad se puede observar en el siguiente ejemplo [Baz77].
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Ejemplo 14.11.
min z = —x1 — 9
r1 — T2 Z 1
—x1+ 22> 1
xz > 0.

Su dual es
max w=1y1 + Y2

y1 —y2 < —1
-y +y2 < -1
y > 0.

Por cualquier método, grafico, simplex..., se puede verificar que el PP no
tiene solucién y que el PD tampoco. <

La siguiente proposicion resume algunos de los anteriores resultados.

Proposicion 14.7. Teorema fundamental de dualidad. Dados el PP
y el PD, una y solamente una de las siguientes afirmaciones es verdadera:

= Ambos problemas tienen soluciones optimas x*, y*, con el mismo valor
de la funcion objetivo: cTx* = bTy*.

» Un problema tiene dptimo no acotado y el otro no tiene solucion.

= Ninguno de los dos problemas tiene solucion.

Proposicién 14.8. Teorema de holgura complementaria. Sean x*,
y* soluciones optimas de PP y de PD. Entonces:

(Azw* - bz)y;‘ = 0, 1= 1, N D

(Ajy" —cj)x; =0, j=1,...,n.
Dicho de otra forma: Si en el éptimo de un problema hay holgura (no nula)
en una restriccion, entonces el valor éptimo de la variable correspondiente
del otro problema es nulo. Si en el optimo de un problema una variable es
positiva, entonces la holgura es nula en la restriccion correspondiente del
optimo del otro problema.
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164 CAPITULO 14. DUALIDAD

Demostracién: Como z* y y* son 6ptimos, entonces son factibles y coin-
ciden en el valor de la funcién objetivo:

Ax* >b Aty* <ec
" >0 y* >0

Entonces
Az*—b>0, 2°>0, ¢c—A"y* >0, y*>0.
Sean
a=y"(Az* —b) >0, B=a"(c— ATy") >0.
O[—FIBZy*TAIE—y*Tb-i-IE*TC—fL’*TATy* :07
luego

a=0, 8=0.

0=a=y"(Az" —b) => yi(Az* —b)i =Y _yi(Auz™ —by).
=1 =1

Si se tiene una suma nula de términos no negativos, entonces cada término
es nulo, es decir, yf(A;.z* — b;) = 0, para todo i. De manera semejante se
concluye que z3(c; — ALy") = 0, para todo j. [J

Ejemplo 14.12. Consideremos el problema del ejemplo 14.5

max z = x1 + l.4z9

xr1 + T < 400
1+ 2x9 <580
T < 300

x> 0.

Su dual es:
min w = 400y; + 580y2 + 300y3

Y1+ Yo + yz > 1
Y1+ 2y > 1.4
y > 0.

La solucién de PP es z* = (220, 180).
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Como z7, x5 son positivas, entonces la holgura es nula en el éptimo del dual,
para la primera y para la segunda restriccion (se tiene la igualdad y no la
desigualdad). Ademds, en el 6ptimo del primal, la holgura de la tercera
restriccién no es nula: As.x® — by = 220 — 300 = —80 ; esto implica que la
tercera variable en el éptimo del dual debe ser nula. En resumen:

yi+ ysty3=1
Yt + 2u5 —14
y3 =0

Resolviendo este sistema se tiene:

También se hubiera podido utilizar la igualdad 400y} 4-580y5 +300y3; = 2* =
472, obtenida a partir de la proposicién 14.4 (o de la proposicién 14.6). <

Sea PP’ el problema obtenido a partir de PP, al introducir variables de
holgura para obtener la forma estandar, es decir, un problema con n +m
variables, m restricciones. Sea PD’ el problema obtenido a partir de PD, al
introducir variables de holgura para obtener la forma estandar, es decir, un
problema con m + n variables, n restricciones.

El teorema débil de holgura complementaria se puede expresar simple-
mente de la siguiente manera:

* * .
Tpii ¥ =0, i=1,...,m,
* * .
Ymt; 23 =0, g=1,...,n.
La siguiente proposicién indica que la tabla 6ptima del método simplex
permite dar directamente informacion sobre la solucién éptima del dual, o
viceversa.

Proposicion 14.9. Sean: z* solucién dptima de PP’, ¢ su vector de costos
reducidos, y* solucion optima de PD’ y b su vector de costos reducidos.
Entonces

* _~* -

z;  =byi J=1..n,
* _ 7 s

xy,; = 0f, i=1,..,m,
* < ;o

y; =Chyy t=1,..,m,
* ok s

Ymtj = Cj» j=1..,n.
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Este resultado permite resolver el PD y utilizar sus valores éptimos para
obtener la solucién de PP, o viceversa, resolver el PP y utilizar sus valores
Optimos para obtener la soluciéon de PD. Este recurso es favorable cuando
la tabla de PD es mas pequena que la tabla de PP. Esto sucede, por lo
general, cuando el PP tiene muchas restricciones y pocas variables. De
todas maneras hay que tener en cuenta también el nimero de variables de
holgura y el niimero de variables artificiales.

Ejemplo 14.13.
min z = 5z + 4x9

T1+ 122> 5
3r1 + 2x0 > 11
T, + 220 > 8

xz > 0.

Su dual es:

max w = dy; + 11lys + 8ys

i+ 3y2+ y3< 5
1+ 2y2 +2y3 < 4
y > 0.

Para resolver el PP hay que introducir 3 variables de holgura y 3 variables
artificiales; en la primera fase hay que trabajar con una tabla de 4x9 = 36
elementos. Ademsds, es necesario efectuar por lo menos 3 iteraciones en la
primera fase para sacar las variables artificiales de la base.

Para resolver el PD hay que introducir 2 variables de holgura y trabajar
con una tabla de 3 x 6 = 18 elementos. Directamente se tiene una solucion
factible y no es necesaria la primera fase.

Al efectuar explicitamente los calculos se observa que para el primal se
hubieran requerido 3 + 1 = 4 iteraciones. Para el dual se necesitaron 0 +
3 = 3 iteraciones. En este ejemplo es evidente la ventaja de resolver el PD
para obtener la solucién de PP.

La ultima tabla de la solucién de PD por el método simplex es:

yp [01 -1 1 -1 1
yi |10 —2 3 2
—w| 00 1 1 4 21
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Entonces

Tx *
by =0=19,4,
Tx o %
b2 —O—x2+2,

Tk *
b§+1 =1=uzj,
Tk *
b3+2 =4 = To.

También es posible obtener los valores de los costos reducidos en la tabla
Optima de PP.

* ~k
Y1 =2 =Copy,

* ~%
Yp =1 =059,

* ~%
yz =0 =053,
* _ <
ys1 =0=¢;

~%

y§+2 =0=2¢.
Adems3s

2 =21. ©

EJERCICIOS

En los ejercicios 14.1 a 14.6, plantee el dual del problema propues-
to (puede haber dos caminos que llevan a resultados diferentes, pero
equivalentes).

14.1. Minimizar z = x1 + 229 — 423 + 8x4 con las restricciones x1 + 2x9 +
xr3+3x4 >3, x99+ a3 — 214 =8, 221 + 3+ x4 > 10, 21,29, 24 > 0.

14.2. Minimizar z = x1 + 229 — 4x3 + 8x4 con las restricciones x1 + 29 +
3+ 3x4 <3, 10+ a3 — 224 =8, 201 + 23+ 24 < 10, 21, 20,24 > 0.

14.3. Maximizar z = x1 4+ 229 — 4x3 + 8x4 con las restricciones x1 + 2x9 +
3+ 324 < 3, wo + w3 — 2w4 = 8, 201 + 23 + x4 < 10, 21, 22,14 > 0.
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14.4.

14.5.

14.6.

14.7.

14.8.

14.9.

14.10.

Minimizar z = x1 + 2x9 — 4x3 + 8x4 con las restricciones x1 + 2z9 +
x3+3x4 >3, x9 +x3 — 214 > 8, 221 + 3 + 24 > 10, 2 > 0.

Minimizar z = x1 + 229 — 4x3 + 8x4 con las restricciones x1 + 2z9 +
T3+ 3x4 =3, x9 +x3 — 214 =8, 221 + 3 + 24 = 10, £ > 0.

Maximizar z = 3x1 + 8x9 + 10x3 con las restricciones x1 + +2x3 < 1,
201 + 20 <2, x1+ 2o+ a3 < —4, 311 — 220 + 23 <8, x> 0.

En los ejercicios 14.7 a 14.9, resuelva el problema propuesto, a partir
de la solucién de su dual. Utilice dos caminos, el teorema de holgura
complementaria débil (proposicién 14.8) y la proposicién 14.9.

Minimizar z = 25z + 15x9 con las restricciones x1 + o > 10, 4z +
39 >34, 2x1 + 10 > 12, 29 > 3, x > 0.

Minimizar z = 16x; + 1522 con las restricciones x1 + 2x9 > 16, 221 +
xo > 14, 3x1 + a2 > 17, x > 0.

Minimizar z = 7x1 4 8x5 con las restricciones x1+4x9 > 1, 221 +5x9 >
2,31 +22 < —3,3x1 + 629 >2, 2> 0.

Considere ahora un problema de PL en la forma estandar como el
problema primal, PP. Sea PD su dual. Trate de encontrar y justificar
resultados analogos a los de las proposiciones 14.3 a 14.7.
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Capitulo 15

METODO SIMPLEX DUAL

15.1. Generalidades

El método simplex dual, MSD, tiene muchas semejanzas con el méto-
do simplex (primal), estas analogias son concordantes con lo visto sobre
dualidad.

Para resolver un problema de programacién lineal por el MSD se requie-
ren las siguientes condiciones:

= problema de minimizacién en la forma estandar:
min z=c'x
Ax =10
x > 0.

= los costos reducidos de la primera tabla son no negativos,

= m columnas de A forman la matriz identidad.

En el MSD también hay variables basicas, variables libres, soluciones
bésicas, variable que sale de la base, variable que entra a la base, pivoteo.

La diferencia consiste en que en el MSD es posible tener términos inde-
pendientes b; negativos; asi una solucién bésica siempre cumple las condicio-
nes de optimalidad, pero no siempre es factible. Precisamente el MSD busca
obtener una solucién bésica que sea factible (y que también siga cumpliendo
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las condiciones de optimalidad) y cuando esto se logra se detiene el proceso
iterativo.

Recordemos que en el método simplex siempre se tiene factibilidad y lo
que se busca es obtener la optimalidad.

No todos los problemas se pueden resolver por el MSD. Hay otro método,
el simplex primal dual, que permite empezar con costos reducidos negativos
y con términos independientes negativos.

De manera esquematica el algoritmo del MSD se puede presentar asi:

verificar que se cumplen condiciones para el MSD.
mientras la solucién no sea factible
escoger la varible que sale
si la fila de la variable que sale es no negativa ent
el problema no tiene soluciones factibles
parar
fin-si
escoger la variable libre que entra
pivotear
fin-mientras

El MSD acaba, bien sea porque se sabe que el problema no tiene solu-
ciones factibles, o, bien porque se obtuvo una solucién factible (y 6ptima).
Veamos ahora con mas detalle algunos pasos del MSD.

Una solucion bésica es factible si todos los términos independientes son
no negativos:

bi >0 Vi.

La escogencia de la variable bésica que sale se hace mediante la buisqueda
del b; més negativo, es decir, el mas pequeno.

Ts = :IJgU,
be = min{b;},
1

o = argmin{b; }.
1<i<m

Para escoger la variable libre que entra, z., se busca, en la fila de la va-
riable que sale, un coeficiente negativo correspondiente a una variable libre
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de tal manera, que al ser tomado como pivote vuelva positivo el término
independiente b, y, ademds, conserve no negativos los costos reducidos.

Ce C; . .
=max {—: asj <0, z; es variable libre},
Qge Qgj

Cj . :
e = argmax {—2: a,; < 0, ; es variable libre},
1<j<n  Goj

G

e = argmin { tagj <0, x; es variable libre}.

1<j<n  —0gj

Precisamente este coeficiente a,. se usa como pivote. Las formulas para el
pivoteo son exactamente las mismas del método simplex.

ak
k+1 _ “9J S
agj == ]—1,...,Tl+1,
aO’B
k k
alay
k+1 _ k e 0] . . .
a;; =g — o i=1,...m+1, i#o0, j=1,...,n+1
ge

Ejemplo 15.1. Resolver por el método simplex dual el siguiente problema:

min z = 3x1 + 4x9

T1+ 222> 4

5.1?1 + 2$2 Z 12

x> 0.

Al introducir las variables de holgura se tiene:
min 2z = 3x7 — 4x9

Tl + 229 — T3 = 4
5x1 + 2x9 —x4 =12
x> 0.

Aqui no se tiene la matriz identidad, pero si se multiplican la primera y la
segunda igualdad por —1, entonces si se logra la matriz identidad con la
tercera y la cuarta columna.

s [ -1 -2 1 0 —4

A= a4 | [-5] -2 0 1 -12

3 400 0

Ahora hay que calcular los costos reducidos. En este caso los costos son
iguales a los costos reducidos ya que su valor es nulo para las variables
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bésicas. Como en esta tabla no hay ningiin costo reducido negativo, entonces
si se puede utilizar el MSD.

Cémo hay términos independientes negativos, entonces la solucion béasica
actual no es factible. Al buscar el término independiente mas pequefnio se
observa que éste es —12. Entonces:

LBy = LBy,

Ty = T4.
La fila de la variable que sale tiene coeficientes negativos, entonces no se
puede decir, por el momento, que el problema no tenga solucién.

Para averiguar cudl variable entra a la base es necesario efectuar los
cocientes entre los costos reducidos y los coeficientes negativos de la fila de
la variable que sale, para las variables libres.

3 4

2 =06, — =-2.
-5 r 2

El cociente mayor (el més pequeno en valor absoluto) es —0.6, entonces:
Te = T71.

Ahora hay que modificar la tabla usando como pivote ag; = —5.

[-16] 1 —-02 -1.6

0
A= ;|1 04 0 —02 24
0 28 0

xﬂo = J",Bl’
Ts = I3,
2.8 0.6
— =175, — =-3
—1.6 T —-0.2 ’
Te = T2
Ahora hay que modificar la tabla usando como pivote a1 = —1.6.

2o [0 1 —0.625 0.125 1
A= 21110 0.25 —0.25 2
00 1.75  0.25 —10

—Zz
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Esta solucién es factible y también éptima.
x* =1(2,1,0,0),
2*=10. ©
Ejemplo 15.2. Resolver por el método simplex dual el siguiente problema:
min z = 5xr1 — 629

1+ 222> 4
5x1 + 2x9 > 12
x> 0.

Las restricciones son exactamente las mismas del ejemplo anterior. Entonces
se introducen las variables de holgura y se cambia el signo a la primera y la
segunda restriccion para obtener la matriz identidad.

z3| -1 =2 1 0 —4
A= g4 -5 =2 0 1 —12
5 —6 0 0 0
Ahora hay que calcular los costos reducidos. En este caso los costos son
exactamente los costos reducidos ya que su valor es nulo para las variables

bésicas. En esta tabla hay un costo reducido negativo, entonces no se puede
utilizar el MSD. <

15.2. Conjunto no factible

Ejemplo 15.3. Resolver por el método simplex dual el siguiente problema:

min z =2x1 + X9

T, + 219 > 4
ox1 + 219 > 12
1+ w2 < 1
x> 0.
Al introducir las variables de holgura se tiene:
min z =2x1 + X9
T1 + 2x9 — X3 = 4
9x1 + 229 — X4 =12
1+ x2 +as=1
x>0
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174 CAPITULO 15. METODO SIMPLEX DUAL

Aqui no se tiene la matriz identidad, pero si se multiplican la primera y la
segunda igualdad por —1, entonces si se logra la matriz identidad con la
tercera, la cuarta y la quinta columna.

3 -1 =210 0 -4
qo_ wa|[=5] 201 0 -12
s 1 1001 1

2 1000 0

La ultima fila ya tiene los costos reducidos, y es claro que se puede utilizar
el MSD.

xg, = Tg,,
Ts = X4.
2 1
—=-04, —=-05
) =2 ’
Te = 1.
Ahora hay que modificar la tabla usando como pivote ag; = —5.
23 [0 1 —02 0 —16
<9 1 | 1 04 0 —-0.2 0 2.4
A4 =
x5 | O 0.6 0O 02 1 —-14
—2z10 0.2 0 04 0 —4.8
xg, = Tg,,
Ts = I3,
Te = T9.
Ahora hay que modificar la tabla usando como pivote a2 = —1.6.
zo | 0 1 —0.625 0.125 0 1
B n 10 0.25 —-0.25 0 2
x5 |10 0 0.375 0.125 1 -2
-z 0 0 0.125 0375 0 -5
xﬁo = $/83’
Ts = I5.

En la fila de la variable que sale no hay coeficientes negativos (para variables
libres), esto quiere decir que el problema no tiene solucién. <
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15.1.

15.2.

15.3.

15.4.

15.5.

15.6.

EJERCICIOS

En los ejercicios 15.1 a 15.6, convierta el problema propuesto a la forma
estandar. Si es posible, utilice el MSD para su solucién.

Minimizar z = 7x1 —8x9 con las restricciones 1 +4x9 > 1, 221 +5x9 >
2, 3x1+x2 < =3, 31+ 629 > 2, x> 0.

Minimizar z = x1+1.4z5 con las restricciones x1+x9 < 400, 214222 <
580, 1 < 300, 221 + o > 350, x > 0.

Minimizar z = 25x1 + 15x9 con las restricciones x| + x9 > 10, 41 +
3x9 >34, 281 +20 > 12, 290 > 3, 2 > 0.

Minimizar z = 1621 4+ 15x5 con las restricciones x1 + 2x9 > 16, 2x1 +
To > 14, 3x1 + 29 > 17, 2 > 0.

Minimizar z = 7x1+8x9 con las restricciones 1 +4x9 > 1, 221 +5x9 >
2, 3x1+x2 < =3, 31+ 622 > 2, x> 0.

Minimizar z = x1+1.4x2 con las restricciones z1+x2 < 400, x1+2x9 <
580, z1 < 300, 2z1 + x> 750, x > 0.
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Capitulo 16

EL PROBLEMA DEL
TRANSPORTE

16.1. Planteamiento

Dados m origenes o fabricas F1, Fb, ..., Fy, y n destinos o centros de dis-
tribucién Dy, D, ..., D,,, se requiere satisfacer las demandas en los destinos,
respetando las disponibilidades en los origenes de tal forma que el costo de
transporte sea minimo. El problema del transporte se puede plantear de la
siguiente manera:

m n
min z = E E CijTij

=1 j=1
n
E Lij sz, ’izl,...,m
J=1
m
E SL‘Z']':dj, jzl,...,n
i=1

z;j > 0, para todo 1, j,

donde
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178 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

x;; = numero de unidades que hay que llevar desde F; hasta D;,
cij = costo de llevar una unidad desde F; hasta D;,

fi = oferta o capacidad de la fabrica Fj,

d;j = demanda del destino D;.

Este problema es claramente de optimizacion lineal y, por lo tanto, se pue-
de resolver por el método simplex o por cualquier otro método general de
optimizacion lineal. Sin embargo, este problema tiene caracteristicas muy
especiales, que hacen conveniente adecuar el método simplex a estas carac-
teristicas especiales, para hacerlo mas réapido y eficiente.

Supondremos, ademas, que el problema del transporte estd planteado de
una manera ligeramente diferente, y con una condicién adicional: la suma de
ofertas debe ser igual a la suma de demandas. Esto hace que las restricciones
de oferta se conviertan en igualdades:

m n
min z = E E CijLij

i=1 j=1

n
E Tij = fi7 1= 1, ey
J=1

m
Z»’Uij:dja ji=1,...,n
=1

x5 > 0, para todo i, 7,

bajo la condicién
m n
S h-3,
i=1 j=1

Se puede demostrar que, planteado de esta forma, cualquier problema de
transporte tiene solucion.

Como se verd mas adelante, la restriccién no es fuerte pues, cuando
la oferta es mayor que la demanda, basta con crear un destino adicional
ficticio que reciba la oferta adicional. Cuando la oferta total es menor que
la demanda, entonces el problema no tiene soluciéon. Sin embargo, en este
caso, se puede pensar en buscar una seudosolucién que tenga costo minimo.

En un ejemplo veamos algunas de las caracteristicas especiales del pro-
blema del transporte.
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16.1. PLANTEAMIENTO 179

Ejemplo 16.1. 3 origenes; 4 destinos; ofertas f;: 10, 20, 30; demandas d;:
13, 14, 15, 18; tabla de costos unitarios:

Dy Dy Ds Dy
j2) 5 9 4 1
j2} 3 5 0 8
F 4 2 6 7
Utilizando el orden x11, 12, 13, 14, T21, T22, ..., la matriz de restricciones

de este problema (con una columna adicional para los términos independien-
tes) es:

11 11000UO0O0O0O0O0 10
000011110000 20
000O0O0OO0OO0OO0O1TT1T1T1 30
10001O0O0O0OT1O0O0TO0 13
01 0001O0O0O0T1O0TCO0 14
0010O0O01O0O0O0T1TQO0 15
L0001 00O0T1TO0O0O0T1 18]

Las caracteristicas especiales son las siguientes:
» La matriz de coeficientes estd compuesta tinicamente de ceros y de
unos.

» Cada columna de la matriz tiene exactamente dos unos (los demés
coeficientes valen cero).

» Hay m x n =3 x 4 = 12 variables.
= Hay m +n = 3+ 4 = 7 restricciones.

= Hay tnicamente m +n —1 =3 +4 — 1 = 6 restricciones linealmente
independientes. Al sumar las tres restricciones de oferta (incluyendo
los términos independientes) y restar las tres primeras restricciones de
demanda, se obtiene exactamente la tultima restriccién de demanda.
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180 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

Esto quiere decir que, por ejemplo, la tltima restriccién de demanda
se podria suprimir. <

Definicién 16.1. Un conjunto de valores x;; se llama una solucién facti-
ble si cumple todas las restricciones. Una solucién factible se llama béasica
si tiene a lo mas m + n — 1 variables positivas. Una solucién factible béasica
se llama no degenerada si tiene exactamente m + n — 1 variables positi-
vas. Una soluciéon factible bésica se llama degenerada si tiene menos de
m + n — 1 variables positivas.

Para la solucién del problema del transporte se acostumbra a usar una
tabla compuesta por m x n casillas, distribuidas en m filas y n columnas.
Cada origen tiene una fila, cada destino tiene una columna. En la casilla
(1,7), situada en la fila 7 y en la columna j, se escribe el valor de la variable
z;j y ademas, ocupando un espacio pequeno, el costo ¢;;.

Ejemplo 16.2. Consideremos los mismos datos del ejemplo anterior.

Dy Doy Ds Dy

5 9 4 1

I 0 0 0 10 10
3 5 0 8

Fy 0 0 12 8 20
4 2 6 7

F3 13 14 3 0 30

13 14 15 18

La anterior solucién es una solucion factible basica no degenerada, ya que
cumple todas las restricciones y tiene exactamente 3 + 4 — 1 = 6 variables

180



16.1. PLANTEAMIENTO

181

no nulas.

Iy

Iy

F3

D1 Do Ds Dy
1
0 0 1
8
0 0 11
7
13 14 3
13 14 15 18

10

20

30

La anterior solucién factible tiene 7 variables positivas, luego no es basica.

0 0 2
8
0 0 11
7
13 14 3
13 14 15 18

10

20

30
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o] |4

Fl 0 0 -1 11 10
3 5 0 8

Fy 0 0 13 7 20
4 2 6 7

F; 13 14 3 0 30

13 14 15 18
Las dos soluciones anteriores no son realizables. &

Ejemplo 16.3. Consideremos los mismos datos del ejemplo 16.1 , salvo que
las demandas son: 10, 10, 10, 30 .

5 9 4 1

4 10 0 0 0 10
3 5 0 8

2 0 10 10 0 20
4 2 6 7

Fy 0 0 0 30 30

10 10 10 30

La anterior solucion es factible y, ademads, es béasica ya que tiene 4 variables
positivas, pero es degenerada. <
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16.2. ALGORITMO DEL TRANSPORTE 183

16.2. Algoritmo del transporte

El esquema general del algoritmo del transporte es exactamente el mismo
del método simplex, al fin y al cabo es sencillamente el método simplex
adaptado al problema del transporte; las diferencias estan en algunos de los
pasos.

- verificar que la oferta total es igual a la demanda total
- hallar una solucién bésica factible
- calcular los costos reducidos
mientras la solucién no es éptima
- escoger la variable que entra
- buscar la variable que sale
- modificar la tabla
- calcular los costos reducidos
fin-mientras

Mas adelante se verd como tratar el caso de las soluciones bésicas de-
generadas, por el momento se supondrd que no se presentan soluciones
basicas degeneradas.

El algoritmo del transporte es uno solo, sin embargo, hallar la soluciéon
bésica inicial y calcular los costos reducidos se puede hacer de varias formas.
Inicialmente veremos métodos muy sencillos, aunque no necesariamente los
mas eficientes. Estos métodos son: el de la esquina noroccidental para
obtener una solucién bésica inicial, y el método ”stepping-stone” (método
paso a paso o método del circuito), para calcular los costos reducidos.

16.3. Meétodo de la esquina noroccidental

Este método permite hallar una solucién factible basica. Como su nom-
bre lo indica, escoge siempre la casilla disponible que esté mas arriba y méas
a la izquierda. El esquema del algoritmo es el siguiente:
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184 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

- todas las casillas estdn disponibles (no tienen asignado valor)
- las ofertas y demandas disponibles son las iniciales
mientras haya casillas disponibles
- buscar la casilla noroccidental disponible
- asignarle la mayor cantidad posible
- en la linea saturada, para las demds casillas disponibles: z;; =0
- actualizar la oferta disponible en la fila de la casilla N.O.
- actualizar la demanda disponible en la columna de la casilla N.O.
fin-mientras

En este contexto del problema del transporte, linea significa fila o colum-
na. Actualizar la oferta quiere decir: restar de la oferta disponible el valor
asignado a la ltima casilla noroccidental. De manera andloga se actualiza
la demanda disponible. Cuando se asigna la mayor cantidad posible a la
casilla noroccidental, se satura una linea, es decir, una fila o una columna.
En algunos casos, cuando hay degeneramiento, en una casilla anterior a la
ultima, se saturan al tiempo la fila y la columna. Este caso se estudiara en
el capitulo siguiente.

Ejemplo 16.4. Consideremos los mismos datos del ejemplo 16.1

Dy Dy D3 Dy

5 9 4 1

£ 10
3 5 0 8

I 20
4 2 6 7

Fy 30

13 14 15 18

En este momento la casilla noroccidental es la casilla (1,1). La mdxima
cantidad que se puede asignar es 10. Esto hace que se sature la primera
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16.3. METODO DE LA ESQUINA NOROCCIDENTAL 185

fila, la cual queda sin oferta disponible. La primera columna queda con una
demanda disponible de 3 unidades.

D, Do D3 Dy

5 9 4 1
10 0 0 0
Fy 0
3 5 0 8
£y 20
4 2 6 7
3 30

3 14 15 18

Ahora la casilla noroccidental es la casilla (2,1). La méxima cantidad que se
puede asignar es 3. Esto hace que se sature la primera columna. La primera
columna queda sin demanda disponible y la segunda fila tendra una oferta
disponible de 17 unidades.

D D D3 Dy

5 9 4 1
- 10 0 0 0
1 0
5 0 8
Fy s 17
2 6 7
F3 0 30

0 14 15 18

En este momento la casilla noroccidental es la casilla (2,2). La méxima
cantidad que se puede asignar es 14. Esto hace que se sature la segunda
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186 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

columna.

Dr D, D3 Dy

5 9 4 1
. 10 0 0 0
1 0
0 8
2 3 14 ;
6 7
Fy 0 0 30

0 0 15 18

Ahora la casilla noroccidental es la casilla (2,3). La maxima cantidad que
se puede asignar es 3. Esto hace que se sature la segunda fila.

Dy Dy Ds Dy

5 9 4 1

£ 10 0 0 0 0
3 5 0 8

jo} 3 14 3 0 0
6 7

F3 0 0 30

0 0 12 18

En este momento la casilla noroccidental es la casilla (3,3). La méxima
cantidad que se puede asignar es 12. Esto hace que se sature la tercera
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columna.

5 9 4 1

F 10 0 0 0 0
3 5 0 8

Fy 3 14 3 0 0
GRRE

I3 0 0 12 18

0 0 0 18

Ahora la casilla noroccidental es la casilla (3,4). La méxima cantidad que
se puede asignar es 18. Esto hace que se sature la tercera fila y la cuarta

columna.

Dq Doy D3 Dy

5 9 4 1

3 10 0 0 0 0
3 5 0 8

F 3 14 3 0 0
4 2 6 7

F3 0 0 12 18 0

0 0 0 0

Finalizado el proceso se obtiene una solucién factible, y en este caso, ademas

no degenerada.

2=(5x10)4 (9% 0)+ ...+ (3x3)+... + (7T x 18) = 327. ©
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188 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

Definicion 16.2. En una solucién factible bésica no degenerada las va-
riables positivas se llaman variables bésicas y las variables nulas se llaman
variables libres. En una solucion factible béasica degenerada las variables
positivas se llaman variables bésicas, algunas variables nulas, escogidas de
manera adecuada, también se llaman basicas. Las demas variables nulas se
llaman variables libres.

16.4. Meétodo del circuito (stepping-stone)

Este método sirve para calcular los costos reducidos de las variables
libres. Si x;; es una variable libre, entonces su costo reducido ¢;; indica la
modificacion que tendra la funcién objetivo por cada unidad que aumente
esta variable libre. Como en el método simplex, en cada iteracién, una y
solamente una variable libre entra a la base, y también, exactamente una
variable bésica sale de la base.

Si la variable libre x;; con valor nulo, se incrementara en una unidad,
entonces seria necesario reequilibrar la tabla, aumentando y disminuyendo el
valor de algunas variables, para que se siga teniendo una solucién realizable.
Estas modificaciones tnicamente son posibles en las variables basicas, ya
que una sola variable libre puede aumentar para volverse basica y, ademas,
las variables libres no pueden disminuir pues se volverian negativas.

Entonces dada la variable libre z;;, que aumentarfa en una unidad, es
necesario buscar casillas correspondientes a variables bésicas, en algunas de
ellas se necesita aumentar una unidad, en otras se necesita disminuir una
unidad, de tal manera que:

en cada linea, fila o columna:
o bien, no hay ninguna modificacién,
o bien, hay dos modificaciones,
una de aumento y otra de disminucion.

Las modificaciones se pueden simbolizar por un signo més (+) para los
aumentos, y un signo menos (—) para las disminuciones.

Se puede demostrar que en una solucion factible basica no degenerada,
para cada variable libre x;;, hay exactamente un camino o circuito, formado
por la casilla de x;; y las casillas de algunas variables bésicas, de tal manera
que este circuito rebalancea la tabla.
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Una vez conseguido este circuito, el costo reducido ¢;; se calcula natu-
ralmente como la suma de los costos de las casillas del circuito, donde se
tiene en cuenta el signo de cada casilla. Es decir se suman los costos de las
casillas con signo méas (+), y se restan los costos de las casillas con signo

menos (—).

Ejemplo 16.5. Tomemos los mismos datos del ejemplo 16.1 y la solucion

bésica inicial obtenida en el ejemplo 16.4 .

Fy

Fy

F3

Calculo del costo reducido ¢12: Si la variable libre x12 aumenta, y como la
Unica variable bésica en la primera fila es z11, necesariamente x17 debe dis-
minuir. Como x1; estd en la primera columna, entonces otra variable basica
de la primera columna debe aumentar. Para este ejemplo necesariamente
291 debe aumentar. Ahora, considerando la segunda fila, como x2; aumenta,
otra variable basica debe disminuir. La tnica posibilidad corresponde a 9.

Di Dy D3y Dy
1

10 0 0 0
8

3 14 3 0
7

0 0 12 18

13 14 15 18

10

20

30
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Asi ya se ha completado el circuito con las casillas (1,2), (1,1), (2,1), (2,2).

Dy Dy D3 Dy

5 (94 |4 1

I 10 0 0 0 10
3k (5~ o 8

Fy 3 14 3 0 20
4 2 6 7

F3 0 0 12 18 30

13 14 15 18

El calculo del costo reducido ¢12 es ahora inmediato:

Cl12=9-5+3-5=2.

Calculo del costo reducido ¢13: Si la variable libre z13 aumenta, debe dis-
minuir z11, entonces debe aumentar z91. Aqui hay dos posibilidades: puede
disminuir x99 0 puede disminuir xo3. Si disminuye 9o debe aumentar otra
variable bésica en la misma segunda columna, pero no hay més variables
bésicas. Luego es necesario desechar esta posibilidad. Si disminuye z23 ya
se completa el circuito (1,3), (1,1), (2,1), (2,3).

ci3=4—-54+3-0=2.

Es conveniente anotar que no siempre los circuitos se obtienen facilmente,
ni tampoco tienen siempre cuatro casillas.
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16.4. METODO DEL CIRCUITO (STEPPING-STONE) 191

Circuito para ¢14: (1,4), (1,1), (2,1), (2,3), (3,3), (3,4).

Di Dy Ds Dy

5- |9 4 11+

3 10 0 0 0 10
3+ |5 0 |8

F 3 14 3 0 20
4 2 6+ |7

F3 0 0 12 18 30

13 14 15 18
€1a=1-54+3-04+6-7=-2
De manera semejante:

o1+ (2,4),(2,3),(3,3), (3,4);620 =8 — 0+ 6 — T =7,
231 : (3,1),(3,3),(2,3), (2,1);631 =4 — 6+ 0 — 3 = —5,
xr32 : (37 2)a (353)7 (273)¢ (2a 2);532 =2-64+0-5=-9. ¢

Los circuitos pueden ser descritos mediante las siguientes caracteristicas:
= la primera casilla corresponde a una variable libre, las dema&s corres-
ponden a variables bésicas.

= todo circuito tiene un niimero par de casillas.

= toda casilla en posicién impar, estd en la misma fila de la siguiente
casilla (tienen el mismo primer indice).

= toda casilla en posiciéon par, esta en la misma columna de la siguiente
casilla (tienen el mismo segundo indice).

= ]a ultima casilla estd en la misma columna de la casilla inicial.

= las casillas “de aumento”son las de posicién impar y las casillas “de
disminucién”son las de posicién par.
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192 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

Estas caracteristicas estdn basadas en la biusqueda inicial de una variable
bésica en la misma fila de la variable libre. Unas caracteristicas analogas
se pueden obtener, al buscar inicialmente una variable béasica en la misma
columna de la variable libre.

16.5. Condiciones de optimalidad y modificacion
de la tabla

16.5.1. Condiciones de optimalidad

Son exactamente las mismas del método simplex: si todos los costos
reducidos de las variables libres de una soluciéon factible basica son
no negativos, entonces ésta es 6ptima.

16.5.2. Escogencia de la variable que entra

La variable libre que entra, se escoge exactamente como en el méto-
do simplex: la variable libre que entra es aquella de menor costo
reducido (el mas negativo).

16.5.3. Escogencia de la variable que sale

Una vez escogida la variable libre que entra, se busca en su circuito, el
menor valor z;; en las casillas con signo menos (casillas donde se
disminuye). Esta casilla corresponde a la variable bésica que sale. Ademaés,
ese minimo valor corresponde al incremento que va a tener la variable que
entra.

16.5.4. Modificacién de la tabla

Una vez escogida la variable que entra y obtenido el valor de su incre-
mento, se modifican inicamente las casillas de su circuito asi: En las casillas
con signo +, se efectia dicho incremento y en las casillas con signo —, se
disminuye tal cantidad. De esta manera la nueva tabla queda equilibrada y
representa una solucién factible basica mejor; esta mejoria estd dada por el
producto del costo reducido de la variable que entra y su incremento. En la
nueva tabla la variable bdsica que salid, tiene el valor cero.
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Ejemplo 16.6. Consideremos los mismos datos del ejemplo 16.1, la solucion
bésica inicial obtenida en el ejemplo 16.4 y los costos reducidos calculados
en el ejemplo 16.5.

Como hay costos reducidos negativos la tabla no es éptima.

Hay una sola variable libre con costo reducido minimo: x3s. Esta es la
variable que entra. Si hubiera empate habria que resolverlo de cualquier
forma, por ejemplo, tomando como variable que entra la primera encontrada
entre las empatadas.

El circuito de esta variable es: (3,2), (3,3), (2,3), (2,2). En las casillas
de disminucién (las de posicién par), el menor valor z;; es 12 y estd en la
casilla (3,3). Entonces la variable z33 sale de la base. La variable libre
y las variables de su circuito son modificadas en 12 unidades. Las deméds
casillas no alteran su valor. El valor de la funcién objetivo debe modificarse
(disminuir) en —9 x 12 = —108 unidades.

Para obtener la nueva tabla, basta aumentar 12 unidades en las casillas
(3,2), (2,3) y disminuir 12 unidades en las casillas (3, 3), (2,2).

D1 Dy D3 Dy

5 9 4 1

3 10 0 0 0 10
3 5 0 8

Fy 3 2 15 0 20
4 2 6 7

F3 0 12 0 18 30

13 14 15 18

Obviamente, esta solucién también es factible, es basica y en este caso tam-
bién es no degenerada. El valor de la funcién objetivo es z = 5 x 10 + 3 x
3+ ...+ 7x18 =219 =327 —108.

Para obtener una solucion éptima del problema hay que calcular de nuevo
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los costos reducidos, averiguar por las condiciones de optimalidad,..., etc.
Ci2=2, Gi3=2, ciu=—11, Coa=-2, 1 =4, c33=9.
La solucién factible béasica actual no es éptima.

costo reducido minimo : ¢14 = —11,
variable que entra : x4,
circuito de z14 : (1,4), (1,1), (2,1), (2,2),(3,2), (3,4),
valor maximo para x4 : 2,

variable que sale : x95.

D1 D2 D3 D4

5 9 4 1

4 8 0 0 2 10
3 5 0 8

Fy 5 0 15 0 20
4 2 6 7

Fy 0 14 0 16 30

13 14 15 18

z =197,

ci2 =13, ci3=2, =11, Cu =9, ¢31 =7, C33=—2.
La solucién factible basica actual no es éptima.

Costo reducido minimo : ¢33 = —7,
variable que entra : x3q,
circuito de z3;1 : (3,1), (3,4), (1,4), (1,1)
valor maximo para 31 : 8,

variable que sale : x11.
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D, Doy D3 Dy

5 9 4 1

4 0 0 0 10 10
3 5 0 8

Fy 5 0 15 0 20
4 2 6 7

F3 8 14 0 8 30

13 14 15 18

z =141,

clu1=17, ci2=13, ¢13 =19, Coo =4, Coq =2, C33=05.

Como no hay costos reducidos negativos, la tabla es éptima. Como todos
los costos reducidos son positivos la solucién es tnica. <

Ejemplo 16.7. Consideremos el siguiente problema de transporte con las
mismas ofertas y demandas del ejemplo anterior, pero con costos ligeramente
diferentes. Como el método de la esquina noroccidental no tiene en cuenta
los costos (he ahi su desventaja), entonces la solucién bésica factible inicial
es la misma. Obviamente, el valor de z es diferente.
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5 9 4 1

13 10 0 0 0 10
4 5 0 8

Fy 3 14 3 0 20
3 2 6 7

F3 0 0 12 18 30

13 14 15 18
z = 330.

Después de iteraciones semejantes a las del ejemplo anterior, se llega a la
tabla 6ptima.

Dy Dy D3 Dy

5 9 4 1

3 0 0 0 10 10
4 5 0 8

Fy 5 0 15 0 20
3 2 6 7

F3 8 14 0 8 30

13 14 15 18
z = 138,
c11 =38, ci2 =13, ci3 =11, a2 =2, ¢y =0, c33=1T.

Como no hay costos reducidos negativos, la tabla es éptima.
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Aqui hay una diferencia importante. En el 6ptimo hay una variable libre
con costo reducido nulo: x4 (podria haber més de una). Como la solucién
factible basica no es degenerada se puede afirmar que hay muchas soluciones.
Para obtener otra solucién factible basica, de manera semejante al método
simplex, se entra a la base la variable libre con costo reducido nulo, y se
construye otra tabla.

Variable que entra : xo4,
circuito de xaq : (2,4), (2,1), (3,1), (3,4) ,
valor méaximo para xo4 : 5,

variable que sale : xo7.

Di Dy Ds Dy

5 9 4 1

I 0 0 0 10 10
4 5 0 8

Fy 0 0 15 5 20
3 2 6 7

F3 13 14 0 3 30

13 14 15 18
z =138
c11 =28, ¢c1a=13, ¢i3=11, ¢31 =0, Cp =2, ¢33=17.
Como era de esperarse, no hay costos reducidos negativos y la tabla es
Optima.
Aqui de nuevo, hay una variable libre con costo reducido nulo: zs;. Para

obtener otra solucion factible basica, se entra a la base x9; y se construye
otra tabla.

variable que entra : xoq,
circuito de xo; : (2,1), (2,4), (3,4), (3,1),
valor méximo para zo1 : 5,

variable que sale : xo4.
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198 CAPITULO 16. EL PROBLEMA DEL TRANSPORTE

Vuelve a resultar la primera tabla éptima. En este ejemplo muy sencillo,

en la primera tabla 6ptima, hubo tUnicamente una sola variable libre con
costo reducido nulo, luego no habia otras posibilidades para escoger. FEn
este problema hay solamente dos soluciones bésicas realizables 6ptimas, y
asi toda solucién realizable éptima es combinacién convexa de ellas. <

Cuando en el é6ptimo hay varias variables libres con costo reducido nulo,
no es sencillo encontrar todas las soluciones béasicas realizables éptimas. En
la préactica, bastaria con encontrar dos soluciones bésicas realizables 6ptimas,
escogiendo una de las variables libres con costo reducido nulo para entrarla
a la base construyendo una nueva tabla.

EJERCICIOS

16.1. Resuelva el problema de transporte dado por los siguientes datos: 3
origenes; 4 destinos; ofertas 10, 11, 12; demandas 7, 8, 9, 9; matriz de

costos unitarios
1

e}

9
2
1

(SR
[GARNC BN |
W =~

16.2. Resuelva el problema de transporte dado por los siguientes datos: 5
origenes; 5 destinos; ofertas 10, 11, 12, 13, 14; demandas 9, 9, 9, 9, 24;
matriz de costos unitarios

6 8 9 6 5
7 10 7 7 6
10 8 8 7 6
9 9 7 5 2
10 9 4 3 1

16.3. Resuelva el problema de transporte dado por los siguientes datos: 5
origenes; 5 destinos; ofertas 10, 50, 20, 40, 30; demandas 27, 35, 31,
28, 29; matriz de costos unitarios

6 8 9 5 1
5 10 6 2 9
8 8 4 8 6
9 2 6 5 2
1 6 4 31
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Capitulo 17

OTROS METODOS PARA
EL PROBLEMA DEL
TRANSPORTE

17.1. Método de las variables duales

Este método sirve para calcular los costos reducidos sin tener que calcular
el circuito de cada variable. Como su nombre lo indica utiliza las variables
de su problema dual. En realidad se utilizan las variables del dual de un
problema equivalente. El problema planteado inicialmente es el mismo:

m n
min z = E E CijTij

i=1 j=1

n
E Lij :fi, ’L'Zl,...,m
j=1

m
inj:dj, jzl,...,n
=1

x;; >0, para todo 1, j,

bajo la condicién
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Se puede mostrar que la solucién 6ptima del problema anterior es la misma
del siguiente problema:

m n
min z = E E Cijij

i=1 j=1

n
Zl’ij Zfz, izl,...,m
j=1

m
Zﬂ?ij Zdj, jzl,...,n
=1

x;; >0, para todo i, j.

Este problema estd en la forma canénica de minimizacién y su dual se
obtiene facilmente. Sea w; la variable del problema dual correspondiente
a la i-ésima restriccién de oferta. Sea v; la variable del problema dual
correspondiente a la j-ésima restriccién de demanda. Entonces el problema
dual, en la forma candnica de maximizacion es:

m n
max w = E fiu; + g d;v;
i=1 j=1

u +v; <¢j, t=1,.m, j=1.n

u;,vj > 0, para todo i, j.

Resultados de dualidad, analogos a los de la proposiciéon 14.10, dicen que el
costo reducido de una variable del primal es igual al valor de la variable de
holgura correspondiente en el dual. La restriccién del dual correspondiente
a la variable z;; es:u; +v; < ¢;;. Entonces:

¢ij = holgura = c¢;; — u; — v;.

Obviamente, para las variables basicas, el costo reducido es nulo. Plantear
este resultado da lugar a m + n — 1 igualdades con m + n incégnitas. Si se
obtiene una solucién de este sistema se puede calcular facilmente el valor de
los costos reducidos de las variables libres. Entonces el esquema del proceso
para el calculo de los costos reducidos de las variables libres es el siguiente.

= Para las variables basicas plantear las m +n — 1 igualdades con m +n
variables:

Ui + V5 = Cgj.
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» Dar a una variable (cualquiera) un valor arbitrario y resolver el sistema
resultante:

m +n — 1 igualdades con m + n — 1 variables.
= Calcular los costos reducidos de las variables libres mediante la férmula

6ij = Cij — ut — Vj.

Se puede demostrar que no importa cual variable se escoja para darle
un valor, ni tampoco que valor se le dé. De todas formas el valor de los
costos reducidos para las variables libres serd el mismo. Obviamente, el
valor de u;, v; si depende de tal escogencia. Ademds, el sistema de m+n—1
igualdades y variables siempre se puede resolver de manera Unica cuando
se trata de una solucién factible béasica no degenerada o de una solucién
factible basica degenerada tratada adecuadamente.

Si los costos reducidos de las variables libres se calculan por el método
de las variables duales, una vez que se escoge la variable que entra a la base,
hay que buscarle de todas maneras su circuito.

Este método, para calcular los costos reducidos de las variables libres, es
més rapido y facil que el método stepping-stone, salvo para problemas muy
pequenos.

Ejemplo 17.1. Consideremos la solucién factible bésica inicial obtenida en
el ejemplo 16.4

Di Dy Ds Dy

5 9 4 1

3 10 0 0 0 10
3 5 0 8

F 3 14 3 0 20
4 2 6 7

F3 0 0 12 18 30

13 14 15 18
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z = 327.

Las m 4+ n — 1 igualdades con m -+ n variables son:

u] +vp = 9,
U + v = 3,
U + Vg = D,
ug + vy = 0,
us + vy = 06,
us+v4 =7.

Por ejemplo, demos a la variable us el valor cero. Entonces
U1:3, 2}225, 1)3:0,

luego

En resumen

U = 2, v =3,
us = 0, vy = D,
uz = 6, v3 =0,

vy = 1.

Ahora si se tienen de manera inmediata los costos reducidos:

Gla=9-2-5= 2
Gi3=4-2-0= 2,
Gu=1-2-1=-2,
Gy=8-0—1= 7,
G31=4—6—3=—5,
G =2—6—5=—0.

Se escoge como variable que entra a la base a x32, hay que obtener su circuito
y proseguir el método del transporte.

A manera de simple comprobacién, se puede escoger otra variable y
otro valor, por ejemplo, v3 = —3. Al resolver el sistema se tienen valores
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17.2. METODO DEL COSTO MINIMO POR FILAS 203

diferentes:

u; = 9, v; =0,

ug = 3, vy = 2,

uz =9, vy = —3,
vy = —2.

Sin embargo, como era de esperarse, los valores de los costos reducidos son
exactamente los mismos.

Glo=9-5-2 = 2
Gi3=4-5—-3= 2
Gu=1-5——2=-2
Gy=8-3-—-2= T,
G51=4-9-0 = -5,
Gp=2-9-2 =-9. <

En el método de la esquina noroccidental, para hallar la solucién factible
basica inicial no se tienen en cuenta de ninguna manera los costos unitarios.
En los métodos presentados a continuacién, al construir la solucién factible
bésica inicial se utilizan los costos unitarios para tratar de que la solucién
obtenida sea méas préxima al éptimo, es decir, se desea disminuir el niimero
de iteraciones. Aunque el célculo de la solucién factible basica inicial es mas
dispendioso, el tiempo total para la solucién del problema es, en promedio,
menor que el tiempo requerido para la obtencién de una solucién 6ptima,
partiendo de una solucién inicial por el método de la esquina noroccidental.

17.2. Meétodo del costo minimo por filas

Con mucha frecuencia, los métodos trabajan indistintamente sobre filas
o sobre columnas. En lo que sigue de este libro se usara la palabra linea
para hacer referencia a una fila o a una columna.

El método del costo minimo por filas sirve para hallar una solucién fac-
tible bésica inicial. Su algoritmo es el siguiente:
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-todas las casillas estan disponibles
-las ofertas y demandas disponibles son las iniciales
-todas las lineas estdn no saturadas
mientras haya casillas disponibles
-en la primera fila no saturada buscar
la casilla disponible de costo minimo
-asignar a esta casilla la mayor cantidad posible:
- saturar una linea: una fila o una columna
- en esta linea, para las otras casillas disponibles: z;; = 0
- actualizar la oferta y la demanda disponibles
fin-mientras

Ejemplo 17.2. Consideremos los mismos datos del ejemplo 16.1

Dy Dy D3 Dy

5 9 4 1

£ 10
3 5 0 8

I 20
4 2 6 7

jo¥ 30

13 14 15 18

La primera fila no saturada es la correspondiente a F1 . Alli la casilla de
costo minimo es la casilla (1,4). La mayor cantidad que se puede asignar es:
10. Asfi se satura la fila 1.
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Dy Doy D3 Dy

5 9 4 1
0 0 0 10
Fy
3 5 0 8
Fy 20
4 2 6 7
F3 30

13 14 15 8

La primera fila no saturada es la segunda fila. All{ la casilla disponible de
costo minimo es la casilla (2,3). La mayor cantidad que se puede asignar es

15 y asi se satura la tercera columna.

5 9 4 1
0 0 0 10
B
3 5 [0] 8
15
F2 5
4 2 [6] 7
F3 0 30
13 14 8

La primera fila no saturada sigue siendo la segunda. Allf la casilla disponible
de costo minimo es la casilla (2,1). La mayor cantidad que se puede asignar

es 5 y asi se satura la segunda fila.
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Dy Dy D3 Dy

5 9 4 1
£ 0 0 0 10
3 5 0 8
jo} 5 0 15 0
4] 2] [¢] [T
F3 0 30
8 14 8

La primera fila no saturada es la tercera. Alli la casilla disponible de costo
minimo es la casilla (3,2). La mayor cantidad que se puede asignar es 14 y

asi se satura la segunda columna.

Dy Dy Ds Dy

5 9 4 1
F 0 0 0 10
3 5 0 8
Fy 5 0 15 0
4 @ 7
Fy 14 0 16
8 8

La primera fila no saturada sigue siendo la tercera. Alli la casilla disponible
de costo minimo es la casilla (3,1). La mayor cantidad que se puede asignar

es 8 y asf se satura la primera columna.
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Dy Dy D3 Dy

5 9 4 1
) 0 0 0 10
3 5 0 8
P 5 0 15 0
[6] |7
£ 8 14 0 3
8

La primera fila no saturada sigue siendo la tercera. All{ la casilla disponible
de costo minimo (la dltima) es la casilla (3,4). La mayor cantidad que se
puede asignar es 8 y asi se saturan la tercera fila y la cuarta columna.

D1 Do D3 Dy

5 9 4 1

I 0 0 0 10 10
3 5 0 8

Fy 5 0 15 0 20
4 2 6 7

F3 8 14 0 8 30

13 14 15 18

Aqui ya no hay casillas disponibles y se ha obtenido una solucién factible
bésica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
si se compara con la solucién 6ptima obtenida en el ejemplo 16.6) se puede
afirmar que la solucién obtenida es 6ptima.
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El hecho de encontrar por este método una solucién basica factible y, al
mismo tiempo, optima, es simplemente casual. Los métodos conocidos para
hallar soluciones bésicas factibles iniciales, no garantizan la obtencién de una
solucion éptima. Simplemente algunos métodos aumentan la posibilidad de
que la tabla obtenida esté mds cerca de la tabla 6ptima. <

Si la solucién factible basica obtenida no es éptima, se continua el proceso
con la escogencia de la variable que entra, escogencia de la variable que sale,
modificacién de la tabla...

17.3. Meétodo del costo minimo por columnas

Este método sirve para hallar una solucion factible bésica inicial. Es
muy semejante al método del costo minimo por filas. La tnica diferencia
consiste en que siempre se busca la casilla disponible de costo minimo en la
primera columna no saturada.

Ejemplo 17.3. Consideremos los mismos datos del ejemplo 16.1.

D1 Dy Dy Dy

5 9 4 1

B 10
3 5 0 8

Iy 20
4 2 6 7

F3 30

13 14 15 18

La primera columna no saturada es la primera. Alli la casilla disponible de
costo minimo es la casilla (2,1). La maxima cantidad que se puede asignar
es 13. Asi se satura la primera columna.
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9 1 1
0

P 10
5 0 g

5|13 .
2 6 7

Py 0 30
14 15 18

La primera columna no saturada es la segunda. Alli la casilla disponible de
costo minimo es la casilla (3,2). La maxima cantidad que se puede asignar
es 14. Asi se satura la segunda columna.

D, Do D3 Dy

@ 4 1
0 0

£ 10
0 8

fol 13 0 .
6 7

F3 0 14 16

15 18

La primera columna no saturada es la tercera. Alli la casilla disponible de
costo minimo es la casilla (2,3). La maxima cantidad que se puede asignar
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es 7. Asi se satura la segunda fila.

D Do D3 Dy

B 4 1

P 0 0
10
3 5 0 8

7 13 0 7 0

4 [z [ [
F3 0 14 16

8 18

La primera columna no saturada es nuevamente la tercera. Alli la casilla
disponible de costo minimo es la casilla (1,3). La maxima cantidad que se
puede asignar es 8. Asi se satura la tercera columna.

9] L
j2) 0 0 8
2
3 5 0 8
Fy 13 0 7 0
6] |7
F3 0 14 0 16
18

La primera columna no saturada es la cuarta. All{ la casilla disponible de
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costo minimo es la casilla (1,4). La maxima cantidad que se puede asignar

es 2. Asi se satura la primera fila.

Dy Dy D3 Dy

5 9 4 1
F 0 0 8 2
3 5 0 8
Fy 13 0 7 0
6] 17
Fy 0 14 0 16
16

La primera columna no saturada es nuevamente la cuarta. Alli la casilla
disponible de costo minimo (la ultima casilla) es la casilla (3,4). La méxima
cantidad que se puede asignar es 16. Asi se saturan la tercera fila y la cuarta

columna.

5 9 4 1

I 0 0 8 2 10
3 5 0 8

F 13 0 7 0 20
4 2 6 7

F3 0 14 0 16 30

13 14 15 18
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Aqui ya no hay casillas disponibles y se ha obtenido una solucién factible
bésica inicial. Su costo es z = 213. Si se calculan los costos reducidos
se puede ver que la solucién obtenida no es 6ptima (é17 = —2, ¢33 = —9,
¢33 = —4), entonces se continda el proceso con la escogencia de la variable

que entra, escogencia de la variable que sale, modificacion de la tabla...

17.4. Método del costo minimo de la matriz

Este método sirve para hallar una solucién factible bésica inicial y es
semejante a los dos métodos anteriores. La diferencia consiste en que aca se
busca la casilla disponible de costo minimo en toda la matriz. Su algoritmo

es el siguiente:

‘todas las casillas estan disponibles
-las ofertas y demandas disponibles son las iniciales
-todas las lineas estdn no saturadas
mientras haya casillas disponibles
-buscar, en toda la tabla, la casilla disponible de costo minimo
-asignar a esta casilla la mayor cantidad posible:
- saturar una linea: una fila o una columna
- en esta linea, para las otras casillas disponibles: z;; =0
- actualizar la oferta y demanda disponibles
fin-mientras

Ejemplo 17.4. Consideremos los mismos datos del ejemplo 16.1
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5 9 4 1

B 10
3 5 0 8

I 20
4 2 6 7

£ 30

13 14 15 18

La casilla disponible de costo minimo, en la matriz, es la casilla (2,3). La
méaxima cantidad que se puede asignar es 15. Asi se satura la tercera co-

lumna.

D, Do D3 Dy

5 9 [4] 1
0

3! 10
3 5 [0] 8

) 15 -
4 2 [6] 7

F3 0 30
13 14 18

La casilla disponible de costo minimo, en la matriz, es la casilla (1,4). La
méxima cantidad que se puede asignar es 10. Asi se satura la primera fila.
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Dy Dy D3 Dy

5 9 4 1
0 0 0 10
Fy
3 5 0] 8
15
F2 5
4 2 6] 7
F3 0 30
13 14 8

La casilla disponible de costo minimo, en la matriz, es la casilla (3,2). La
méxima cantidad que se puede asignar es 14. Asi se satura la segunda

columna.

5 9 4 1
0 0 0 10
Fy
3 @ 8
jol 0 15 .
4 @ 7
Fy 14 0 16
13 8

La casilla disponible de costo minimo, en la matriz, es la casilla (2,1). La
méxima cantidad que se puede asignar es 5. Asi se satura la segunda fila.
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D1 Dy D3 Dy

) 9 4 1
B0 0 0 | 10
3 ) 0 8
| 5 0 15 | 0
[4] 6] [T
F3 14 0 16
8 8

La casilla disponible de costo minimo, en la matriz, es la casilla (3,1). La
méxima cantidad que se puede asignar es 8. Asi se satura la primera colum-

na.

D Do D3 Dy

5 9 4 1
m 0 0 0 10
3 5 0 8
P 5 0 15 0
[6] 17
F; 8 14 0 3
8

La casilla disponible de costo minimo (la tltima), en la matriz, es la
casilla (3,4). La maxima cantidad que se puede asignar es 8. Asi se saturan
la tercera fila y cuarta columna.
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Dy Dy D3 Dy

5 9 4 1

41 0 0 0 10 10
3 5 0 8

Fy 5 0 15 0 20
4 2 6 7

Fy 8 14 0 8 30

13 14 15 18

Aqui ya no hay casillas disponibles y se ha obtenido una solucién factible
bésica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
si se compara con la solucién éptima obtenida en el ejemplo 16.6) se puede
afirmar que la solucién obtenida es 6ptima. <

En la mayoria de los casos el método del costo minimo de la matriz da
una solucién inicial mejor o semejante a la del método del costo minimo por
columnas o por filas.

17.5. Meétodo de Vogel

Este método también sirve para hallar una solucién factible bésica inicial.
Su algoritmo es el siguiente:
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-todas las casillas estan disponibles
-las ofertas y demandas disponibles son las iniciales
-todas las lineas estdn no saturadas
mientras haya casillas disponibles
-en cada linea no saturada buscar la diferencia no negativa
entre los dos costos més pequenos de casillas disponibles
-asignar a esta casilla la mayor cantidad posible:
- saturar una linea: una fila o una columna
- en esta linea, para las otras casillas disponibles: z;; = 0
- actualizar la oferta y demanda disponibles

fin-mientras

Observaciéon: Si en una linea hay una sola casilla disponible, se supone
que el segundo valor méas pequeno es muy grande, asi la diferencia es muy
grande.

Ejemplo 17.5. Consideremos los mismos datos del ejemplo 16.1

D, Do D3 Dy

5 9 4 1

£ 10
3 5 0 8

I 20
4 2 6 7

Fy 30

13 14 15 18

Para la primera fila la diferencia es 4 — 1 = 3. Para la segunda fila la
diferencia es 3 — 0 = 3. Para la tercera fila la diferencia vale 4 — 2 = 2. Para
la primera columna la diferencia es 4 — 3 = 1, y asi sucesivamente.
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5 9 4 1

3 10 3
3 5 0 8

Fy 20 3
4 2 6 7

F3 30 2

13 14 15 18

La cuarta columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo minimo es la casilla (1,4). Alli se puede asignar 10 y se

satura la primera fila.
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Dy Dy D3 Dy

5 9 4 1
0 0 0 10
Py
3 5 0 8
Ey 20 3
4 2 6 7
F3 30 2

13 14 15 8

1 3 6 1

La tercera columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo minimo es la casilla (2,3). Alli se puede asignar 15 y se

satura la tercera columna.

Dy D, D3 Dy

5 9 4 1
7 0 0 0 10
3 5 [0] 8
I 15 - )
4 2 [6] 7
F3 0 30 2
13 14 8
1 3 1
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La segunda columna tiene mayor diferencia: 3. En esta columna la casilla
disponible de costo minimo es la casilla (3,2). Alli se puede asignar 14 y se
satura la segunda columna.

5 9 4 1
0 0 0 10
Fy
3 0] 8
" 0 15 ; -
4 6] 7
F3 14 0 16 3
13 8
1 1

La segunda fila tiene mayor diferencia: 5. En esta fila la casilla disponible
de costo minimo es la casilla (2,1). Allf se puede asignar 5 y se satura la

segunda fila.
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Dy Dy Ds Dy

5 9 4 1
o) 0 0 0 10
3 5 0 )
Jo 5 0 15 0
4 @ 7
F; 14 0 16 3
8 8
0 o0

Hay empate en el mayor valor (o0), entre la primera columna y la cuarta.
Se puede escoger cualquiera de las dos. Supongamos que se toma la primera
encontrada (segun un cierto orden), es decir, la primera columna. En esta
columna la casilla disponible de costo minimo (la tnica) es la casilla (3,1).
Alli se puede asignar 8 y se satura la primera columna.

221



222 CAPITULO 17. OTROS METODOS PARA EL TRANSPORTE

D1 Do D3 Dy

5 9 4 1
) 0 0 0 10
3 5 0 8
£ 5 0 15 0
6] |7
F 8 14 0 3 ~
8
o0

No queda sino una casilla disponible, la (3,4). Alli se puede asignar 8 y se
saturan al tiempo la tercera fila y la cuarta columna.

Di Dy Dy Dy

5 9 4 1

I 0 0 0 10 10
3 5 0 8

Fy 5 0 15 0 20
4 2 6 7

Fj 8 14 0 8 30

13 14 15 18

Aqui ya no hay casillas disponibles y se ha obtenido una solucién factible
bésica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
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si se compara con la solucién éptima obtenida en el ejemplo 16.6) se puede
afirmar que la solucién obtenida es éptima. <&

17.6. Método de Russel

Este método también sirve para hallar una solucién factible béasica inicial.
Su algoritmo es el siguiente:

-todas las casillas estdn disponibles
-las ofertas y demandas disponibles son las iniciales
-todas las lineas estan no saturadas
mientras haya casillas disponibles
-en cada fila no saturada calcular u]
-en cada columna no saturada calcular v}

. . . oy
-en cada casilla disponible calcular ¢;; = ¢;j — u; — v;
/
ij
-asignar a esta casilla la mayor cantidad posible

-buscar la casilla disponible de ¢} minimo
- saturar una linea: una fila o una columna
- en esta linea, para las otras casillas disponibles: z;; = 0
- actualizar la oferta y demanda disponibles
fin-mientras

El valor v} es el mayor costo de las casillas disponibles de la fila 7. El

valor v; es el mayor costo de las casillas disponibles de la columna j.

Ejemplo 17.6. Consideremos los mismos datos del ejemplo 16.1
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Dy Do Ds Dy
5 9 4 1
B 10
3 5 0 8
£ 20
4 2 6 7
F3 30
13 14 15 18

En la primera fila, el costo maximo de las casillas disponibles es 9, entonces
u] = 9. De manera semejante uy = 8, uy =7, v} =5, vy =9, v5 =6, v) = 8.
Asic);=5-9-5=-9,¢,=9-9-9=-9, ...

D, Dy D3 Dy
5] —9o[o] —ol4]-11[1]—16

4 10 9
3[—10[5]-12[0[-14[8] —8

Fy 20 8
4] —g[2]-14l6] —7[7] =8

F3 30 7

13 14 15 18
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El minimo de los valores cgj es —16 y estd en la casilla (1,4). Alli se puede
asignar 10 y se satura la primera fila.

D, Dy D3 Dy

Fy

Fy 20 8

4| —7[2]-1016] —=7|7| -8
F3 30 7

13 14 15 8

El minimo de los valores cgj es —14 y estd en la casilla (2,3). Allf se puede

asignar 15 y se satura la tercera columna.
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Dy Doy Ds Dy

4 —72—10@ 7] -8

13 14 8

El minimo de los valores c;j es —10 y estd en la casilla (3,2). Allf se puede
asignar 14 y se satura la segunda columna.

Dy Doy Ds D,

5 9 4 1
F 0 0 0 10
3] —9[5] [0 8] -8
P 0 15 - .
4] -12] 6] 7] -8
F3 14 0 16 7
13 8
4 8

226



17.6. METODO DE RUSSEL 227

El minimo de los valores céj es —9 y estd en la casilla (2,1). Alli se puede
asignar 5 y se satura la segunda fila.

5 9 4 1
o) 0 0 0 10
3 5 0 )
P 5 0 15 0
4] -2 6] 71 —7
F3 14 0 16 7
8 8
4 7

El minimo de los valores cgj es —7 y estd en la casilla (3,1) o en la casilla
(3,4). En la casilla (3,1) se puede asignar 8 y se satura la primera columna.
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Dy Doy Ds Dy

5 9 4 1
) 0 0 0 10
3 5 0 8
£ 5 0 15 0
6] 1T T
£ 8 14 0 3 7
8
7

El minimo de los valores cgj es —7 y estd en la casilla (3,4), que es la iltima
casilla disponible. Alli se puede asignar 8 y se saturan la tercera fila y cuarta
columna.

5 9 4 1

I 0 0 0 10 10
3 5 0 8

Fy 5 0 15 0 20
4 2 6 7

Fj 8 14 0 8 30

13 14 15 18

Aqui ya no hay casillas disponibles y se ha obtenido una solucién factible
bésica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
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si se compara con la solucién éptima obtenida en el ejemplo 16.6) se puede
afirmar que la solucién obtenida es éptima. <&

De los métodos anteriormente expuestos el méas usado para problemas
grandes es el de Vogel. Ninguno de estos métodos garantiza obtener una
solucién factible bésica inicial 6ptima. Sin embargo, los métodos de Vogel
y Russel son los que, en general, dan una solucién inicial mas cercana al
Optimo.

Como en estos métodos hay que efectuar muchas bisquedas, en proble-
mas grandes no es conveniente hacerlo sobre toda la matriz. De ahi que se
utilice mas el método de Vogel que el de Russel y que se prefiera el método
del costo minimo por filas (o por columnas) al método del costo minimo de
la matriz.

17.7. Soluciones basicas degeneradas

Las soluciones basicas degeneradas se pueden presentar por tres causas:

a) por modificacién de otra solucién bésica degenerada,

b) en la obtencién de una solucién bésica inicial, cuando al asignar la
mayor cantidad posible a una casilla diferente de la tltima (la m+n—
1), se copa al mismo tiempo el valor disponible en la fila (oferta) y el
valor disponible en la columna (demanda),

¢) en la modificacién de una tabla, al escoger la variable que sale, el valor
minimo de las casillas de disminucién se obtiene en dos o mas casillas.

En cualquiera de estos casos, alguna (o algunas) variable nula debe ser
considerada como variable bésica de tal forma que haya m + n — 1 varia-
bles basicas. La escogencia de esta (o estas) variable tiene cierto grado de
flexibilidad, pero tampoco es totalmente flexible. Es decir, hay pautas para
escoger adecuadamente si una variable nula debe ser bésica. Por facilidad
visual las variables nulas basicas se indicaran por medio de la letra griega €
(épsilon).

Ejemplo 17.7. Consideremos la siguiente solucion factible basica.
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5 9 4 1

I 10 0 0 0 10
3 5 0 8

Fy 0 10 0 0 10
4 2 6 7

F3 0 0 10 10 20

10 10 10 10

Dos de las variables nulas deben considerarse como bésicas, sin embargo, la
siguiente escogencia no es adecuada.

Di Dy Dy Dy

5 9 4 1

B 10 0 0 0 10
3 5 0] 8

Fy 0 10 € 0 10
4 6 7

F3 0 € 10 10 20

10 10 10 10

Al tratar de calcular el costo reducido de la variable libre 212 obteniendo
su circuito, se observa que es imposible: Si aumenta x12, entonces necesaria-
mente tiene que disminuir 11 y otra variable basica de la primera columna
debe aumentar, pero esto es imposible. Al tratar de calcular los costos
reducidos por el método de las variables duales tampoco se puede. <&
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Para la adecuada obtencion de una solucion bésica factible es necesario
tener en cuenta las siguientes indicaciones:

= Las variables béasicas son aquellas cuyo valor es positivo o las nulas
indicadas por el simbolo e.

= Puede haber lineas con disponibilidad nula y no estar saturadas, es
decir, disponibilidad nula y saturacién no son equivalentes.

= Cuando se asigna la mayor cantidad posible a una casilla y ésta no es
la m 4+ n — 1, Gnicamente se satura una linea. Esto quiere decir que
si la cantidad disponible en la fila es la misma de la columna de la
casilla escogida, entonces se satura, por ejemplo, inicamente la fila y
la columna continiia no saturada con disponibilidad nula.

» Si se presenta un empate en la escogencia de la linea (o la fila o la
columna) que se satura, como el descrito en la indicacién anterior, y si
queda tnicamente una fila no saturada y varias columnas no satura-
das, entonces se debe saturar necesariamente la columna de la casilla
escogida. De manera semejante, si hay una sola columna no saturada
y varias filas no saturadas se debe saturar la fila de la casilla escogida.

= Cuando la mayor cantidad posible que se puede asignar a una casilla
es cero, entonces esto se indica con €.

= Al modificar un circuito iinicamente una variable béasica se vuelve libre,
es decir, si al modificar el circuito dos o més variables quedan con valor
nulo, solamente una de ellas se vuelve libre, las demas tienen valor cero,
pero son basicas, y se denotan con el simbolo e.

= Si al modificar un circuito, la méxima cantidad que puede tomar la va-
riable que entra es €, entonces la “suma’” y “resta” tienen las siguientes
propiedades:

r+e=z, siz>0,

r—e=z, siz>0,
e+e=c¢,
€—€=

Ejemplo 17.8. Hallar una solucién bésica factible por el método de Vogel:
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Dy Do Ds Dy
5 9 4 1
B 10
3 5 0 8
£ 10
4 2 6 7
F3 20
10 10 10 10

Para la primera fila la diferencia es 4 — 1 = 3. Para la segunda fila la
diferencia es 3 — 0 = 3. Para la tercera fila la diferencia vale 4 —2 = 2. Para
la primera columna la diferencia es 4 — 3 = 1, y asi sucesivamente.

Dy Dy D3 Dy
5 9 4 1
13 10
3 5 0 8
£y 10
4 2 6 7
F3 20 2
10 10 10 10
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La cuarta columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo minimo es la casilla (1,4). Alli se puede asignar 10 y se
satura, por ejemplo, la primera fila. La cuarta columna no se satura, pero
queda con disponibilidad nula.

5 9 4 1
F 0 0 0 10
3 5 0 8
Fy 10 3
4 2 6 7
F3 20 2

10 10 10 0

La tercera columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo minimo es la casilla (2,3). Alli se puede asignar 10 y se
satura, por ejemplo, la segunda fila. La tercera columna no se satura, pero
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queda con disponibilidad nula.

5 9 4 1
P 0 0 0 10
3 5 0 8
£, 0 0 10 0
4 2 6 7
F3 20 2

10 10 0 0

o0 o0 o0 o0

Por ejemplo, la primera columna tiene mayor diferencia co. En esta columna
la casilla disponible de costo minimo (la tnica) es la casilla (3,1). Allf se
puede asignar 10 y se satura la primera columna.

5 9 4 1
I 0 0 0 10
3 5 0 8
jol 0 0 10 0
2 6 7
F3 10 10 4
10 0 0
o0 o0 o0

234



17.7. SOLUCIONES BASICAS DEGENERADAS 235

Por ejemplo, la segunda columna tiene mayor diferencia: co. En esta colum-
na la casilla disponible de costo minimo (la tnica) es la casilla (3,2). Allf
se puede asignar 10. Esto hace que las disponibilidades de la tercera fila y
la segunda columna se anulen. Como solamente queda una fila no saturada
(la tercera) y varias columnas sin saturar, se debe saturar necesariamente
la segunda columna.

Dr Do D3 Dy

5 9 4 1
o) 0 0 0 10
3 5 0 8
F, 0 0 10 0
6 7
Fy 10 10 0 1
0 0
00 00

Escogiendo la tercera columna como la linea de mayor diferencia, la casilla
disponible de costo minimo (la tinica) es la casilla (3,3). Alli se puede asignar
0, denotado por €. Aparentemente habria posibilidad de saturar la tercera
fila o la tercera columna, pero como sélo queda una fila no saturada (la
tercera) y varias columnas sin saturar, se debe saturar necesariamente la
tercera columna.
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5 9 4 1
F 0 0 0 10
3 5 0 8
)2 0 0 10 0
6] 7
F3 10 10 € 0 00
0
0

No queda sino una casilla disponible, la (3,4). Alli se puede asignar 0 (de-
notado por €) y se saturan al tiempo la tercera fila y la cuarta columna.

Dy Doy D3 Dy

5 9 4 1

41 0 0 0 10 10
3 5 0 8

Iy 0 0 10 0 10
4 2 6]

2 10 10 € € 20

10 10 10 10

Aqui ya no hay casillas disponibles y se ha obtenido una solucién factible
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béasica inicial. Su costo es z = 70. Al calcular los costos reducidos se tiene:

up +vg =1,
ug + vz = 0,
ug +v1 =4,
uz +v2 =2,
us +v3 = 6,
uz +vg = 7.

Démosle a la variable ug el valor cero. Entonces:

uy = —6,
U9 = —6,
uz = 0,

v =4,
vy = 2,
v3 = 6,
vy = 1.

De manera inmediata se tienen los costos reducidos:

fnu=b——-6-4= 7,
Gla=9——6—2=13,
Gl3=4——6-6= 4,
én=3——6-4= 5,
Gpn=5-——6-2= 0,
Gu=8——6-T7T=T.

La solucién obtenida es 6ptima. <

Ejemplo 17.9. Considérese la siguiente solucién factible béasica, no dege-

nerada:
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Dy Dy D3 Dy

5 9 4 1

F 10 0 0 0
3 5 0 8

Fy 10 10 0 0
4 2 6 7

F3 0 10 10 10

20 20 10 10

z = 280.

Esta solucién basica fue obtenida por el método de la esquina noroccidental.
El costo reducido minimo es ¢4 = —11, luego la solucién no es 6ptima. El
circuito de z14 es: (1,4), (1,1), (2,1), (2,2), (3,2), (3,4).

El valor méximo que se puede asignar es 10 . Al actualizar el circui-
to, se anularian tres variables: x11, T92, 34, pero solamente una variable
puede volverse libre, las otras deben seguir siendo bésicas, aunque nulas.
Supongamos que sale de la base x11, entonces x99, r34 se denotaran con e.
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Di Dy Ds Dy

5 9 4 1

I 0 0 0 10 10
3 0 8

Py 20 € 0 0 20
4 2 6

F3 0 20 10 € 30

20 20 10 10

Esta tabla tampoco es éptima, es necesario efectuar mas iteraciones hasta

obtener el 6ptimo con la siguiente tabla.

5 9 4 1

I 0 0 0 10 10
3 5 0 8

Fy 10 0 10 0 20
4 2 6

F3 10 20 0 € 30

20 20 10 10

z=120. ©
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17.8. Oferta total diferente de demanda total

Cuando la oferta total es diferente de la demanda total puede haber dos
casos: la oferta total es mayor que la demanda total o la oferta total es
menor que la demanda total.

En el primer caso se debe crear un destino adicional ficticio, una colum-
na adicional, con una demanda igual al exceso de oferta. Las cantidades
enviadas hacia este destino pueden indicar la capacidad de oferta no utili-
zada, o bien las unidades almacenadas en cada origen y no enviadas. Los
costos unitarios hacia este nuevo destino son pequenos y pueden ser nulos o
pueden indicar un costo de almacenamiento para las unidades no enviadas
o también pueden indicar el costo por no utilizar algunas maquinas a su
capacidad méaxima optima.

En el segundo caso definitivamente el problema no tiene soluciéon. Sin
embargo, se puede pensar en tratar de hallar una seudosolucién que, in-
cumpliendo de todas maneras las restricciones de demanda, busca un costo
minimo. Para esto se crea un origen ficticio adicional, una nueva fila, cuya
oferta estd dada por el exceso de demanda. Las cantidades enviadas desde
este origen indican la demanda no satisfecha o también pueden indicar el
nimero de unidades que es necesario conseguir por fuera de la empresa para
poder satisfacer la demanda. Los costos unitarios desde el origen ficticio
son muy altos y pueden indicar el costo de transporte més el sobreprecio
por comprar el producto a otros proveedores, o también pueden significar
las pérdidas ocasionadas por una demanda no satisfecha.

Ejemplo 17.10. Considere los siguientes datos:
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5 9 4
B 10
3 5 4
Fy 20
A 9 6
F3 30
11 12 13

La oferta total es igual a 60 y la demanda total es 36, luego es necesario
crear un destino adicional con una demanda de 24 unidades. Por falta de
informacién adicional, supongamos que los costos para este destino ficticio
son nulos.

Dy Dy D3 Dy

5 9 4 0

B 10
3 5 4 0

By 20
4 2 6 0

Fy 30

11 12 13 24
La tabla éptima para este problema es la siguiente:
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5 9 4 0

3 0 0 4 6 10
3 5 4 0

Fy 11 0 9 0 20
4 2 6 0

Fj 0 12 0 18 30

11 12 13 24

z=109. &

Ejemplo 17.11. Considere los siguientes datos:

Di Dy Dy Dy

Fy 11

Fy 22

11 12 13 24

La oferta total es igual a 33 y la demanda total es 60. Realmente el pro-
blema no tiene solucién, pero se va a buscar una seudosoluciéon con costo
de transporte minimo. Es necesario crear un origen (o fébrica) adicional
ficticio, con una oferta de 27 unidades. Por falta de informacién adicional,
supongamos que los costos para este destino ficticio son grandes y valen 99.
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Dy Dy D3 Dy

3! 11

Fy 22

99 [99] [99] [99]

11 12 13 24

La tabla éptima para este problema es la siguiente:

D1 Dy D3 Dy

I 0 0 0 11 11

Fy 9 0 13 0 29

99 [99] [99] [99]
F; 2 12 0 13 27

11 12 13 24

z = 2711.

En realidad el costo minimo de transporte de esta seudosolucién es z = 38,
a lo cual habria que agregar el verdadero costo, correspondiente al incumpli-
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miento de la demanda, o el precio adicional de los sobreesfuerzos necesarios
para satisfacer la demanda.

Segun esta seudosolucién, inicamente se satisface la demanda del destino
D3, los otros destinos tienen demanda insatisfecha de 2, 12 y 13 unidades. <

EJERCICIOS

En los ejercicios 17.1 a 17.8, resuelva el problema de transporte plan-
teado. Utilice varios métodos para hallar la solucién basica inicial.
Calcule los costos reducidos de varias maneras. Si hay més de un pun-
to éptimo, encuentre por lo menos dos. Si es necesario, haga modifica-
ciones o adaptaciones del problema planteado, para poder resolverlo.

17.1. Ofertas 10, 11, 12; demandas 7, 8, 9, 9; matriz de costos unitarios:
10 7 8 9
7 8 4 2
6 5 3 1

17.2. Ofertas 10, 11, 12, 13, 14; demandas 9, 9, 9, 9, 24; matriz de costos
unitarios:

6 8 9 6 5
7 10 7 7 6
10 8 8 7 6
9 9 7 5 2
10 9 4 3 1

17.3. Ofertas 10, 50, 20, 40, 30; demandas 27, 35, 31, 28, 29; matriz de
costos unitarios:

6 8 9 5 1
5 10 6 2 9
8 8 4 8 6
9 2 6 5 2
1 6 4 3 1

17.4. Ofertas 40, 30, 30; demandas 10, 20, 30, 40; matriz de costos unitarios:

11 9 8 7
10 5 6 1
4 3 10
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17.5.

17.6.

17.7.

17.8.

Ofertas 1, 1, 1, 1; demandas 1, 1, 1, 1; matriz de costos unitarios:

16 15 3 4
4 13 10 9
12 8 2 7
3 1 6 5

Ofertas 20, 15, 10, 15; demandas 18, 19, 23; matriz de costos unitarios:

11 10 4
9 5 3
8 6 1
7 10

Ofertas 10, 16, 20; demandas 10, 15, 15; matriz de costos unitarios:

11 1

o

4
3
1

co ©
S Ot

Ofertas 10, 16, 10; demandas 10, 15, 15; matriz de costos unitarios:

11 1

o

4
3
1

o ©
S Ot
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Capitulo 18

ANALISIS DE
SENSIBILIDAD

L
Antes de introducir los conceptos del andlisis de sensibilidad, se presenta

un problema pequeno, con el cual es posible comprender mejor las nociones
correspondientes.

Ejemplo 18.1. Este problema es en realidad una modificacién del problema
de asignacién de recursos planteado en el primer capitulo. Una fabrica ela-
bora tres productos diferentes P;, P, y P3 y utiliza tres maquinas diferentes
My, My, Ms. Los tres productos requieren el uso, sin importar el orden, de
las tres maquinas. Cada unidad del producto P; requiere una hora en cada
una de las tres maquinas. Cada unidad del producto P» requiere una hora
en la maquina M; y dos horas en la maquina M;. Cada unidad del tercer
producto requiere dos horas en la primera méquina, una hora en la segunda
maquina y dos horas en la tercera maquina. Las disponibilidades mensuales
de las méaquinas My, Mo, M3 son 400, 580 y 300 horas respectivamente.

La materia prima necesaria para la fabricacion de los productos es muy
facil de obtener y se puede conseguir en cantidades tan grandes que se pueden
suponer ilimitadas. Después de hacer el calculo de todos los gastos necesarios
para la fabricacién, publicidad, distribucion, comercializacion, y teniendo en
cuenta el precio de venta, se obtiene que el beneficio por cada unidad del
producto P; es $ 1. Para el producto P, el beneficio unitario es $ 1.4. Para
el producto Pj3 el beneficio unitario es $ 1.5. Estudiando la demanda actual
para los dos productos, el gerente de ventas cree que se puede vender toda
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la produccién. La compania desea organizar su produccién para que ésta
sea éptima.
max x1 + 1.4z + 1.5x3

xr1 + To + 2x3 <400
1+ 220+ 3 <580
X1 + 2x3 <300

z> 0.

Introduciendo variables de holgura y convirtiendo el problema en uno de
minimizacién se obtiene:

min z = —x1 — 1.4z9 — 1.523
xr1 + To + 2x3+ x4 =400
1+ 2x9 + xs + x5 = 580
X + 2x3 + zg = 300

x> 0.

Su tabla optima es:

z2 [ 01 -1 -1 1 0 180
ze | 0O 0 -1 =2 1 1 80
zz (1 0 3 2 -1 0 220
—=z[ 0 0 01 06 04 0 472

=¥ = (220,180, 0,0,0,80),
2 = —472.

Si se utiliza el MSR, la tabla final es

zo | —1 1 0 0 180
ze | =2 1 1 0 &0
1 2 -1 0 0 220
-z 06 04 0 1 472

cg=[01 06 04] ©

Una de las hipétesis de la programacién lineal considera que el modelo
es determinista, es decir, se supone que los diferentes datos del problema
(coeficientes c¢;, b;, ai;) son conocidos de manera exacta y precisa. Esta
suposicién es muy fuerte ya que en realidad, generalmente, sélo se conoce
una aproximaciéon de cada dato. Mas aun, suponiendo que en realidad un
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dato se conoce de manera precisa, su valor puede haber cambiado con el
tiempo, o se puede prever su cambio dentro de cierto tiempo. O también
existe la posibilidad de modificar voluntariamente un dato, por ejemplo, se
conoce la disponibilidad de cierta materia prima en el mercado nacional,
pero si fuera conveniente, se podria importar.

Para fijar més las ideas, supongase que se conoce la solucién 6ptima de
minimizar z = ¢z, Az = b, « > 0. Si ahora se quiere resolver z = ¢z,
Az =b, x > 0 (donde ¢ es un vector de costos diferente, pero parecido a c¢),
habria dos caminos, el primero consiste en resolver completamente (desde el
principio) el nuevo problema, es el camino de la “fuerza bruta”, la segunda
opcién consiste en estudiar, a partir de los resultados finales del problema,
no modificado (tabla éptima, z*, ...), los cambios que se producirian al
cambiar ¢ por ¢/, este segundo camino corresponde exactamente al andlisis

de sensibilidad.

Las modificaciones mas usuales que se estudian en el andlisis de sensibi-
lidad son las siguientes:

= en los costos (coeficientes ¢;),

» en los términos independientes ( valores b;),

» en una columna libre (no bésica) de la matriz A,
= una restriccién adicional,

= una columna adicional.

18.1. Modificaciones en los costos

El estudio de los cambios en los costos, se puede subdividir en tres clases,
la primera corresponde a un cambio puntual o discreto, por ejemplo, si el
vector de costos es

c=(-1,-1.4,-1.5,0,0,0),
Y pasa a ser

¢ =(-1.2,-1.6,—1.4,0,0,0).
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La segunda clase de modificaciones corresponde a un cambio parametrizado
en un solo coeficiente, por ejemplo, si el vector de costos es

c=(-1,-1.4,-1.5,0,0,0),
Y pasa a ser
¢ =(-1,a,-1.5,0,0,0).

La tercera clase de modificaciones corresponde a un cambio global parame-
trizado (por un solo pardametro), por ejemplo, si el vector de costos es

c=(-1,-1.4,-1.5,0,0,0),
y pasa a ser

d=(-1,-14,-1.5,0,0,0) + 6(1,2,—1,0,0,0).

Al hacer cambios en los coeficientes iniciales de la funcién objetivo, tnica-
mente aparecen modificaciones en z y en los costos reducidos de la ultima
tabla, la cual puede seguir siendo 6ptima o no. Maés aun, solamente se
modificarian los costos reducidos de las variables libres ya que los costos
reducidos de las variables basicas siguen siendo nulos. Recuérdese que

k T pk—10
—2" = —cpeBY b
= —cLvF,

donde cp = cpr = c’fg es el vector formado por los costos iniciales correspon-

dientes a las variables bésicas en la iteracién k; B~ = B*! es la inversa de
la matriz formada por las columnas de la matriz inicial A, correspondientes
a las variables bésicas en la iteracién k; b° es el vector inicial de términos
independientes; b* es el vector de términos independientes en la iteracién k.
Claro esta, cuando hay una modificacién en ¢, entonces

1k

—2" = T

Los costos reducidos se pueden calcular mediante la férmula siguiente:
~k k 0,k\T p—17T k
¢ =c;—(L"")'B™" cp,

donde clz son los costos iniciales correspondientes a las variables libres en la
iteracién k; L%* es la matriz formada por las columnas de la matriz inicial
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A, correspondientes a las variables libres en la iteracién k. La anterior
igualdad se puede presentar de manera adecuada para la utilizacion a partir
de la ultima tabla del simplex, o bien, para ser utilizada facilmente a partir
de la dltima tabla del MSR.

Si se utiliza la tabla del simplex

~T T kT rkk
CL;C CLk —CpRp L

& =l —chLF

Y L. . ; ;
¢j =cj —cgAlj, x; es variable libre ,

donde L**F = L* = L es la matriz obtenida al tomar de A* las columnas
correspondientes a las variables libres en esa iteracién. Obviamente, si en
lugar de tener el vector ¢ se tiene otro vector ¢’, entonces

T T
gLT — C/L . C/BLk

~ )T k . . .
¢; =c; — A, x; esvariable libre .

Si se utiliza la tabla del MSR los costos reducidos se pueden expresar
éf = cf — (5B 1)L
—[-gp 1]

& =cj— (cpB™")AY,  w; variable libre ,

LO,k
T
‘L

] =[ —cpB~' 1]L%

donde L%* es la matriz obtenida al tomar de A° las columnas correspon-
dientes a las variables libres en la iteracién k. Obviamente, si en lugar de
tener el vector ¢ se tiene otro vector ¢/, entonces

élLT _ C/E _ (C/TBB—I)LO,k
= [ —cEB 1] 1%

&=dj— (c’TBBfl)A(,Jj, z; variable libre .

18.1.1. Modificacién puntual de c

Al pasar de un vector de costos ¢, a un vector de costos ¢, las conse-
cuencias son de dos clases: los costos reducidos de las variables libres siguen
siendo no negativos, en este caso el iltimo punto obtenido sigue siendo 6pti-
mo y no hay nada méas que hacer. En la segunda clase de consecuencias,
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por lo menos uno de los costos reducidos modificados de variables libres es

negativo, y lo que se debe hacer es continuar con el método simplex (o el
MSR).

Las modificaciones puntuales en el vector de costos son de tres tipos:

a) modificacién de un solo costo correspondiente a una variable libre,
b) modificacién de un solo costo correspondiente a una variable bésica,

c¢) modificacién de varios costos.

El analisis de una modificacién de un solo costo de una variable libre es muy
simple: al observar la féormula, es claro que solamente se modifica el costo
reducido correspondiente,

~ 1 JT 4k
¢ =¢; CBA_j

_ T Ak
=cj —cpAj
— .. _ T gk I
=c¢j—cgA5+ ¢ —¢

=cj + ¢ — ¢y,

es decir, el incremento que sufre el costo reducido es simplemente el incre-
mento que tuvo el costo. El valor de z no se modifica.

Ejemplo 18.2. Considerar los datos del ejemplo 18.1 , cambiando el coefi-
ciente c3 = —1.5, por ¢ = —1.45.

En la tabla 6ptima x3 es una variable libre, luego ¢3 tendra un incremento
de —1.45—(—1.5) = 0.05, o sea, &5 = 0.14-0.05 = 0.15, luego el punto 6ptimo
sigue siendo 6ptimo. <

Ejemplo 18.3. Considerar los datos del ejemplo 18.1, cambiando el coefi-
ciente c3 = —1.5 por ¢ = —1.8.

El costo reducido ¢ tendra un incremento de —1.8 — (—1.5) = —0.3, o
sea, ¢, = 0.1+ —0.3 = —0.2, luego el tltimo punto obtenido no serfa 6ptimo
y es necesario continuar el método a partir de la siguiente tabla:

z2 | 0 1 -1 -1 1 0 180
z¢ | 0 0 -1 =2 1 1 80 o
z1 |1 0 3 2 -1 0 220
-z 0 0 —-02 06 04 0 472
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La modificacién de un solo costo, correspondiente a una variable bésica,
implica la modificacién de todos los costos reducidos de las variables libres
y del valor de z. Si la variable basica cuyo costo se modifica es la i-ésima,
entre las bésicas

~ T T
Gt =d, " —dGLF

=c] —ca ... cp,...cp,|LF
=cp — g, ...cp + 5 —cp, ... cp,|L

Lk

K3

k

=cr —cTBLk—c'ﬁi —c

= C}: - (Clﬁl - cﬁi)Li'c-'

De manera anéloga

—2' = —z—(cj — ¢, )bF.

Ejemplo 18.4. Considerar los datos del ejemplo 18.1, cambiando el coefi-
ciente ¢; = —1 por ¢} = —1.2.

La variable z1 es la tercera variable bésica,

& = ¢, — (cp, — cs,) L

6,LT =cp— (0/63 - 053)L]§.
=[01 06 04]—-(-12—--1)[3 2 —-1]

=[07 1.0 02].

Luego z = (220, 180, 0,0, 0, 80) sigue siendo éptimo, y el nuevo valor de —z
sera:
—2' =472 — (-1.2 — —1)220 = 516. ©

Ejemplo 18.5. Considerar los datos del ejemplo 18.1, cambiando el coefi-
ciente co = —1.4, por ¢, = —1.6.

La variable x2 es la primera variable basica,

~
& k

e — (023, — ¢g,) L.
= é}, - (clﬂl - Cﬁl)Llf-

=[01 06 04]—-(-1.6——-14)[ -1 -1 1]
=[—-01 04 06 ].

h
|
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Luego = = (220, 180,0,0,0,80) ya no es 6ptimo. El nuevo valor de —z
sera:
— 2/ =472 — (—1.6 — —1.4)180 = 508.

Es necesario continuar el método simplex a partir de la tabla

z2 | 0 1 -1 -1 1 0 180
z [ 0O 0O -1 -2 1 1 &0 o
z1 |1 0 3 2 -1 0 220
—2[ 0 0 —0.1 04 06 0 508

18.1.2. Modificacién parametrizada de un costo

En este caso, un solo coeficiente se modifica y se desea saber en qué
intervalo puede variar de tal forma que el 1iltimo punto obtenido siga siendo
6ptimo. Si, por ejemplo, el vector de costos ¢ = (—1,—1.4,—1.5,0,0,0) pasa
a ser (—1,a,—1.5,0,0,0) existe un intervalo en el que puede variar « de
tal forma que el puntozr = (220, 180,0,0,0,80) es 6ptimo. Obviamente ese
intervalo contiene el valor —1.4.

Las modificaciones pueden ser de dos tipos:

a) modificacién de un solo costo correspondiente a una variable libre

b) modificacién de un solo costo correspondiente a una variable bésica.

El estudio del caso a) es muy sencillo:

C; = Cj+Cj —¢j

=¢+a—cj >0,
luego
a > cj— Cj
a € [¢j — ¢j,00].
Obviamente, si a varia en este intervalo, el valor de z no se modifica.

Para el estudio del caso b), un poco menos sencillo, supéngase que el
coeficiente modificado corresponde a una variable bdsica, la i-ésima entre
las béasicas

& = — (ds, —cp)Li > 0.
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Esto da lugar a n — m desigualdades

6; =¢ — (a— 05i)afj >0,

cuando z; es variable libre. O sea,

~ k k
Cj + C,Biaij Z aa,L]

Entonces
OS [amina amax]:
donde
—00 si afj > (0 para toda variable libre z;,
Qmin = . Cj . .
i cg; — min J = ai-“j < 0, z; es variable libre ; ,
00 si afj <0 para toda variable libre z;,
Qmax = c

k

. Cj . .

¢g; + min {] : afj > 0, z; es variable hbre} .

ar.
ij

Cuando se modifica un costo correspondiente a una variable bésica, el valor
de —z si se modifica.

o (et
2 = —2F e bF — b
2= 2F — cpbF + bk

Ejemplo 18.6. Averiguar, en el ejemplo 18.1, en qué intervalo puede variar
el coeficiente c3, para que el punto z = (220,180,0, 0,0,80) siga siendo
Optimo.

Como en la tabla éptima 3 es variable libre
c3=a€[-1.5-0.1,00[=[-1.6,00]. ¢

Ejemplo 18.7. Averiguar, en el ejemplo 18.1, en qué intervalo puede variar
el coeficiente c¢;, para que el punto =z = (220,180,0, 0,0,80) siga siendo
Optimo.

En la tabla éptima x; es la tercera variable basica. Hallar el interva-
lo de variacién de c; pude hacerse de dos maneras, la primera consiste en

255



256 CAPITULO 18. ANALISIS DE SENSIBILIDAD

reemplazar directamente en las férmulas generales de &;" y sacar las conclu-
siones sobre las restricciones de a. La segunda manera consiste en aplicar
sencillamente las férmulas para oumin, Qmax-

&t =d " —dBL"
-1 -1 1
=[-1500]-[-14 0 a]| -1 -2 1
32 -1
=[-30-29 —20—-14 a+14]>0,
entonces
—2.9
a< ——
-3

—1.4

a< ——

a>-—14

o € [~1.4,-0.9667],

— =g b"
180
=—[-14 0 a]| 80
220
= 252 — 220«
2 = 220a — 252.
Al aplicar directamente las férmulas finales
4
Omin = —1 — min {01} =—14,
.1 0.
Qmax = —1 + min {03, 026} = —0.9667.

2 = =472 — (—1)(220) + a220 = —252 + 220a. <

18.1.3. Modificacién parametrizada de varios costos
En este caso los costos modificados se pueden expresar como
d =c+be
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Hay que encontrar un intervalo de variacién de 6, de tal forma que el ultimo
punto obtenido siga siendo 6ptimo.

~ T T
A 2

entonces
T =T +0eF, —(c5 + 0c5) LK
=c — cTBLk +6(c; — EBLk)
=cp +0cy,
5;. =¢j+60c; >0, x; variable libre,
donde

—00 si ¢ <0
Omin = . 6]' ~ . .
—min < == : ¢; > 0,x; es variable libre ¢,
z.
J
00 si ¢, >0
Omax = . Ej = . .
min = ¢j < 0,x; es variable libre ;.
_&.
J

Obviamente, el intervalo de variacion de 6 siempre contiene el valor cero. Al
reemplazar el vector ¢, por su modificacién ¢, se obtiene

= EGB T bk
= —chb* — 0E5b*

Y=k Géfgbk.

Ejemplo 18.8. Averiguar, en el ejemplo 18.1, en qué intervalo puede variar
0 para que el punto x = (220, 180,0,0,0,80) siga siendo 6ptimo, si el vec-
tor de costos cambia de (—1,—1.4,—-1.5,0, 0,0) a (—1,—1.4,—1.5,0,0,0) +
0(—2,1,-1,0,0,0). Esta modificacién puede corresponder al siguiente cam-
bio en el ejemplo 18.1 . El gerente de la fabrica cree que, teniendo en cuenta
los precios de productos semejantes de otras companias, puede aumentar el
precio de venta de sus productos 1 y 3, pero debe disminuir el del producto
2. Ademads, estima conveniente aumentar el precio del producto 1 en una
cantidad igual al doble del aumento del producto 3.
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De nuevo hay dos formas para abordar el problema: partir de las férmu-
las generales para ¢}, o utilizar directamente las férmulas para Omin ¥ Omax-

~ T T
&t =d " —dGL"

-1 -1 1
=[-15-60 0 0]—[-14+60 0 —1—-20]| -1 —2 1
32 -1
=[01+60 0.6+50 0.4—30]>0.
Entonces
0 € [-0.1/6,0.4/3].
Por otro lado
& =ct — LIk
-1 -1 1
=[-100]-[10 2] -1 -2 1
3 2 -1
=[6 5 -3].
Entonces
Omin = — min 01061 01
e 6’5 ) 6
9 04 0.4
=mingy——; = —
max __3 3;
180
Z=—-472460[1 0 -2 ]| 80
220
= —472 — 2606.

Como el coeficiente de 6, en la expresion de z, es negativo, entonces el mejor
valor que puede tomar 6 sin que cambie el punto 6ptimo es Opax = 0.4/3.
&

18.2. Modificaciones en los términos independien-
tes

El estudio de los cambios en los términos independientes también se
puede subdividir en tres clases; un cambio puntual, un cambio parametri-
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zado de un solo término independiente y un cambio parametrizado de varios
términos independientes.

18.2.1. Modificacién puntual de b

Se trata, en este caso, de cambiar el vector b = b° inicial, por un vector
bY’. Para ver las consecuencias de este cambio en los términos independientes
de la tltima tabla es necesario conocer B~! = BF ™' ya que b*¥ = B1p0,
luego

/ _ /
VW =B,
Obviamente, z también se modifica:
/
2 = Lo

Si se utiliza el MSR, siempre se tiene explicitamente B~!. Si se utiliza la
tabla usual del método simplex es necesario, en general, calcular B~!. Con
v pueden pasar dos cosas, la primera y la méas sencilla: % > 0, entonces
las variables libres siguen siendo las mismas (y teniendo el mismo valor: 0)
y las variables bésicas también siguen siendo las mismas, pero su valor se
ha modificado, o sea, se ha modificado el punto éptimo. El segundo caso
se da, cuando b*' tiene por lo menos un elemento negativo, en ese caso al
reemplazar los nuevos términos independientes en la tultima tabla, no se
tiene factibilidad, pero se siguen teniendo condiciones de optimalidad. Asi,
el camino inmediato es aplicar el método simplex dual.

Ejemplo 18.9. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las maquinas por 410, 600, 280.

En la tabla 6ptima las variables béasicas son x9, xg, x1. Luego

1 01 -1 10
B=1|20 1], Bl=| -2 11
01 1 2 -1 0

En la mayoria de los casos, la matriz B~! se obtiene, bien sea a partir de
la tltima tabla del MSR, o bien por cédlculo directo de la inversa de B. En
este ejemplo particular, como en la tabla inicial se tenia la matriz identidad
(no se necesité la primera fase) la matriz B~! estard en el sitio que ocupaba
la matriz identidad, es decir, columnas tercera, cuarta y quinta.

/ -1 10 410 190
W= -2 11 600 | = | 60 |,
2 -1 0 280 220
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190
Z=[-14 0 -1]| 60 | =—486.
220

Luego las variables basicas en el 6ptimo siguen siendo las mismas y su valor
cambia un poco; el nuevo punto 6ptimo es entonces

r*' = (220, 190,0,0,0,60). ©

Ejemplo 18.10. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las maquinas por 430, 600, 250.

-1 1 077430 170
=] -2 1 1||600]|=]|-10],
2 -1 0 250 260
170
Z=[-14 0 —-1]| —10 | = —498.
260

Luego las variables bésicas en el 6ptimo no son las mismas. Para hallar la
solucién éptima es necesario utilizar el simplex dual:

z [0 1 -1 -1 1 0 170
z6 | 0 0 -2 1 1 —10
z1 |10 3 2 -1 0 260
—z[ 0 0 01 06 04 0 498

LBy = L)

Ts = T6,

Te = I3.
22 [0 10 1 0 -1 180
z3 |00 1 2 -1 -1 10
zp |1 00 —4 2 3 230
—z[0 0 0 04 05 0.1 497

x* = (230,180, 10,0,0,0),
=497 ©
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18.2.2. Modificacién parametrizada de un solo término in-
dependiente

Del vector inicial b°, se modifica un solo elemento, el j-ésimo. Se desea,
saber en qué intervalo puede variar este término independiente, de manera
que las variables basicas sigan siendo las mismas.

B [0 ]
0 0
o b1 bj_(l) 0 0 0 0 j
b = Oa = obj +(a=0bj) | 1T | =b"+(=bj+a)e.
10 I 0
7+1 J+1
IV R R L 0]

—00 si §.; <0,
Qmin = bk
. W— min { —: 5i7 >0¢.
J 1<i<m Sij
o0 siS.; >0,
« = bk
e ¥ + min L5 <0p.
I a<i<m | —sij

Como era de esperarse, el valor inicial b? siempre estd en el intervalo de
variacion de «. Este intervalo se conoce con el nombre de intervalo de
factibilidad de la restriccién.

2 = c%bk/
(0" + (a—19)S.5)
=2F 4 (a— b?)c};S.j

_ Jk 0.7 ¢ . T g .
=z" —bjcpS.; + acgS.;.
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El coeficiente de « indica la modificaciéon que sufre z, por cada unidad que
aumente el j-ésimo término independiente. Este coeficiente es llamado el
precio sombra de la restriccion. Esta relacionado con el valor de la
variable dual correspondiente a esta restriccion.

Ejemplo 18.11. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las maquinas, por «a, 580, 300. Averiguar en qué intervalo
puede variar « sin que cambie el grupo de variables bésicas.

, 180 —1 ~1
V=1 80 | —400| -2 | +a| =2 | >0,
220 2 2
Omin = 290,

Qmax = 440,

¥ = (=580 + 2a, 580 — @, 0,0, 0,880 — 2v).

Obsérvese que para los dos valores extremos de «, los puntos 6ptimos obte-
nidos son degenerados:

z = (0,290, 0,0,0,300),
x = (300,140, 0,0, 0, 0).

~1
7 =472+ (0 —400)[ =14 0 -1 ]| —2
2

= —232 — 0.6a.

El valor —0.6 indica que, por cada unidad que aumente el primer término
independiente, el valor de z se incrementa en —0.6 unidades. Puesto que se
estd tratando de minimizar z, lo méas conveniente es que se incremente lo
mas que se pueda la disponibilidad de la primera maquina. El valor de este
precio sombra es valido dentro del intervalo de factibilidad de la restriccién.

Si para aumentar la disponibilidad de la primera maquina, la compania
puede alquilar horas adicionales a un precio de $ 0.8 , no valdria la pena
hacerlo. En cambio, si se consiguen horas adicionales de la maquina 1 a un
precio de $ 0.5, si valdria la pena hacerlo. <
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Ejemplo 18.12. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las maquinas, por 580, 400, .. Averiguar en qué intervalo
puede variar « sin que cambie el grupo de variables basicas.

/ 180 0 0
VW=1 8 | -300|1|4+al|l1]|>0
220 0 0
Qmin = 220,

Qmax = OQ.

r*' = (220, 180,0,0,0, —220 + ).

0
7 =472+ (a—300)[ -14 0 -1]]| 1
0

= —472.

El precio sombra nulo indica que z no se modifica al variar el tercer término
independiente en su intervalo de factibilidad. Ademss, los valores de las
variables originales del problema tampoco cambian, inicamente cambia el
valor de la holgura. Este mismo resultado se hubiera podido obtener a partir
de los siguientes hechos: en el éptimo la tercera restriccion es, originalmente,
una desigualdad y no esta activa o saturada, es decir, se tiene la desigualdad
estricta. Dicho de otra forma, xg la variable de holgura de esa restriccion
no es nula, o sea, hubo horas sobrantes de la tercera méaquina. El valor
220, limite inferior del intervalo, corresponde exactamente al valor inicial
300 menos la holgura 80. <&

18.2.3. Modificacién parametrizada de varios términos inde-
pendientes

Del vector inicial ° se modifican varios elementos, en la forma
0 = b° + 6b.
Se desea saber en qué intervalo puede variar #, de manera que las variables
bésicas sigan siendo las mismas.
"' = B0 + 0B~ 'b
=" + 6" > 0.
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—00 sibF <o,
emin: bk -
—min{_z: oY >0}.
i bi
00 si bF > 0,
em X — bk -
* rnjn{ ’_k:bf<0}.
LTy
2 = c%bk,
= 2P 4 0chb".

Ejemplo 18.13. El gerente de la compania del ejemplo 18.1, piensa que
lo mas importante es conseguir horas adicionales para la segunda maquina.
Los ingenieros de produccién creen que la maquina uno puede, mediante
algunas adaptaciones, hacer el mismo trabajo de la segunda, pero con un
rendimiento igual a la mitad, es decir, si se toma una hora de la maquina
uno para hacer el trabajo de la segunda méquina, alcanza a hacer lo que la
segunda haria en media hora. Por otro lado el gerente, que conoce un poco
la terminologia de la PL, tiene sus razones para desear que las variables
bésicas sean las mismas. ;Qué aconsejaria al gerente?

En este problema, por cada hora cedida por la maquina uno, se consigue
media hora real de la segunda maquina.

400 1
W= |58 | +6]| 05 |,
300 0
/ 180 1.5
WW'=1 80 | +6 2.5
290 —92.5
emin - _325
00 = S8.

En realidad, tal como esté planteado el problema, 6 toma tinicamente valores
positivos, ya que estd previsto disminuir el niimero de horas de la primera
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méquina para aumentar la disponibilidad de la segunda.

1.5
Z=—472+0[ -14 0 —1]| 25
—2.5

= —472 4 0.46.

Luego no es adecuado perder horas de la primera maquina para ganar la
mitad en la segunda. Si, por el contrario, fuera posible que por cada media
hora que se disminuya la disponibilidad de la segunda maquina, se aumente
en una hora la disponibilidad de la primera (§ < 0 en el planteamiento
anterior), entonces si se podria mejorar el valor de z, y § deberia tomar el
valor més negativo, es decir, —32. <

18.3. Modificaciones en una columna libre de A

Cuando se modifica una columna de la matriz inicial A = A°, corres-
pondiente a una variable libre en la tabla éptima, es necesario observar el
cambio acarreado en el costo reducido respectivo, para ello se requiere cono-
cer el cambio en la columna de la ultima tabla, entonces hace falta conocer
la matriz B~'.

Los cambios en una columna, de una variable bésica en el 6ptimo, re-
percuten en la matriz B~! y, salvo en casos muy especificos y sencillos, es
bastante complicado estudiar estos cambios.

Sea x; una variable libre en la tabla éptima.

.. T Ak
Cj = ¢j cBA_j

.. T n—1 40
=c¢j —cgBT A,
entonces

~ T p—1 40/
cjfcj—cBB A,j.

Si para obtener la solucién se ha utilizado el MSR, entonces

&=cj+ (—c]Tngl)AO{j.

Recuérdese que —c;B —1 estd en las primeras m posiciones de la fila m + 1
de la tabla del MSR.
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18.3.1. Modificacién puntual de una columna libre

Al cambiar una columna inicial, el nuevo costo reducido en la tltima
tabla puede seguir siendo no negativo o volverse negativo. Si sigue siendo
no negativo, entonces el iltimo punto obtenido sigue siendo éptimo. Si el
nuevo costo reducido es negativo, se puede continuar con el simplex, a partir
de la ultima tabla, cambiando la columna.

Ejemplo 18.14. El gerente de la compania del ejemplo 18.1, cree que se
puede fabricar, en lugar del actual producto Ps (que en realidad no se fa-
brica), otro parecido, con el cual se ganarian también $1.5 pesos por cada
unidad, pero cuyos requerimientos en cada una de las maquinas son 1.5, 2.5
y 1 horas. {Cudl es la solucién del nuevo problema ?

-1 10 1.5
B=—15-[-14. 0 -1]| -2 1 1 2.5
2 -1 0 1

=0.4.
Si se hubiera usado el MSR, el célculo de & estaria dado directamente por

1.5
d=-154+[06 04 0]| 25| =04
1

Como el costo reducido sigue siendo no negativo, entonces el iltimo punto
obtenido también es punto éptimo para el problema modificado. <

Ejemplo 18.15. El gerente de la compania del ejemplo 18.1, cree que se
puede fabricar, en lugar del actual producto Ps (que en realidad no se fa-
brica), otro parecido, con el cual se ganarian también $1.5 pesos por cada
unidad, pero cuyos requerimientos en cada una de las méquinas son 1.5, 1
y 1 horas. ;Cual es la solucién del nuevo problema?

-1 10 1.5
h=—15-[-14. 0 -1]| -2 1 1 1
. 2 -1 0 1
[ —05
=-15—-[-14 0 -1]| -1
1

= -0.2.

266



18.3. MODIFICACIONES EN UNA COLUMNA LIBRE DE A 267

Como el costo reducido se volvié negativo, entonces el Ultimo punto ya no
es Optimo.

2 [0 1 —05 -1 1 0 180
%6 [0 0 -1 -2 1 1 80
1|10 2 -1 0 220
—z10 0 —02 06 04 0 472

Te = T3,

xﬂaz:pﬁ?ﬂ

Tsg = T7.
20 [025 1 0 05 075 0 235
26 | 05 0 0 —1 05 1 190
z3 | 05 0 1 1 —0.5 0 110
—2| 01 0 0 08 03 0 494

z*' = (0,235,110,0,0, 190),
2 =494, ©

18.3.2. Modificacién parametrizada de un solo elemento de
una columna libre

Cuando se cambia un solo elemento de una columna, libre, se desea saber
en qué intervalo puede variar, de tal forma que el iltimo punto obtenido siga
siendo 6ptimo. Supdngase que se modifica el elemento a;;. Sea S = B -1

~ T p—1 40/
cj—c]—cBB A_j

alj

=cj —cgS !
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aij 0
Ai—1,5 0
~, — . T .. T ..
¢;=cj—cpS aij | —cgSla—ai) | 1
(i1, 0
L amj | [ 0

=¢j+ (aij — Oé)CES.i > 0.

Ejemplo 18.16. ;En qué intervalo puede variar el segundo elemento de la
tercera columna de A de tal forma que el punto x = (220, 180,0,0, 0, 80)
siga siendo 6ptimo?

B=01+(1-a)[-14 0 -1]| 1

= —0.3 4+ 0.40.

Entonces « puede variar en el intervalo [0.75, 00|, sin que el punto éptimo
cambie.

En éste, como en otros casos, se puede hacer un analisis de méas alcance
sobre la variacion de a. Para valores de o menores que 0.75, entraria a la
base la variable x3 y se puede prever qué pasaria. La columna modificada
seria

2 o — 2
Bl al= a—2
2 —a+4

El tnico elemento positivo es el tercero, luego saldria la tercera variable
bésica, es decir, x1. El valor de z en la nueva tabla estaria dado por:

—0.3 + 0.4«

o — 4 — 2T 0,
—a+4
o sea,
—0.3+04
S = 479 4 20 T 0Ag,
—a+4

Por ejemplo, si a = 0.5 el nuevo valor de z seria —478.2857. <&
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18.3.3. Modificacién parametrizada de varios elementos de
una columna libre

. e e e . , . . /
Si una columna inicial Af)j, libre en la tabla éptima, se cambia por Af)j =

AF’j + 0149]/-, se desea saber en qué intervalo puede variar 6 de tal forma que
el ultimo punto obtenido siga siendo 6ptimo.

&y =cj— CEB_lefj
—1( 40 10’
& — 0cEB 1A% > 0.

Ejemplo 18.17. ;En qué intervalo puede variar 6 si los elementos de la
tercera columna son 2 — 6, 1 4+ 6 2 4 26, de tal forma que el punto z =
(220, 180, 0, 0,0, 80) siga siendo 6ptimo?

-1 10 -1
B=cé—0][-14 0 1] -2 11 1
2 -1 0 2

=0.1-0.20 > 0.

Luego
0 €] —00,0.5]. &

18.4. Una restriccion adicional

Sea x* el minimizador de la funcién z = ¢"z en un conjunto de puntos
admisibles A. Al colocar una nueva restriccion, se estd haciendo la inter-
seccién de A con el conjunto definido por la nueva restriccién. El nuevo
conjunto admisible A" es un subconjunto de A (aunque no necesariamente
propio). Para que z* sea también minimizador de z = ¢"z en A’, sélo se
necesita que esté en A’. Para ello basta con que esté en el conjunto definido
por la nueva restriccién. En resumen, z* sigue siendo éptimo si cumple la
restriccién adicional. Si z* no cumple la nueva restriccién, para resolver el
nuevo problema, se introduce una nueva fila, correspondiente a la restric-
cion adicional y se debe tratar de obtener la matriz identidad, pero ahora
de tamano m + 1.

Si la nueva restriccién (no cumplida) es una desigualdad <, la nueva
variable de holgura va a hacer parte de la base. A la nueva fila hay que
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sumarle multiplos adecuados de las otras filas para obtener completamente
la identidad de orden m + 1. Esto hace que el término independiente de la
fila m + 1 sea negativo y lo obvio es utilizar el método simplex dual para
continuar.

Si la nueva restricciéon (no cumplida) es una desigualdad >, después de
introducir la variable de holgura, se multiplica toda la igualdad por menos
uno. La nueva variable de holgura va a hacer parte de la base. A la nueva
fila hay que sumarle multiplos adecuados de las otras filas para obtener
completamente la identidad de orden m + 1. Esto hace que el término
independiente de la fila m + 1 sea negativo y lo obvio es utilizar el método
simplex dual para continuar.

Si la nueva restriccién (no cumplida) es una igualdad, se hace necesario
introducir una variable artificial y entonces hay que efectuar el método de
las dos fases o el de penalizacion. Es claro que una restriccion de igualdad,
por ejemplo a — 2b 4 3¢ = 4 se puede reemplazar por —a + 2b — 3¢ = —4.
La escogencia de una u otra igualdad repercute en lo siguiente: después
de entrar la variable artificial, que obviamente va a ser variable bésica, es
necesario, como en los casos anteriores, obtener de nuevo la matriz identidad,
pero ahora de tamafio m + 1. Para ello a la nueva fila hay que sumarle
multiplos adecuados de otras filas. Se necesita entonces que el término
independiente resulte no negativo.

Supongamos que las variables basicas son exactamente las m primeras
variables y que de éstas las ¢ primeras son variables originales (no de hol-
gura), es decir,

l‘j:b;c j=1,...,m

z; =0 j=m-+1...n.
Supongamos que la nueva restriccion es
Am+1,1T1 + Q41,222 + ... + Qm41,¢Tq = b9n+1,
con b?n +1 > 0 (no hay que multiplicar la igualdad por —1).
Hay que introducir una variable artificial
AmA11T1 + Q1,272 + oo + Qg1 qTg + Tl = by

Para obtener, en las primeras g columnas de A, las columnas de la matriz
identidad de orden m + 1, es necesario sumar a la fila m + 1 la primera
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fila multiplicada por —a;,+1,1, ..., hasta la fila ¢ multiplicada por —a,,+1,4-
Entonces

q
K _ 30 k
bm+1 = bm+1 - E am+1,jbj >0
Jj=1

q
_ 30 § : k
= bm—i—l - am+1,jmj Z 0.
7j=1

Luego
q

k — 10
g am+1,5%; < by,
=1

lo cual dicho en otras palabras es: la parte izquierda de la igualdad (donde
estan las variables x;) debe ser menor que el término independiente. Si no
es asi, se debe multiplicar por menos uno (—1) toda la igualdad.

Ejemplo 18.18. El investigador de mercados de la fabrica del ejemplo 18.1,
inform¢ al gerente que el nimero total de unidades vendidas (x1 + 22 + x3)
no podria ser superior a cuatrocientos noventa unidades.

Como el punto = = (220, 180, 0, 0,0, 80) cumple la nueva restriccién
1 + x9 + x3 < 490,
entonces sigue siendo 6ptimo. <

Ejemplo 18.19. Considere el ejemplo 18.1 con la restriccion adicional
x1 + 0.529 + 3x3 > 400.
El punto = = (220, 180, 0,0,0,80) no cumple la nueva restriccién, ya que
220+ 0.5 x 180 + 3 x 0 = 310.
Al introducir una variable de holgura
z1 + 0.529 + 3x3 — x7 = 400
y multiplicando por —1
—x1 — 0.529 — 33 + 7 = —400,
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se obtiene una igualdad que se puede agregar a la tabla para que x7 sea
variable bésica:

T2 0 1 -1 -1 1 0 0 180
T6 0 0 -1 -2 1 10 80
1 1 0o 3 2 -1 0 0 220
z7 | -1 =05 -3 0 0 0 1 -400
—z 0 0 01 06 04 0 0 472

En las columnas primera y segunda no estan las columnas adecuadas de la
matriz identidad 4 x 4, pero esto se puede lograr sumando a la cuarta fila
una vez la tercera fila y 0.5 veces la primera:

xo [ 0 1 -1 -1 1 0 0 180
z¢ | 0 O -1 -2 11 0 80
zp | 1 0 3 2 -1 0 0 220
z7 | 0 0 |-05| 1.5 =05 0 1 -90
-z [0 0 01 06 04 0 0 472

A partir de esta tabla se utiliza el método simplex dual y en dos tablas mas
se obtiene el éptimo:

x* = (0,200, 100, 0, 80, 100, 0)
¥ =—-430. ¢

Ejemplo 18.20. Considere el ejemplo 18.1 con la restricciéon adicional
2x1 + 29 4+ 323 = 780.
El punto =z = (220, 180,0,0,0,80) no cumple la nueva restriccién:
2x 220+ 2 x 180+ 3 x 0 = 800.

Como el lado izquierdo de la restriccién es mayor que el lado derecho, en-
tonces es necesario multiplicar por —1.

—2x1 — 2x9 — 3x3 = —780.

Ahora si el lado izquierdo es menor que el derecho y se introduce la variable
artificial

—2x1 — 2x9 — 33 + 7 = —780.
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Esta igualdad se puede agregar a la tabla para que x7 sea variable bésica.
Ademsds, se cambia la fila de costos reducidos por los costos artificiales.

- 0o 1 -1 -1 1 0 0 180
g 0 0 -1 -2 110 80
3U1 1 0 3 2 -1 0 0 220
. -2 -2 -3 0 001 -780

0 0 0 0 001 0

Para conseguir la matriz identidad de orden 4, a la cuarta fila hay que
sumarle dos veces la tercera y dos veces la primera

- 01 -1 -1 1 0 0 180
. 00 -1 -2 110 80
1 10 3 2 -1 0 0 220
. oo 1 2 001 20

0o 0 0 O0©01 0

También es necesario calcular los costos reducidos

z2 [0 1 -1 -1 1 0 0 180
zx [0 0 -1 -2 1 1 0 &0
T1 10 3 2 -1 0 0 220
zz (OO0 1 2 0 0 1 20
-2, 0 0 -1 -2 0 0 0 -20

Se contintia normalmente con la primera fase y después se efectiia la segunda
fase hasta llegar a

z* = (160,200, 20,0, 0, 100)
¥ = —470. ©

18.5. Una columna adicional

Tener una columna adicional significa que hay una nueva variable, por
ejemplo z,+1 ¥, por lo tanto, se conocen los valores a?vnﬂ, agmﬂ,..., a9n7n+1,
y también el costo c¢,y1. La variable z,41 entra a la tabla como variable
libre con valor nulo. Obviamente, es necesario calcular su costo reducido
para saber si la tabla sigue siendo 6ptima. Para este cédlculo, de nuevo, se
necesita conocer B~1.
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k _ np—-140
A-n+1 =B A-n—i—l?

~ T Ak
Cn+1 = Cnt1 — CBA.nJrl'

Ejemplo 18.21. Considere el ejemplo 18.1, y suponga que existe la posibi-
lidad de elaborar un cuarto producto que se vende a $ 0.40 y requiere media
hora en las dos primeras méaquinas y una hora en la tercera.

Para no alterar la notacién, sea x7 el nimero de unidades del cuarto
producto.

Al = B71AY

[ -1 10

=| -2 11|05
2 -1 0

=105
| 05

Cnt1 = Cny1 — AL
0
=—04—-[-14 0 —-1]]| 05
0.5
=0.1.

Entonces, aunque existe la posibilidad de fabricar un cuarto producto, no es
conveniente hacerlo ya que la tabla con la nueva variable z7 (libre y nula)
es también 6ptima. <

Ejemplo 18.22. Considere el ejemplo 18.1 y suponga que existe la posibi-
lidad de elaborar un cuarto producto que se vende a $0.70 y requiere media
hora en las dos primeras maquinas y una hora en la tercera.
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Sea x7 el nimero de unidades del cuarto producto.

0

0.5
0
Gr=—07-[-14 0 —-1]] 05
0.5

=—0.2.

Luego la tabla con la columna adicional no es 6ptima y se debe continuar el
simplex a partir de

z2 |0 1 -1 -1 10 0 180
z |0 0 -1 -2 1 1 05 &0
x| 10 3 2 -1 0 05 220 |’
—z[ 0 0 01 06 04 0 —-0.2 472

hasta obtener

«* = (0,215,35,0,0,0,230)
¥ = 5145, ©

EJERCICIOS

Considere el siguiente problema: maximizar (el beneficio total) 6z +
5rg + 4x3 con las restricciones 2x7 + x9 + x3 < 26, x1 + o < 16,
x1 + 3x9 + a3 < 36, x > 0.

18.0. Convierta el problema en la forma estandar de minimizaciéon. Halle la
solucién utilizando el método simplex y el método simplex revisado.

Considere las modificaciones propuestas en los ejercicios 18.1 a 18.14.
Cada una de estas modificaciones se refiere al problema inicial, y no
se acumulan.

18.1. Averigiie si el optimizador (punto 6ptimo) cambia, al cambiar ¢ =
(—6,—5,—4,0,0,0) por ¢ = (—7,—6,—5,0,0,0). Si el optimizador

cambia, encuentre el nuevo optimizador.
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18.2.

18.3.

18.4.

18.5.

18.6.

18.7.

18.8.

18.9.

18.10.

18.11.

18.12.

18.13.

18.14.

Averigiie si el optimizador (punto éptimo) cambia, al cambiar ¢ =
(—6,—5,—4,0,0,0) por ¢ = (-10,—6,—5,0,0,0). Si el optimizador

cambia, encuentre el nuevo optimizador.

Averigiie en qué intervalo puede variar «, para que el optimizador no
cambie, si el vector de costos es (a, —5,—4,0,0,0).

Averigiie en qué intervalo puede variar 6, para que el optimizador no
cambie, si el vector de costos es

(—6,—5,—4,0,0,0) + 6(2,—1,—1,0,0,0)

Encuentre el optimizador obtenido al cambiar el vector de términos
independientes b = (26, 16, 36) por b’ = (20, 10, 30).

Encuentre el optimizador obtenido al cambiar el vector de términos
independientes b = (26, 16, 36) por b’ = (20, 20, 20).

Averigiie en qué intervalo puede variar «, para que en el éptimo, las va-
riables basicas sean las mismas, si el vector de términos independientes
es (26, a, 36).

Averigiie en qué intervalo puede variar 6, para que en el 6ptimo, las va-
riables basicas sean las mismas, si el vector de términos independientes
es (26,16,36) + 6(1, -2, —1).

Suponga que existe la posibilidad de una cuarta variable (un nuevo
producto), con beneficio unitario 10. Este nuevo producto consume 3,
4 y 5 unidades de los tres recursos. Resuelva el nuevo problema.

Suponga que existe la posibilidad de una cuarta variable (un nuevo
producto), con beneficio unitario 3. Este nuevo producto consume 0.5,
1.5 y 0.5 unidades de los tres recursos. Resuelva el nuevo problema.

Suponga que existe una nueva restriccion xg + 2x3 < 50. Resuelva el
nuevo problema.

Suponga que existe una nueva restriccién x1 + xo + 3 < 25. Resuelva
el nuevo problema.

Suponga que existe una nueva restriccion 4x; + 4xo = x3. Resuelva el
nuevo problema.

Suponga que existe una nueva restriccién 0.5x1 + 0.5x9 + x3 > 28.
Resuelva el nuevo problema.
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Dantzig
método de descomposicién, 47
método simplex, 57

demanda total, 240

desigualdad, 29

determinista, 1

diferentes formas de problemas, 13

direccién, 32, 42, 101, 106
equivalente, 32
extrema, 32, 42, 44, 48, 105

dual
del dual, 156
problema, 153, 156, 158, 200

dualidad, 153
débil

teorema, 158
fuerte
teorema, 161
teorema fundamental de, 163
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envolvente convexa, 30
equivalencia entre las formas, 15

factible, véase punto o solucién fac-
tible
forma
candnica, 15
estandar, 15, 35, 47, 54
general, 14
mixta, 14
tipica, 15
formas
de problemas, 13
equivalencia entre, 15
funcién objetivo, 19
artificial, 93, 94
penalizacion, 115

hiperplano, 28
holgura complementaria
teorema de, 163

igualdad, 29

libre

variable, 58
linea, 203, 231
linealidad, 1

M-grande
método, 115
maximizacién, 13
método
de descomposicion de Dantzig y
Wolfe, 47
big-M, 115
circuito (stepping-stone), 188
costo minimo
de la matriz, 212
por columnas, 208
por filas, 203

dos fases, 93, 115, 116, 139
esquina noroccidental, 183
grafico, 19
M-grande, 115
penalizacion, 115
prioridad absoluta, 116, 119
prioridad parcial, 116, 117
Russel, 223
simplex, 17, 57, 178
simplex dual, 169
simplex revisado, 125, 128, 139,
248, 252
variables duales, 199
Vogel, 216
minimizacion, 13
modelacion, 2
modelo
determinista, 248
matematico, 1
modificacion
columna libre, 265, 267, 269
costos, 249
parametrizada
términos independientes, 263
un costo, 254
un término independiente, 261
puntual de ¢, 251
términos independientes, 258
vector de costos, 251
MSR, véase método simplex revisado

no acotado

6ptimo, 101, 160, 162
no negatividad, 1, 3
numero de iteraciones, 69

oferta total, 240

optimalidad
condiciones, 57, 192

optimizacion entera, 4
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optimo
acotado, 57
no acotado, 101, 160, 162
punto, 19
punto extremo, 103
origen ficticio, 240

penalizacion
método de, 115
pivote, 79, 133
poliedro, 32, 36, 41
politopo, 32, 42, 47
precio sombra, 262
primal
problema, 153, 154, 156
primera fase, 93, 94
problema
dieta, 6
dual, 153, 154, 156, 158, 200
primal, 153, 154
transporte, 4, 177, 199
punto
Optimo, 19, 50
extremo, 31, 40, 44, 48, 50, 57,
69
6ptimo, 103

realizable, véase factible
regién

admisible, 19, 36
representacion

teorema, 47
restriccién

adicional, 269

redundante, 109

saturada, 263
restricciones, 29

saturada
restriccién, 263
segunda fase, 94

semiespacio, 28, 29
sensibilidad
analisis, 247
simplex
revisado, método, 125
casos especiales, 101
método, 57
tabla, 77
tablas, 62
solucion
basica, 37
degenerada, 229
factible, 38, 41, 93, 94, 180
bésica factible
6ptima, 132
degenerada, 57, 61, 113

tabla del simplex, 77
tablas del simplex, 62
teorema
dualidad débil, 158
dualidad fuerte, 161
fundamental de dualidad, 163
holgura complementaria, 163
optimalidad, 50, 53
representacion, 47
transporte
algoritmo, 183
problema del, 177, 199

valor 6ptimo acotado inferiormente,
48
variable
artificial, 93, 94
bésica nula, 107
libre, 94
nula, 107
basica, 36, 63, 188, 229
de holgura, 16
entra, 170
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holgura, 200, 263
independiente, 36
libre, 36, 63, 65, 117, 132, 188
nula, 229
que entra, 80, 88, 107
que sale, 94, 117
sale, 170
variedad lineal, 28

Wolfe
método de descomposicion, 47
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