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Programación Lineal
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18.2. Modificaciones en los términos independientes . . . . . . . . . 258

18.2.1. Modificación puntual de b . . . . . . . . . . . . . . . . 259

18.2.2. Modificación parametrizada de un solo término inde-
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PRÓLOGO

Este libro es un reimpresión de Programación Lineal, métodos y progra-
mas, publicado en 1997 por el Departamento de Matemáticas de la Univer-
sidad Nacional de Colombia. Tiene los mismos temas, algunas correcciones,
ciertos cambios muy pequeños, un cambio de formato y algunos cambios de
nombre. A lo largo del libro se utiliza muy poco el término Programación
Lineal, se usa preferentemente Optimización Lineal, nombre más diciente
sobre el tema del libro. Programación Lineal ha sido el nombre tradicional,
pero se presta a confusión con programación de computadores o lenguajes
de programación.

Puede ser usado como texto o como libro de referencia para un curso de
Optimización Lineal para estudiantes de matemáticas, ingenieŕıa, economı́a
o administración. Para su estudio o lectura se requieren conocimientos ele-
mentales de Álgebra Lineal.

Dependiendo del interés del profesor o del lector, algunos temas pueden
ser complementados y profundizados, otros pueden ser vistos más rápida-
mente. En el libro hay pocas demostraciones, pero en cambio están, por
un lado los teoremas y proposiciones que justifican los métodos, y por otro
lado hay bastantes ejemplos que muestran el desarrollo de los métodos y la
aplicación de los teoremas.

Los temas tratados son los usuales: planteamiento de problemas, méto-
do gráfico, conjuntos convexos, teoremas de representación y optimalidad,
método simplex y sus modificaciones, dualidad, problema del transporte y
análisis de sensibilidad. Estos tópicos pueden ser vistos cómodamente en un
semestre.

Aunque algunos temas podŕıan ser suprimidos, por ejemplo, conjuntos
convexos, los teoremas de representación y optimalidad y el estudio de la
dualidad, y de todas formas se alcanza a obtener una visión de la optimiza-
ción lineal, ésta podŕıa tener cierto sabor a receta.

Es conveniente hacer a mano ejemplos pequeños para poder personalizar
los detalles de cada método y después śı comparar los resultados con los de
los programas. En optimización lineal es muy fácil crear ejercicios, y si son
de dos variables se pueden resolver también gráficamente.



x PRÓLOGO

En la página del autor, el lector encontrará programas para la mayoŕıa
de los métodos. Está la versión para DOS que veńıa con la primera edición.
Además hay una versión para Windows cuya parte gráfica fue hecha por el
ingeniero Pierre Torres a quien agradezco su colaboración.

También encontrará una fe de erratas del libro, que se irá completando
a medida que los errores sean detectados. En esta página también está el
código Fortran y otros documentos relacionados con el tema. Actualmente
la dirección es:

www.matematicas.unal.edu.co/~hmora/

Si hay reorganización de las páginas de la Universidad, será necesario entrar
a la página de la Universidad

www.unal.edu.co

ir a la Sede de Bogotá, la Facultad de Ciencias, el Departamento de Ma-
temáticas y la página del autor.

En la versión para DOS, los resultados salen generalmente en un archivo
y por lo tanto deben ser “vistos” con cualquier editor de archivos ASCII.
Mediante el programa leame (leame.exe), se tiene acceso a la información
sobre los diferentes programas. También se puede tener información sobre
los programas “mirando” el archivo pl.txt .

Quiero agradecer a los evaluadores de este trabajo, a los estudiantes del
curso Programación Lineal de las carreras de Ingenieŕıa de Sistemas y de
Matemáticas, en especial a Patricia Jaime. Las sugerencias, comentarios y
correcciones de todos ellos, fueron muy útiles. También doy gracias al profe-
sor Gustavo Rubiano, Director de Publicaciones de la Facultad de Ciencias,
quien me animó a preparar esta edición y facilitó su publicación.

El texto fue escrito en LATEX. Quiero también agradecer al profesor
Rodrigo De Castro quien amablemente me ayudó a resolver las inquietudes
y los problemas presentados.

El autor estará muy agradecido por los comentarios, sugerencias y co-
rrecciones enviados a:

hmora@matematicas.unal.edu.co hectormora@yahoo.com

Finalmente, y de manera muy especial, agradezco a Hélène, Nicolás y
Sylvie. Sin su apoyo, comprensión y paciencia no hubiera sido posible escri-
bir este libro.
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NOTACIÓN

M(m,n) = Rm×n = conjunto de matrices reales m × n, o sea, de m filas y n
columnas. Si A ∈M(m,n), entonces A es de la forma:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


aij = elemento o entrada de la matriz A, en la fila i y en la columna j.

M(n, 1) = Rn×1 = { matrices columna de n componentes }.

M(1, n) = R1×n = { matrices fila de n componentes }.

R1×1 = R.

AT = transpuesta de la matriz A.

Rn = { (x1, x2, . . . , xn ) : xj ∈ R ∀j}.

Rn := M(n, 1) = Rn×1, es decir:

x = ( x1, x2, . . . , xn ) :=


x1
x2
...
xn


xT =

[
x1 x2 . . . xn

]
Ai· = fila i-ésima de la matriz A =

[
ai1 ai2 . . . ain

]
.

A·j = columna j-ésima de la matriz A =


a1j
a2j
...

amj

.

Ak = A(k) = matriz A en la iteración k, k = 0, 1, 2 . . .



xii NOTACIÓN

(Q)k = k veces el producto de la matriz Q por śı misma.

Q−1 = inversa de la matriz Q

n = número de variables.

m = número de restricciones.

p = n−m = número de variables libres (problemas en la forma estándar).

z = cTx = c1x1 + c2x2 + . . .+ cnxn = función objetivo o función económica
(generalmente para minimización).

c = (c1, c2, . . . , cn) =
[
c1 c2 . . . cn

]T
= vector de costos.

z es acotado ⇔ z es acotado inferiormente (problema de minimización).

Ai·x = ai1x1 + ai2x2 + . . .+ ainxn = lado izquierdo de la restricción i.

bi = término independiente o lado derecho de restricción i.

min z := minimizar z.

max z := maximizar z.

x ≥ y ⇔ xi ≥ yi ⇔ xi ≥ yi para todo i.

x ≥ 0 ⇔ xi ≥ 0 ⇔ xi ≥ 0 para todo i.

c̃j = costo reducido de xj (denotado algunas veces cj − zj).

Â = matriz (m+1)×(n+1) obtenida a partir de A agregándole una última
fila de costos reducidos y una última columna de términos indepen-
dientes.

Â =

[
A b
c̃T 0

]
x ≥ 0 y x ≯ 0 ⇔ x ≥ 0, ∃xi = 0.

min z = cTx
Ax = b
x ≥ 0.

⇐⇒

min z = cTx
sujeto a

Ax = b
x ≥ 0.

|S| = número de elementos del conjunto S.

xii



NOTACIÓN xiii

F = { x ∈ Rn : Ax = b, x ≥ 0 } = conjunto admisible de un problema en la
forma estándar.

z∗ = valor óptimo de z, cuando existe.

S∗ = S∗f = Argmin
x∈S

f(x) = {x̄ ∈ S : f(x̄) ≤ f(x), ∀x ∈ S}.

x∗ = argmin
x∈S

f(x) cuando Argmin
x∈S

f(x) = {x∗}.

|C| = ](C) = cardinal del conjunto C.

En la escritura de numeros decimales, los enteros están separados de
los decimales por medio de un punto. No se usa la notación española
(los enteros están separados de los decimales por una coma). No se
utiliza un śımbolo para separar las unidades de mil de las centenas.

xiii





Caṕıtulo 1

INTRODUCCIÓN

La optimización lineal o programación lineal tiene como objetivo opti-
mizar (minimizar o maximizar) funciones lineales, de varias variables, con
restricciones (igualdades o desigualdades), también lineales.

La optimización lineal estudia y resuelve problemas dados por modelos
matemáticos deterministas, con hipótesis de linealidad, aditividad y de no
negatividad de las variables.

Se entiende por modelo matemático una descripción en términos mate-
máticos, lo más fiel posible, de una realidad.

El término determinista indica un conocimiento exacto y preciso de los
coeficientes utilizados en la función objetivo y en las restricciones. Esta
condición parece ser muy extrema y poco práctica, sin embargo, el análisis
de sensibilidad permite usar la optimización lineal en los casos de datos no
muy precisos.

Cuando la función objetivo no es lineal sino cuadrática, se trata en-
tonces de optimización cuadrática. En general, si la función objetivo o las
restricciones no son lineales se habla de optimización no lineal.

La hipótesis de aditividad indica que el efecto total es obtenido por la
suma de los efectos particulares de cada variable.

Veamos a continuación algunos ejemplos t́ıpicos de problemas reales cuyo
modelo matemático es un problema de optimización lineal.

1



2 CAṔITULO 1. INTRODUCCIÓN

1.1. Un problema de asignación de recursos

Una fábrica elabora dos productos diferentes P1 , P2 y utiliza tres máqui-
nas diferentesM1 , M2 , M3 . Ambos productos requieren el uso, sin importar
el orden, de las tres máquinas. Cada unidad del producto P1 requiere una
hora en cada una de las tres máquinas. Cada unidad del producto P2 re-
quiere una hora en la máquina M1 y dos horas en la máquina M2 . Las
disponibilidades mensuales de las máquinas M1 , M2 , M3 son 400, 580 y
300 horas, respectivamente. La materia prima necesaria para la fabricación
de los productos es muy fácil de obtener y se consigue en cantidades tan
grandes que se pueden suponer ilimitadas.

Después de hacer el cálculo de todos los gastos necesarios para la fa-
bricación, publicidad, distribución, comercialización y teniendo en cuenta el
precio de venta, se obtiene que el beneficio por cada unidad del producto P1

es $1000. Para el producto P2 el beneficio unitario es $1400.

Al estudiar la demanda actual para los dos productos, la compañ́ıa pien-
sa que puede vender toda su producción. El gerente desea organizar su
producción para que ésta sea óptima.

1.1.1. Modelación del problema

A partir del momento en que se desea representar un problema por un
modelo matemático, lo primero que se necesita es precisar lo que se busca,
es decir, hay que definir las variables del problema.

En el problema anterior, la adecuada organización de la producción se
traduce por el conocimiento del número de unidades de cada producto que
hay que fabricar mensualmente.

Sean:

x1 = número de unidades del producto P1 que deben ser fabricadas cada
mes.

x2 = número de unidades del producto P2 que deben ser fabricadas cada
mes.

Una vez definidas las variables, se necesita expresar la función objetivo
o función económica utilizando estas variables.

2



1.1. UN PROBLEMA DE ASIGNACIÓN DE RECURSOS 3

En este ejemplo, la compañ́ıa desea maximizar el beneficio neto, es decir:

maximizar z = 1000x1 + 1400x2.

Es claro que las variables no pueden tomar todos los valores posibles, en este
ejemplo hay que tener en cuenta la disponibilidad mensual de las máquinas.

La máquina M1 es usada una hora por cada unidad del producto P1 y
una hora por cada unidad del producto P2 . Su disponibilidad es de 400
horas al mes. Esto se puede expresar mediante la siguiente desigualdad

x1 + x2 ≤ 400.

Cada unidad del producto P1 requiere una hora en la máquina M2 . Cada
unidad del producto P2 requiere dos horas en esta máquina. Cada mes hay
580 horas disponibles en la máquina M2 . Esta restricción se puede expresar:

x1 + 2x2 ≤ 580.

Finalmente, para la máquina M3 se tiene:

x1 ≤ 300.

Es claro que las variables x1 , x2 no pueden tomar valores negativos, ya que
no tiene sentido hablar, por ejemplo, de producir −5 unidades del producto
P2 ; entonces

x1 ≥ 0

x2 ≥ 0,

o también
xi ≥ 0, i = 1, 2,

o simplemente
x ≥ 0.

La no negatividad de las variables es una restricción común a casi todos los
problemas de optimización lineal.

En este problema se puede pensar que las variables x1 , x2 deben tomar
valores enteros (no tiene sentido producir 249.2 unidades del producto P1).
Sin embargo, puesto que se trata de números relativamente grandes y los
métodos usuales de optimización lineal suponen que las variables pueden
tomar valores no enteros, se puede hacer la aproximación de un número no

3



4 CAṔITULO 1. INTRODUCCIÓN

entero al número entero más próximo. Es decir, si al resolver el problema
se obtiene que la producción óptima es de 75.8 y de 249.2 se puede tomar
como resultado óptimo x1 = 76, x2 = 249.

Es obvio que si los valores de las variables y de las cantidades utilizadas
en el problema son pequeños, es muy importante tener en cuenta que las va-
riables deben ser enteras (por ejemplo, no se puede aproximar tan fácilmente
una producción de 2.6 cohetes espaciales a tres). En este caso se tratará de
un problema de optimización entera.

A lo largo de estas notas siempre se supondrá, salvo mención expresa de
lo contrario, que los valores de las variables pueden ser no enteros y que en
los casos en que debeŕıan ser enteros, se trata de cantidades relativamente
grandes, que permiten aproximar el resultado final por valores enteros.

Hechas estas aclaraciones, el modelo final del problema es el siguiente:

max z = 1000x1 + 1400x2
sujeto a

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

Con el fin de hacer más compacta la presentación, sin perder precisión, se
omitirá de aqúı en adelante “sujeto a”, o a veces, “tal que”, pero siempre el
significado será: minimizar una función o valor z que depende de x1, . . . , xn ,
donde además, x está sujeto a las restricciones que siguen a la función
objetivo.

1.2. El problema del transporte

Una compañ́ıa elabora un producto en dos fábricas F1 , F2 y tiene tres
centros de distribución D1 , D2 , D3 . La capacidad máxima de producción
semanal de las fábricas F1 , F2 es de 100 y 150 unidades. Las demandas
semanales en los centros de distribución son 70, 80 y 90 unidades. Los
costos unitarios de transporte de las fábricas a los centros de distribución
están dados en la siguiente matriz (en pesos). Las filas corresponden a las
fábricas y las columnas a los destinos.[

15 18 24
32 17 11

]
4



1.2. EL PROBLEMA DEL TRANSPORTE 5

La compañ́ıa desea organizar de la mejor manera posible el transporte de su
producto.

Sea xij = número de unidades del producto que deben ser llevadas
semanalmente de la fábrica Fi al centro de distribución Dj , donde i = 1, 2,
j = 1, 2, 3.

La función objetivo está dada por la minimización del costo del trans-
porte:

minimizar z = 15x11 + 18x12 + 24x13 + 32x21 + 17x22 + 11x23.

Hay dos clases de restricciones fuera de las de no negatividad: restricciones
con respecto a la producción y restricciones con respecto a la demanda. Las
restricciones con respecto a la producción son:

x11 + x12 + x13 ≤ 100,

x21 + x22 + x23 ≤ 150.

Restricciones con respecto a la demanda:

x11 + x21 = 70,

x12 + x22 = 80,

x13 + x23 = 90.

Restricciones de no negatividad:

xij ≥ 0 para todo i y para todo j.

En resumen:

min z = 15x11 + 18x12 + 24x13 + 32x21 + 17x22 + 11x23

x11 + x12 + x13 ≤ 100

x21 + x22 + x23 ≤ 150

x11 + x21 = 70

x12 + x22 = 80

x13 + x23 = 90

xij ≥ 0 para todo i, j.

5



6 CAṔITULO 1. INTRODUCCIÓN

1.3. Un problema de dieta

Un ama de casa desea hacer un almuerzo equilibrado utilizando los si-
guientes productos: carne, papas, habichuela, leche y guayaba. Los precios
por kilo de estos alimentos son respectivamente: $700, $80, $250, $70 y $80.
Aqúı estamos suponiendo que la leche se vende por kilos, o lo que es apro-
ximadamente lo mismo, que un litro de leche pesa un kilo. La familia está
compuesta por 6 personas y cada persona debe consumir 800 caloŕıas (en el
almuerzo). Para que la alimentación sea equilibrada debe estar compuesta
de 20 % de protéınas, 30 % de grasas, 50 % de glúcidos o carbohidratos. Es-
tos porcentajes están dados con respecto a la materia seca, es decir, sin tener
en cuenta el agua contenida en los alimentos. Obviamente, hay muchas más
condiciones que se deben tener en cuenta y aqúı se hace una simplificación
para facilitar el planteamiento del problema. En la siguiente tabla se expresa
la composición de cada alimento y su aporte calórico.

% % % % Caloŕıas
Protéınas Grasas Glúcidos Agua por kilo

Carne 10 10 0 80 1300
Papas 2 0 20 78 880
Habichuelas 1 0 5 94 240
Leche 5 3 5 87 670
Guayaba 1 0 15 84 640

El ama de casa desea saber cómo organizar su mercado de tal forma
que se cumplan las restricciones nutricionales y que, además, se minimice el
costo.

Sean:

x1 = cantidad (kilos) de carne que hay que comprar para el almuerzo de las
seis personas.

x2 = cantidad (kilos) de papa que hay que comprar...

x3 = cantidad (kilos) de habichuela que hay que comprar...

x4 = cantidad (kilos) de leche que hay que comprar...

x5 = cantidad (kilos) de guayaba que hay que comprar...

6



1.3. UN PROBLEMA DE DIETA 7

Función objetivo:

min z = 700x1 + 80x2 + 250x3 + 70x4 + 80x5.

Cantidad de caloŕıas:

1300x1 + 880x2 + 240x3 + 670x4 + 640x5 = 4800.

Porcentaje de protéınas:

cantidad de protéınas = 0.2(cantidad total de materia seca)

0.10x1 + 0.02x2 + 0.01x3 + 0.05x4 + 0.01x5 =

0.2(0.20x1 + 0.22x2 + 0.06x3 + 0.13x4 + 0.16x5).

Multiplicando por 100 ambos lados de la igualdad:

10x1 + 2x2 + x3 + 5x4 + x5 = 0.2(20x1 + 22x2 + 6x3 + 13x4 + 16x5).

Porcentaje de grasas:

10x1 + 3x4 = 0.3(20x1 + 22x2 + 6x3 + 13x4 + 16x5).

Porcentaje de glúcidos:

20x2 + 5x3 + 5x4 + 15x5 = 0.5(20x1 + 22x2 + 6x3 + 13x4 + 16x5).

Condiciones de no negatividad:

xi ≥ 0, i = 1, 2, . . . , 5.

En resumen:

minz = 700x1 + 80x2 + 250x3 + 70x4 + 80x5

1300x1 + 880x2 + 240x3 + 670x4 + 640x5 = 4800

6x1 − 2.4x2 − 0.2x3 + 2.4x4 − 2.2x5 = 0

4x1 − 6.6x2 − 1.8x3 − 0.9x4 − 4.8x5 = 0

−10x1 + 9x2 + 2x3 − 1.5x4 + 7x5 = 0

x ≥ 0.

7



8 CAṔITULO 1. INTRODUCCIÓN

Con un poco de observación se puede ver que la última restricción es el
inverso aditivo de la suma de la segunda y tercera restricción, por lo tanto
se puede suprimir esta última restricción.

Por lo general, al plantear un problema no es prioritario tratar de ver
si hay restricciones redundantes o de averiguar si el problema es consisten-
te (hay puntos que cumplen todas las restricciones) o inconsistente. Estos
aspectos deben resultar durante la solución del problema. Si el plantea-
miento del problema permite inmediata y fácilmente suprimir restricciones
redundantes o afirmar la inconsistencia, seŕıa una tonteŕıa no hacerlo.

Plantear problemas de OL puede ser algo muy fácil, pero también llega
a ser muy complicado. Algunos problemas no parecen ser de OL, pero
mediante cambios ingeniosos pueden serlo. Para algunos “usuarios”de la
OL, el planteamiento de problemas es uno de los temas más importantes,
ya que requieren plantear problemas, entrar los datos a un computador e
interpretar los resultados. Plantear problemas requiere, entre otras cosas,
mucha práctica, intuición, conocimiento del tema del problema y obviamente
un razonamiento consistente.

No parece posible llegar a conocer absolutamente todo sobre la modela-
ción de problemas, pero śı se puede adquirir habilidad suficiente para enfren-
tar con éxito una gran cantidad de los problemas más corrientes o semejantes
a ellos.

EJERCICIOS

1.1. Una cooperativa agŕıcola debe planificar las siembras en n fincas. Para
la finca i , i = 1, ..., n, se conoce:

Si : superficie (ha) de la finca.

Ai : volumen (m3) de agua disponible por d́ıa.

Es posible sembrar m clases de cultivos. Para el cultivo j , j = 1, ...,m,
se conocen los siguientes datos:

Hj : superficie máxima total (ha) que se puede sembrar.

Cj : consumo diario de agua (m3) por hectárea.

Tj : número de toneladas cosechadas en cada hectárea.

Pj : precio de venta ($) de cada tonelada.

Ij : cantidad inicial ($) que se debe invertir en cada hectárea.

8



1.3. UN PROBLEMA DE DIETA 9

La compañ́ıa desea conocer xij , el número de hectáreas de la finca i
dedicadas al cultivo j, si se dispone inicialmente de M pesos para la
inversión inicial y se desea maximizar la ganancia (venta−inversión
inicial). Plantee este problema de OL.

1.2. Un campesino desea planear su cultivo de máız por un periodo de 3
años. Al empezar el primer año tiene a kilos de granos de máız y se
sabe que al sembrar un kilo de granos de máız, al cabo de un año,
se obtienen b (b > 1) kilos de máız. Este campesino tiene mucha
experiencia y sabe o puede prever gi , i = 1, ..., 4, la ganancia neta
correspondiente a la venta de un kilo de máız al empezar el año i .
Al iniciar cada uno de los tres años el campesino vende una parte del
máız disponible y siembra el resto. Al finalizar el tercer año, o sea, al
empezar el cuarto año, él vende todo el máız disponible. El campesino
desea saber cuántos kilos debe vender y cuántos sembrar al comenzar
cada uno de los tres años de tal manera que maximice sus ganancias.
Plantee el anterior problema de OL.

1.3. Una compañ́ıa metalúrgica fabrica una aleación de n metales. Esta
aleación debe tener exactamente los porcentajes p1, p2, ..., pn de esos
n metales. Como la aleación está compuesta únicamente de estos n
metales, entonces p1 + p2 + ... + pn = 100 . Es posible conseguir en
el mercado local m clases de chatarra que tienen única y exactamente
estos n metales, pero en otros porcentajes. Después de un minucioso
estudio se obtuvieron los valores qij , i = 1, ...,m, j = 1, ..., n, corres-
pondientes al porcentaje del metal j en la chatarra clase i . Como
cada una de estas chatarras contiene única y exclusivamente estos me-
tales, entonces qi1 + qi2 + ... + qin = 100 , para todo valor de i . Los
costos, por tonelada, de las clases de chatarra son: c1, c2, ..., cm . La
compañ́ıa desea conocer los porcentajes x1, x2, ..., xm , de cada clase
de chatarra, que debe tener la aleación, para que ésta tenga un costo
mı́nimo. Plantee el anterior problema de OL.

1.4. Una compañ́ıa de vigilancia evaluó sus necesidades de vigilantes, por
periodos de 4 horas, en un gran conjunto residencial, de la siguiente
manera:

9



10 CAṔITULO 1. INTRODUCCIÓN

Periodo Cantidad

2 a.m. a 6 a.m 34
6 a.m. a 10 a.m 48

10 a.m. a 2 p.m 37
2 p.m. a 6 p.m 35
6 p.m. a 10 p.m 32

10 p.m. a 2 a.m 30

Cada vigilante trabaja 8 horas al d́ıa, pero de manera continua. La
compañ́ıa desea organizar la distribución de sus vigilantes de tal forma
que el número total de vigilantes sea mı́nimo. Plantee el anterior
problema de OL.

1.5. El señor Ramón Mart́ınez tiene un negocio de distribución de huevos
frescos (menos de 7 d́ıas), en una pequeña bodega cerca de su casa
en Bogotá. Alĺı vende al por mayor y al detal, de lunes a viernes,
de 8 a.m. a 4 p.m. Todos sus proveedores son amigos o familiares,
que viven en un pueblo del oriente cundinamarqués, y le entregan,
de 7 a 8 a.m., la cantidad solicitada para cada d́ıa por don Ramón,
garantizándole que los huevos son súper frescos (menos de 48 horas).
La mayoŕıa de las ventas las hace a hoteles, hospitales y cadenas de
restaurantes. Aunque solamente lleva unos meses con este negocio, ya
puede predecir, con bastante precisión, el número de cajas de huevos
vendidas cada d́ıa de la semana y el precio al que él compra cada
huevo.

Cantidad Precio ($)

Lunes 520 60
Martes 680 70
Miércoles 450 85
Jueves 800 80
Viernes 1500 90

De todas maneras don Ramón vende los huevos a $100. Las cajas de
huevos miden 30 cm. × 35 cm. × 40 cm. En su bodega, de noche,
hay espacio para guardar 2000 cajas. Durante el d́ıa hay mucho más
espacio pues no están las dos busetas que su cuñado deja por las noches
en la bodega. Para garantizar que los huevos que él vende sean frescos,
don Ramón tomó la determinación de no dejar huevos en la bodega
entre el viernes en la tarde y el lunes en la mañana. Inicialmente don

10



1.3. UN PROBLEMA DE DIETA 11

Ramón pagaba un vigilante para las noches y los fines de semana,
pero un vecino, que trabaja en una compañ́ıa de seguros, lo convenció
para asegurar su mercanćıa y aśı no tener que pagar vigilante. Don
Ramón debe pagar $10 por cada caja (de 180 huevos) y por noche, esto
quiere decir, por ejemplo, que no paga nada por las noches de viernes,
sábado y domingo. Para maximizar la ganancia, pidió consejo a su
hijo Ramoncito, quien estudia en la universidad, y precisamente está
tomando un curso de OL. Como esta materia es nueva para él, pidió
ayuda a su profesor, quien no le resolvió el problema, pero le sugirió
plantearlo fácilmente con las siguientes variables: x1 : número de cajas
de huevos que compra el lunes; x2 : número de cajas que compra el
martes; ... x5 : número de cajas que compra el viernes; y1 : número
de cajas que quedan en la bodega el lunes en la noche; y2 : número de
cajas que quedan en la bodega el martes en la noche; ... y4 : número
de cajas que quedan en la bodega el jueves en la noche. Plantee el
anterior problema de OL.

1.6. Un negociante de frutas y verduras desea mandar tomate, zanahoria,
manzana y maracuyá, de Bogotá a Villavicencio. Para mandar estos
productos tiene la posibilidad de utilizar tres veh́ıculos: un camión,
un furgón y una volqueta. Las capacidades de estos veh́ıculos son:

peso (toneladas) volumen (m3)

camión 20 12
furgón 15 7
volqueta 25 6

El tomate y el maracuyá vienen en cajas de madera, la zanahoria viene
en bultos y las manzanas vienen en cajas de cartón: 20 manzanas por
caja. En la siguiente tabla aparecen los valores de: peso de cada
paquete (kilos), volumen necesario para cada paquete (cm3), beneficio
por paquete (pesos) y número máximo de paquetes de cada producto.

peso volumen beneficio cantidad

tomate (caja de madera) 20 50000 2000 1000
zanahoria (bulto) 60 80000 3000 500
maracuyá (caja de madera) 15 50000 1500 2000
manzana (caja de cartón) 6 20000 2500 500

Plantee el anterior problema de OL, para maximizar el beneficio total.

11



12 CAṔITULO 1. INTRODUCCIÓN

1.7. Un negociante desea transportar m productos P1, P2,..., Pm, entre
dos ciudades, para lo cual hay n medios de transporte, T1, T2,..., Tn.
Para cada transporte Tj se conoce:

cj : capacidad máxima en peso (ton.).

vj : capacidad máxima en volumen (m3).

Para cada producto Pi se conoce:

pi : peso unitario (ton.).

ui : volumen unitario (m3).

bi : beneficio unitario ($).

di : disponibilidad máxima (unidades).

Plantee el anterior problema de OL, para maximizar el beneficio total.

12



Caṕıtulo 2

DIFERENTES FORMAS
DE PROBLEMAS DE
OPTIMIZACIÓN LINEAL

Los problemas de optimización lineal pueden ser problemas de minimiza-
ción o de maximización; las restricciones pueden ser igualdades, desigualda-
des ≥, o desigualdades ≤. Generalmente las variables son no negativas, pero
en algunos casos pueden ser no restringidas. Sin embargo, por convención,
se supone que todos los problemas son de minimización y que las desigual-
dades, cuando las haya, siempre son de la forma ≥. Obviamente, se hubiera
podido tomar la convención contraria, es decir, problemas de maximización
y desigualdades ≤.

Los problemas de optimización lineal pueden ser planteados en alguna de
las siguientes formas, algunas de las cuales son casos particulares de otras.
Como se verá más adelante, mediante modificaciones o artificios, es posible
convertir un problema de una forma a otra forma.

En general, n indica el número de variables y m el número de restric-
ciones. Se designará por M el conjunto de enteros {1, 2, . . . ,m} y por N el
conjunto de enteros {1, 2, . . . , n}.

13



14 CAṔITULO 2. DIFERENTES FORMAS DE PROBLEMAS

2.1. Forma general

Como su nombre lo indica es el caso más general, algunas restriccio-
nes son igualdades y otras desigualdades; algunas variables deben ser no
negativas y otras no tienen restricciones.

minimizar z = c1x1 + c2x2 + . . .+ cnxn

sujeto a las restricciones

ai1x1 + ai2x2 + ...+ ainxn ≥ bi, i ∈M1 ⊆M
ai1x1 + ai2x2 + ...+ ainxn = bi i ∈M rM1

xj ≥ 0, j ∈ N1 ⊆ N
xj ∈ R, j ∈ N rN1.

M1 es el conjunto de ı́ndices de las restricciones de la forma ≥ .
M rM1 es el conjunto de ı́ndices de las restricciones igualdades.

N1 es el conjunto de ı́ndices de las variables no negativas.

N rN1 es el conjunto de ı́ndices de las variables no restringidas.

Utilizando la notación matricial, un problema de optimización lineal en la
forma general es:

min z = cTx

Ai·x ≥ bi, i ∈M1 ⊆M
Ai·x = bi, i ∈M rM1

xj ≥ 0, j ∈ N1 ⊆ N
xj ∈ R, j ∈ N rN1.

2.2. Forma mixta

Es un caso particular la forma anterior, cuando todas las variables son
no negativas, es decir, cuando N1 = N .

min z = cTx

Ai·x ≥ bi, i ∈M1 ⊆M
Ai·x = bi, i ∈M rM1

x ≥ 0.
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2.3. FORMA CANÓNICA 15

2.3. Forma canónica

Esta forma es un caso particular de la forma mixta, cuando todas las
restricciones son desigualdades, es decir, cuando M1 = M .

min z = cTx

Ai·x ≥ bi, para todo i

x ≥ 0,

y de manera aún más compacta:

min z = cTx

Ax ≥ b
x ≥ 0.

2.4. Forma estándar o t́ıpica

Esta forma es un caso particular de la forma mixta, cuando todas las
restricciones son igualdades, es decir, cuando M1 = ∅ y M rM1 = M .

min z = cTx

Ai·x = bi, para todo i

x ≥ 0,

y de manera aún más compacta:

min z = cTx

Ax = b

x ≥ 0.

2.5. Equivalencia entre las diferentes formas

Antes de considerar la equivalencia entre las formas es preciso tener en
cuenta dos aspectos.

i) Todo problema de maximización puede ser considerado como un pro-
blema de minimización cambiando el signo a la función objetivo, es

15



16 CAṔITULO 2. DIFERENTES FORMAS DE PROBLEMAS

decir, cambiando el signo a los coeficientes c1, c2, . . . , cn. Dicho de
manera más precisa: los dos problemas siguientes

min z = cTx
x ∈ S ,

max ζ = −cTx
x ∈ S

son equivalentes, en el siguiente sentido: un vector x es solución óptima
de un problema si y solamente si es solución óptima del otro problema.
Es obvio que el valor óptimo de z es el inverso aditivo del valor óptimo
de ζ.

ii) Una desigualdad de la forma ≤, puede ser convertida en una desigual-
dad de la forma ≥, multiplicando ambos miembros de la desigualdad
por −1.

Para ver la equivalencia entre las diferentes formas es necesario poder
convertir igualdades en desigualdades y viceversa, y también convertir va-
riables sin restricciones en variables no negativas.

1. Una desigualdad

ai1x1 + ai2x2 + ...+ ainxn ≥ bi,

se puede convertir en una igualdad mediante la introducción de una
variable de holgura xn+1, que debe ser no negativa. La idea es muy
sencilla: al lado izquierdo hay que quitarle una cantidad no negativa
para que quede igual al lado derecho.

ai1x1 + ai2x2 + ...+ ainxn − xn+1 = bi.

Si la desigualdad es de la forma

ai1x1 + ai2x2 + ...+ ainxn ≤ bi,

la variable de holgura xn+1, no negativa, entra acompañada del signo
+.

ai1x1 + ai2x2 + ...+ ainxn + xn+1 = bi.

Por cada desigualdad se introduce una variable de holgura diferente.

2. Una igualdad se puede expresar como dos desigualdades, es decir:

Ai·x = bi es equivalente a
Ai·x ≥ bi,
−Ai·x ≥ −bi.

16
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3. Una variable sin restricción se puede expresar como la diferencia de
dos variables no negativas, es decir:

xj ∈ R

se puede reemplazar por

xj = x′j − x′′j , x′j , x
′′
j ≥ 0.

Este reemplazo debe hacerse en todas las partes del problema donde
intervenga esta variable, es decir, en las restricciones y en la función
objetivo.

Estas modificaciones son muy útiles y algunas veces indispensables. El
método simplex , la herramienta más usada de la optimización lineal, re-
suelve únicamente problemas planteados en la forma estándar (igualdades
y variables no negativas). El estudio de la dualidad se hace, por lo ge-
neral, para problemas en la forma canónica (desigualdades y variables no
negativas).

Ejemplo 2.1.
max z = x1 + 2x2 + x4

x1 + 2x2 + x3 + 5x4 ≤ 40
x1 + 3x2 + x3 + 4x4 = 30
x1 + 4x2 + x3 ≥ 15

x1 , x3 , x4 ≥ 0
x2 ∈ R.

Al convertirlo a la forma general de minimización se tiene:

min z = −x1 − 2x2 − x4

−x1 − 2x2 − x3 − 5x4 ≥ −40
x1 + 3x2 + x3 + 4x4 = 30
x1 + 4x2 + x3 ≥ 15

x1 , x3 , x4 ≥ 0
x2 ∈ R.

Se obtiene la forma mixta cuando todas las variables son no negativas:

min z = −x1 − 2x′2 + 2x′′2 − x4

−x1 − 2x′2 + 2x′′2 − x3 − 5x4 ≥ −40
x1 + 3x′2 − 3x′′2 + x3 + 4x4 = 30
x1 + 4x′2 − 4x′′2 + x3 ≥ 15

x1 , x′2 , x′′2 , x3 , x4 ≥ 0.

17



18 CAṔITULO 2. DIFERENTES FORMAS DE PROBLEMAS

Al introducir variables de holgura se tiene el problema en la forma estándar:

min z = −x1 − 2x′2 + 2x′′2 − x4

−x1 − 2x′2 + 2x′′2 − x3 − 5x4 − x5 = −40
x1 + 3x′2 − 3x′′2 + x3 + 4x4 = 30
x1 + 4x′2 − 4x′′2 + x3 − x6 = 15

x1 , x′2 , x′′2 , x3 , x4 , x5 , x6 ≥ 0.

Se podŕıa cambiar el nombre de las variables para tener, por ejemplo, y1,
y2, . . ., y7. Por otro lado, si el objetivo final era llevar el problema inicial a
la forma estándar, entonces la restricción

x1 + 2x2 + x3 + 5x4 ≤ 40,

se hubiera podido convertir directamente en igualdad sumando la variable
de holgura x5

x1 + 2x2 + x3 + 5x4 + x5 = 40. 3

EJERCICIOS

En los siguientes ejercicios haga los cambios necesarios para colocar el
problema propuesto en cada una de las cuatro formas de minimización.

2.1. Maximizar z = 3x1 + 4x2, sujeto a x1 +x2 ≤ 3, 2x1 +x2 = 2, x1 ≥ 0.

2.2. Maximizar z = 3x1 + 4x2, sujeto a x1 + x2 ≤ 3, 2x1 + x2 = 2, x ≥ 0.

2.3. Maximizar z = 3x1 + 4x2, sujeto a x1 + x2 = 3, 2x1 + x2 = 2, x ≥ 0.

2.4. Maximizar z = 3x1 + 4x2, sujeto a x1 + x2 ≥ 3, 2x1 + x2 ≥ 2, x ≥ 0.

2.5. Maximizar z = 3x1 + 4x2, sujeto a x1 + x2 ≤ 3, 2x1 + x2 ≤ 2, x ≥ 0.

2.6. Maximizar z = 3x1 + 4x2, sujeto a x1 + x2 = 3, 2x1 + x2 = 2, x ≤ 0.

2.7. Maximizar z = 3x1 + 4x2, sujeto a x1 + x2 = 3, 2x1 + x2 = 2.

2.8. Maximizar z = min{x1, x2}, sujeto a x1+x2 ≤ 3, 2x1+x2 ≤ 2, x ≥ 0.

2.9. Maximizar z = min{3x1, 4x2}, sujeto a x1 + x2 ≤ 3, 2x1 + x2 ≤ 2,
x ≥ 0.

2.10. Maximizar z = 3x1+4x2+x3, sujeto a x1+x2+x3 ≤ 3, 2x1+x2 ≥ 2,
x1 + x3 = 2, x1, x2 ≥ 0.

18



Caṕıtulo 3

MÉTODO GRÁFICO

El método gráfico sirve para resolver, con una precisión aceptable, una
gran parte de los problemas de optimización lineal de dos variables. Tiene
dos etapas importantes, la primera es la determinación de la región ad-
misible o realizable o factible (el conjunto de puntos que cumplen todas las
restricciones) y la segunda es la búsqueda del punto óptimo (o de los puntos
óptimos) en la región admisible.

La determinación de la región admisible es muy sencilla, pues se trata de
obtener la intersección de semiplanos (desigualdades) y de rectas (igualda-
des). Como generalmente las variables son no negativas, el estudio se hace
únicamente en el primer cuadrante. El conjunto admisible estará entonces
limitado por semirrectas (en este caso el conjunto admisible no es acotado)
o por segmentos de recta. Los valores de las coordenadas de los vértices
se pueden determinar gráficamente o de manera más precisa, anaĺıticamen-
te, calculando la solución de las dos ecuaciones (rectas) que determinan el
vértice (un vértice corresponde a la noción, que se verá posteriormente, de
punto extremo de un convexo).

Una vez hallada la región admisible se procede a buscar el óptimo. Se
necesita entonces saber como vaŕıa la función objetivo y, sobre todo, en qué
dirección mejora. Una manera sencilla consiste en dar dos valores arbitrarios
diferentes a z y dibujar las rectas (paralelas) correspondientes. Esto permite
saber en qué sentido mejora el valor de z. Para cualquier otro valor de z, la
recta correspondiente será paralela. Únicamente queda por encontrar una
de estas rectas paralelas, con el mejor valor posible de z y que pase al menos
por un punto de la región admisible.
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20 CAṔITULO 3. MÉTODO GRÁFICO

3.1. Región acotada

Ejemplo 3.1.
max z = x1 + 1.4x2

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

200 400

200

400

.............................................................................................................................................................................................................................................................................................................................................
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x1 = 300

x1 + 2x2 = 580

x1 + x2 = 400

(220,180)

(0,290)

(300,100)........................................................................................................................................................................................................................................................................................................................... z = 0

...........................................................................................................................................................................................................................................................................................................................
z = 100

Figura 3.1

La determinación de la región admisible da como resultado un conjunto
delimitado por cinco segmentos, cuyos vértices son:

( 0, 0),
( 300, 0),
( 300, 100),
( 220, 180),
( 0, 290).

Al dar a z los valores 0 y 100, dos valores arbitrarios, se obtienen las rectas

0 = x1 + 1.4x2,

100 = x1 + 1.4x2.

20



3.2. REGIÓN NO ACOTADA 21

Al observar el dibujo y las dos rectas se puede saber en qué dirección se
debe mover una recta paralela para mejorar el valor de z (más o menos en la
dirección noreste), o sea, hasta el punto (220, 180), con un valor de z igual
a 472. Un mejor valor de z daŕıa como resultado una recta que no pasa por
la región admisible. Entonces

x∗ = (220, 180),

z∗ = 472. 3

Cuando la región admisible es acotada se puede, en lugar de dibujar dos
rectas correspondientes a dos valores diferentes de z, calcular el valor de
z para cada uno de los vértices y escoger el mejor vértice (o los mejores
vértices).

Ejemplo 3.2. En el ejemplo anterior la región es acotada y el cálculo de z
da los siguientes resultados:

( 0, 0), z = 0,
( 300, 0), z = 300,
( 300, 100), z = 440,
( 220, 180), z = 472,
( 0, 290), z = 406.

Entonces el punto óptimo es x∗ = (220, 180) y el valor óptimo de la función
objetivo es z∗ = 472. 3

3.2. Región no acotada

Ejemplo 3.3.

min z = 3x1 + 10x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

21
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x1 + 2x2 = 4

x1 + 2x2 = 12

(2,1)
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z = 0



z = 30

Figura 3.2

Dando a z los valores 0 y 30 se obtienen las rectas

3x1 + 10x2 = 0,

3x1 + 10x2 = 30.

y se sabe entonces que el valor de z mejora al desplazar las rectas en la
dirección suroeste (aproximadamente).

Los vértices de la figura son: (2, 1), (4, 0), (0, 6). Sin embargo, la región
admisible no está totalmente determinada por estos tres vértices. Además,
es claro que el conjunto factible no es acotado, pero el valor óptimo de z se
obtiene en el punto x∗ = (4, 0) con z∗ = 12. 3
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3.3. ÓPTIMO NO ACOTADO 23

3.3. Óptimo no acotado

Ejemplo 3.4.
max z = 10x1 + 8x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

En este ejemplo la región admisible es la misma. La función z mejora en
la dirección noreste y no hay ĺımite para encontrar una recta z mejor que
las anteriores y que pase por un punto admisible. En este caso hablamos de
un óptimo no acotado o no finito. Lo ideal es que x1, x2 tomen valores
muy grandes. 3

3.4. Otros casos

Ejemplo 3.5.
min z = 8x1 + 16x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

En este caso los puntos que están en el segmento que une (2, 1) con (4, 0),
para los cuales z = 32, son puntos óptimos. Un punto del segmento óptimo
es un punto de la forma

x∗ = (1− λ)(2, 1) + λ(4, 0), λ ∈ [0, 1].

En el ejemplo anterior hay un número infinito de soluciones, pero este con-
junto es acotado. 3

Ejemplo 3.6.
min z = 7x1

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

En este caso los puntos de la semirrecta que parte del punto (0, 6) y sigue en
la dirección del eje x2, son puntos óptimos con un valor óptimo de z∗ = 0.

23



24 CAṔITULO 3. MÉTODO GRÁFICO

Los puntos de esta semirrecta óptima son de la forma:

x∗ = (0, 6) + µ(0, 1) , µ ≥ 0.

En este ejemplo, ni el conjunto admisible ni el conjunto de puntos óptimos
son acotados. 3

Ejemplo 3.7.
min z = 7x1 + 9x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12
x1 + x2 ≤ 1

x ≥ 0.

Al hacer la intersección de los conjuntos determinados por cada restricción
se obtiene el conjunto vaćıo. Esto se ve con facilidad ya que se trata sim-
plemente del conjunto admisible de los anteriores ejemplos, intersectado con
el semiplano x1 + x2 ≤ 1. Es decir, no hay puntos que cumplan todas las
restricciones, o más simplemente, el problema no tiene solución. 3

EJERCICIOS

Resolver por el método gráfico los ejercicios 3.1 a 3.10. Averiguar si hay
puntos factibles. Si hay puntos factibles averiguar si hay puntos óptimos. Si
hay puntos óptimos, encontrarlos todos.

3.1. Maximizar z = x1 + x2, sujeto a x1 ≤ 4, x1 + 2x2 ≤ 8, x2 ≤ 3, x ≥ 0.

3.2. Minimizar z = x1 + x2, sujeto a x1 ≤ 4, x1 + 2x2 ≤ 8, x2 ≤ 3, x ≥ 0.

3.3. Minimizar z = −2x1 − 4x2, sujeto a x1 ≤ 4, x1 + 2x2 ≤ 8, x2 ≤ 3,
x ≥ 0.

3.4. Minimizar z = −2x1− 4x2, sujeto a x1 ≤ 4, x1 + 2x2 ≤ 8, 2x1 + x2 ≥
11, x2 ≤ 3, x ≥ 0.

3.5. Minimizar z = 5x1 + 4x2, sujeto a −x1 + x2 ≤ 3, x1 + x2 ≥ 4,
x1 + 2x2 ≥ 5, x ≥ 0.

3.6. Minimizar z = 2x1 + 4x2, sujeto a −x1 + x2 ≤ 3, x1 + x2 ≥ 4,
x1 + 2x2 ≥ 5, x ≥ 0.

24



3.4. OTROS CASOS 25

3.7. Minimizar z = −2x1 − 3x2, sujeto a −x1 + x2 ≤ 3, x1 + x2 ≥ 4,
x1 + 2x2 ≥ 5, x ≥ 0.

3.8. Minimizar z = 3x1 − 3x2, sujeto a −x1 + x2 ≤ 3, x1 + x2 ≥ 4,
x1 + 2x2 ≥ 5, x ≥ 0.

3.9. Maximizar z = 2x1 + 3x2, sujeto a −x1 + x2 ≤ 3, x1 + x2 ≥ 4,
x1 + 2x2 ≥ 5, x ≥ 0.

3.10. Maximizar z = −3x1 + 3x2, sujeto a −x1 + x2 ≤ 3, x1 + x2 ≥ 4,
x1 + 2x2 ≥ 5, x ≥ 0.

25
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Caṕıtulo 4

CONJUNTOS CONVEXOS

Sea V el espacio vectorial Rn. La mayoŕıa de las definiciones y resultados
que siguen, se pueden generalizar fácilmente a otros espacios vectoriales.

4.1. Convexos, envolventes, combinaciones
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convexo convexo convexo

no convexo no convexo no convexo

Figura 4.1

Definición 4.1. Sea C un subconjunto de V . Se dice que C es convexo si
dados x, y en C, λ un escalar en el intervalo [0, 1], entonces z = (1−λ)x+λy
también está en C. Gráficamente, un conjunto C es convexo si dados dos
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28 CAṔITULO 4. CONJUNTOS CONVEXOS

puntos x, y en C, cualquier punto del segmento de recta que los une, también
está en C.

Ejemplos triviales de conjuntos convexos son: V , ∅, {x̄}.

Ejemplo 4.1. {(x1, x2) : x21 + x22 ≤ 1} es convexo. 3

3

Ejemplo 4.2. {(x1, x2) : x2 = x21} no es convexo ya que (0, 1) = 1
2(1, 1)

+1
2(−1, 1) no está en el conjunto. 3

Definición 4.2. Dados c ∈ Rn, c 6= 0, α ∈ R, se llama hiperplano al
siguiente conjunto:

H = Hc,α = {x ∈ Rn : cTx = α}

Este hiperplano genera dos semiespacios:

H+ = {x ∈ Rn : cTx ≥ α},
H− = {x ∈ Rn : cTx ≤ α}.

En R un hiperplano es un punto y los semiespacios semirrectas. En R2

los hiperplanos son las rectas y los semiespacios los semiplanos. En R3 los
hiperplanos son los planos.

Los tres conjuntos H, H+, H− son convexos. Veamos que H es convexo.
Sean: x, y ∈ H, λ ∈ [0, 1], z = (1 − λ)x + λy. El punto z está en H si y
solamente si cTz = α; efectuando el cálculo:

cTz = cT((1− λ)x+ λy) = (1− λ)cTx+ λcTy = (1− λ)α+ λα = α.

Luego z está en H, luego H es convexo. En esta demostración no se utilizó
que λ ∈ [0, 1], entonces no solo los puntos del segmento de recta están en
H, sino que todos los puntos de la recta que pasa por x y y también están
en H (H es una variedad lineal o variedad af́ın).

Sean: x, y ∈ H+, λ ∈ [0, 1], z = (1 − λ)x + λy. Entonces cTx ≥ α,
cTy ≥ α, λ, 1− λ ≥ 0.

cTz = cT((1− λ)x+ λy) = (1− λ)cTx+ λcTy ≥ (1− λ)α+ λα = α.

Entonces H+ también es convexo, y de manera semejante se comprueba que
el semiespacio H− es convexo.
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4.1. CONVEXOS, ENVOLVENTES, COMBINACIONES 29

Es fácil demostrar que la intersección de dos convexos es un conjunto
convexo. Sean: C,D convexos, x, y ∈ C ∩D, λ ∈ [0, 1], z = (1 − λ)x + λy.
Como C es convexo, entonces z ∈ C. Como D es convexo z ∈ D. Luego
z ∈ C ∩D.

Más aún, la intersección de cualquier familia de conjuntos convexos es un
convexo, independientemente de que la familia sea finita, infinita enumerable
o infinita no enumerable. En cambio no se puede afirmar que la unión de
dos convexos sea siempre un convexo.

Las restricciones de un problema de optimización lineal son igualdades,
es decir representan hiperplanos, o bien, son desigualdades y en este caso
representan semiespacios. Aśı, cualquier conjunto admisible de un proble-
ma de optimización lineal es simplemente la intersección de hiperplanos y
semiespacios, luego es un conjunto convexo. En particular

{x ∈ Rn : Ax = b},
{x ∈ Rn : Ax ≥ b},
{x ∈ Rn : Ax = b, x ≥ 0}.

son conjuntos convexos.

Definición 4.3. Dados x1, x2, ..., xm en V , se llama combinación conve-
xa de x1, x2, ..., xm a una combinación lineal en la que todos los escalares
son no negativos y, además, su suma es uno, es decir:

x = λ1x
1 + λ2x

2 + . . .+ λmx
m, λi ≥ 0, ∀i,

m∑
i=1

λi = 1.

Si todos los escalares son positivos la combinación convexa se llama estricta.

La combinación convexa es la generalización de la expresión (1−λ)x+λy
con λ en el intervalo [0, 1].

Ejemplo 4.3. Dados (1, 0), (0, 0), (0, 1), son ejemplos de combinaciones
convexas:

(
1

2
,
1

4
) =

1

2
(1, 0) +

1

4
(0, 0) +

1

4
(0, 1),

(0, 1) = 0(1, 0) + 0(0, 0) + 1(0, 1). 3

29



30 CAṔITULO 4. CONJUNTOS CONVEXOS

Definición 4.4. Sea A un subconjunto de V . Se llama envolvente conve-
xa de A, o convexo generado por A, o casco convexo de A, denotado co(A),
al conjunto convexo más pequeño que contenga a A. Esto quiere decir que si
C es un conjunto convexo que contiene a A, entonces necesariamente co(A)
está contenido en C.
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A co(A)

B co(B)

D co(D)

Figura 4.2

La anterior definición es descriptiva, pero no constructiva. El convexo ge-
nerado por A se puede caracterizar “constructivamenteçomo la intersección
de todos los convexos que contienen a A.

co(A) =
⋂

C convexo
A⊆C

C.

Esta intersección está bien definida ya que por lo menos existe un conjunto
convexo que contiene a A: el espacio completo Rn.

También se puede demostrar que co(A) es exactamente cc(A), el conjunto
de todas las combinaciones convexas de elementos de A, es decir, el conjunto
de todas las combinaciones convexas de subconjuntos finitos de A.
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4.2. PUNTOS Y DIRECCIONES EXTREMOS 31

Ejemplo 4.4. co({(1, 0), (0, 1), (0, 0)}) = {(x1, x2) : x1 + x2 ≤ 1, x ≥ 0}.

co({(x1, x2) : x1x2 = 0, x21 + x22 ≤ 1, x ≥ 0}) =

{(x1, x2) : x1 + x2 ≤ 1, x ≥ 0}.

co({(x1, x2) : x2 = x21}) = {(x1, x2) : x2 ≥ x21}. 3

4.2. Puntos y direcciones extremos

Definición 4.5. Sean: C convexo, x en C. Se dice que x es punto extremo
de C, si no es posible expresar x como combinación convexa estricta de dos
puntos distintos de C, es decir:

x = (1− λ)u+ λv
u, v ∈ C
λ ∈]0, 1[

}
=⇒ u = v = x.
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Figura 4.3

Ejemplo 4.5. Dado el conjunto convexo

{(x1, x2) : x21 + x22 ≤ 1},

(
√
2
2 ,−

√
2
2 ) es punto extremo. El punto (0.2, 0.4) no es punto extremo. 3

Ejemplo 4.6. El punto (
√
2
2 ,−

√
2
2 ) no es punto extremo de {(x1, x2) : x21 +

x22 = 1}. 3

Ejemplo 4.7. Dado el conjunto admisible del ejemplo 3.1, entonces: el
punto (300, 100) es punto extremo; (250, 150) no es punto extremo; el punto
(260, 150) no es extremo. 3

Se puede mostrar que otra definición equivalente de punto extremo es la
siguiente. Sean: C convexo, x en C. Se dice que x es punto extremo de C
si C\{x} = {y ∈ C : y 6= x} es convexo.
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32 CAṔITULO 4. CONJUNTOS CONVEXOS

Definición 4.6. Sean: C un convexo, d en V , d 6= 0. Se dice que d es una
dirección de C si para todo x en C y para todo µ positivo, x+µd también
está en C.

Es claro que un conjunto acotado no tiene direcciones y que un conjunto
con direcciones no es acotado.

Definición 4.7. Dos direcciones d1, d2 son equivalentes si una es múltiplo
positivo de la otra, es decir, si d1 = µd2 con µ > 0.

Definición 4.8. Una dirección d de un convexo C, se llama dirección
extrema si no existen dos direcciones de C: d1, d2 no equivalentes, tales
que d sea combinación lineal positiva de d1, d2. Dicho de otra manera:

d = µ1d
1 + µ2d

2

d1, d2 direcciones de C
µ1, µ2 > 0

}
=⇒ d, d1, d2 son equivalentes .

Ejemplo 4.8. Consideremos el conjunto admisible del ejemplo 3.3 , es decir,
el conjunto C definido por las siguientes restricciones:

x1 + 2x2 ≥ 4

5x1 + 2x2 ≥ 12

x ≥ 0.

Este conjunto es convexo, esto se puede observar al mirar la gráfica corres-
pondiente (ejemplo 3.3) o se puede demostrar anaĺıticamente.

Los puntos extremos de este conjunto son: (2, 1), (4, 0), (0, 6).

Para el mismo conjunto, (1, 4), (0, 0.001), (345, 0), (2, 8) son direcciones,
y no lo son (0, 0), (−0.01, 100), (−3,−4).

Son direcciones extremas (0, 0.001), (10, 0), o sus direcciones equivalen-
tes. 3

Definición 4.9. Se llama un politopo (convexo) a cualquier conjunto que
se pueda expresar como la intersección de un número finito de semiespacios
(o de semiespacios e hiperplanos). Cuando el politopo (convexo) es acotado
se llama poliedro.

Ejemplo 4.9. El conjunto admisible del ejemplo 3.1 es un politopo y tam-
bién es poliedro. 3
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4.2. PUNTOS Y DIRECCIONES EXTREMOS 33

Ejemplo 4.10. El conjunto admisible del ejemplo 3.3 es un politopo. 3

Ejemplo 4.11. El conjunto {(x1, x2) : x21 +x22 ≤ 1} se puede expresar como
intersección de semiespacios (semiplanos):⋂

0≤θ≤2π
{(x1, x2) : cos θx1 + senθx2 ≤ 1},

pero no se puede por un número finito, luego no es un politopo. 3

EJERCICIOS

4.1. Determine si los siguientes conjuntos son convexos:

a) {(x1, x2) : x21 + x2 ≤ 4}
b) {(x1, x2) : x21 ≤ x2, x1 + x2 = 1}
c) {(x1, x2, x3) : x21 ≤ x2, x1 + x2 + x3 = 1}
d) {(x1, x2) : |x1|+ |x2| ≤ 1}
e) {(x1, x2) : |x1 + x2| ≤ 1}

4.2. SeaA un conjunto abierto. ¿Minimizar z = cTx, x ∈ A, tiene solución?

4.3. Sea A = {(x1, x2) : x21 ≤ x2}. Halle co(A).

4.4. Sea A = {(x1, x2) : x31 = x2}. Halle co(A).

4.5. Sea A = {(x1, x2) : x31 ≤ x2}. Halle co(A).

4.6. Sea A = {(x1, x2) : x1 > 0, x1|x2| ≥ 1}. ¿A es cerrado? Halle co(A).
¿co(A) es cerrado? Dé condiciones suficientes para que si A es cerrado,
entonces co(A) sea cerrado.

4.7. Sea C = {(x1, x2) : |x1| ≤ x2}. Halle los puntos extremos, las direc-
ciones y las direcciones extremas de C.

4.8. Sea C = {(x1, x2, x3) : x1 + x2 + x3 ≤ 6, x1 + 2x2 + 3x3 ≤ 12, x ≥ 0}.
Halle los puntos extremos, las direcciones y las direcciones extremas
de C.

4.9. Sea C = {(x1, x2) : x21 ≤ x2}. Halle los puntos extremos, las direccio-
nes y las direcciones extremas de C.
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34 CAṔITULO 4. CONJUNTOS CONVEXOS

4.10. Sea C = {(x1, x2, x3) : x21 ≤ x2, x1 + x2 + x3 ≤ 1}. Halle los puntos
extremos, las direcciones y las direcciones extremas de C.

4.11. Sea C = {(x1, x2) : |x1| + |x2| ≤ 1}. Halle los puntos extremos, las
direcciones y las direcciones extremas de C.

4.12. Sea C = {(x1, x2) : |x1 + x2| ≤ 1}. Halle los puntos extremos, las
direcciones y las direcciones extremas de C.

4.13. Sea C un convexo, A una matriz m × n, D = {y : y = Ax, x ∈ C}.
Muestre que D es convexo.

4.14. Sea H = Hcα un hiperplano y H+ uno de los semiespacios correspon-
dientes. Halle los puntos extremos y las direcciones extremas de H y
de H+.

4.15. Sea A ⊆ Rn. Muestre que cc(A) = co(A). Puede usar las siguientes
etapas: mostrar que A ⊆ cc(A); mostrar que cc(A) es convexo; mos-
trar que co(A) ⊆ cc(A); mostrar por inducción, sobre el número de
elementos de una combinación convexa, que cc(A) ⊆ co(A).
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Caṕıtulo 5

CONVEXOS EN
OPTIMIZACIÓN LINEAL

5.1. Puntos extremos

Se considerará de aqúı en adelante (salvo indicación contraria) que los
problemas de optimización lineal están en la forma estándar:

min z = cTx

Ax = b

x ≥ 0 ,

o lo que es lo mismo:

min z = cTx

x ∈ F ,

donde

F = {x : Ax = b, x ≥ 0} ,

A es una matriz m × n, m ≤ n, rango(A) = r(A) = m; b es un vector
columna de m componentes; x es un vector columna de n componentes (las
variables); 0 es el vector columna de n componentes nulas. El conjunto F
formado por los puntos que cumplen todas las restricciones es convexo y es
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36 CAṔITULO 5. CONVEXOS EN OPTIMIZACIÓN LINEAL

llamado la región o conjunto factible, admisible o realizable. Es claro que F
es un politopo y en algunos casos poliedro.

Siempre se puede suponer que r(A) = m. Si r(A) < m, entonces existen
una o varias filas de A que se pueden expresar como combinación lineal de
otras filas. Dependiendo del valor de los bi, las restricciones correspondientes
son, o bien, redundantes y en ese caso se pueden suprimir o bien incompa-
tibles con las otras y en este caso no hay solución del sistema Ax = b y, por
lo tanto, tampoco hay solución al problema de programación lineal.

Ejemplo 5.1. Las restricciones

x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 4

3x1 + 4x2 + 5x3 = 6
x ≥ 0.

se pueden reemplazar por

x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 4

x ≥ 0.

En cambio
x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 4

3x1 + 4x2 + 5x3 = 5
x ≥ 0.

es un sistema inconsistente, no tiene solución. 3

Definición 5.1. Se llama base de A, a una matriz B m × m, invertible,
submatriz (matriz obtenida al quitar algunas filas o algunas columnas) de
A. Dicho de otra forma, B se obtiene escogiendo m columnas de A, lineal-
mente independientes y desechando las p = n −m restantes. Es cierto que
existe por lo menos una, ya que r(A) = m. Sea L la submatriz de A de
tamaño m× p, obtenida al quitar de A las columnas que conforman B. Las
columnas de B se llaman básicas. Las columnas de L se llaman columnas
libres, no básicas o independientes. Aqúı la palabra independiente no se
refiere a independencia lineal, se refiere simplemente a que, como se verá
posteriormente, las variables básicas se pueden expresar en función de las
variables libres o independientes.
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5.1. PUNTOS EXTREMOS 37

Es evidente que, salvo permutación de columnas, la matriz A es exac-
tamente la matriz [B L], es decir, la matriz obtenida al colocar las m
columnas de B y a continuación (a la derecha) las p = n −m columnas de
L, por lo tanto, se puede escribir

A = [B L] .

Las variables x1, x2, . . ., xn también se pueden agrupar de manera semejante
y se llamarán básicas unas, y libres las otras (o no básicas o independien-
tes). También, salvo permutación de las variables, se puede escribir

x = (xB, xL) =

[
xB
xL

]
.

Entonces

Ax = b

x ≥ 0 ,

es equivalente a

BxB + LxL = b

xB ≥ 0, xL ≥ 0 .

Una solución del sistema Ax = b de la forma

xL = 0

xB solución única de BxB = b, es decir, xB = B−1b ,

se llama una solución básica.

Aunque las expresiones BxB = b, xB = B−1b son equivalentes desde
el punto de vista teórico, en la práctica es mucho más sencillo resolver el
sistema BxB = b que hallar una inversa y efectuar enseguida el producto.

Si además,

xB ≥ 0 ,
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38 CAṔITULO 5. CONVEXOS EN OPTIMIZACIÓN LINEAL

entonces se tiene una solución básica factible.

Si

xB > 0 ,

la solución se llama básica factible no degenerada.

Si

xB ≥ 0 , pero xB ≯ 0 ,

es decir, si se trata de una solución básica factible, pero alguna coordena-
da básica es nula, la solución se llama básica factible degenerada. Una
solución básica factible no degenerada tiene exactamente m componentes
positivas, una solución básica factible degenerada tiene menos de m compo-
nentes positivas.

Ejemplo 5.2.

min z = −x1 − 1.4x2

x1 + x2 + x3 = 400
x1 + 2x2 + x4 = 580
x1 + x5 = 300

x ≥ 0.

A =

 1 1 1 0 0
1 2 0 1 0
1 0 0 0 1

 .
Sea

B = [A·2 A·4 A·5] =

 1 0 0
2 1 0
0 0 1

 invertible.

Entonces

L = [A·1 A·3] =

 1 1
1 0
1 0

 ,
BxB =

 1 0 0
2 1 0
0 0 1

  x2
x4
x5

 =

 400
580
300

 .
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5.1. PUNTOS EXTREMOS 39

Luego

xB =

 400
−220

300

 ,
además

xL =

[
x1
x3

]
=

[
0
0

]
.

Se dice entonces que

x = (xB, xL) = (0, 400, 0,−220, 300)

es una solución básica; pero como no se cumple que xB ≥ 0, entonces no es
realizable.

Sea

B = [A·3 A·4 A·5] =

 1 0 0
0 1 0
0 0 1

 invertible.

Entonces

BxB =

 1 0 0
0 1 0
0 0 1

  x3
x4
x5

 =

 400
580
300

 .
xB =

 400
580
300

 ,
x = (xB, xL) = (0, 0, 400, 580, 300),

es una solución básica, realizable, no degenerada. 3

Ejemplo 5.3.

min z = 4x1 + 5x2

x1 + 2x2 − x3 = 6
2x1 + x2 − x4 = 6
x1 + x2 − x5 = 4

x ≥ 0.
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Sea

B = [A·1A·2A·4] =

 1 2 0
2 1 −1
1 1 0

 invertible.

BxB =

 1 2 0
2 1 −1
1 1 0


 x1
x2
x4

 =

 6
6
4

 ,

xB =

 2
2
0

 .

Entonces

x = (2, 2, 0, 0, 0)

es una solución básica, realizable, degenerada. 3

Los puntos extremos de F (y en general de un politopo) son importantes
ya que, como se verá más adelante de manera precisa, una función lineal
acotada inferiormente en F siempre alcanza su valor mı́nimo en un punto
extremo.

Proposición 5.1. Sea F el conjunto factible del problema de programación
lineal en la forma estándar. Los puntos extremos de F son exactamente las
soluciones básicas realizables.

Corolario 5.1. El conjunto F tiene un número finito de puntos extremos.

Demostración: El número máximo de posibles bases extráıdas de A (sin
tener en cuenta el orden) es el número de combinaciones de m elementos
tomados entre n elementos = Cnm = n!/((n−m)!m!); de estas posibles esco-
gencias algunas pueden corresponder a una matriz B no invertible; además,
algunas de las soluciones básicas obtenidas pueden ser no realizables. �

Estos resultados permiten utilizar un procedimiento preciso para calcular
los puntos extremos de F :
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5.1. PUNTOS EXTREMOS 41

escoger m columnas independientes de A para formar B,

xL = 0,

resolver BxB = b,

si la solución básica obtenida es realizable, entonces es un punto ex-
tremo.

Ejemplo 5.4. Hallar los puntos extremos de F donde

A =

[
1 2 −1 0
5 2 0 −1

]
, b =

[
4

12

]
.

Si

B = [A·1 A·2] =

[
1 2
5 2

]
,

la solución básica correspondiente es x = (2, 1, 0, 0), que es realizable, luego
es un punto extremo de F .

B = [A·1 A·3] , x = (2.4, 0,−1.6, 0) no es factible.

B = [A·1 A·4] , x = (4, 0, 0, 8) es admisible.

B = [A·2 A·3] , x = (0, 6, 8, 0) es admisible.

B = [A·2 A·4] , x = (0, 2, 0,−8) no es realizable.

B = [A·3 A·4] , x = (0, 0,−4,−12) no es realizable.

Luego los puntos extremos de F son:

(2, 1, 0,0) ,

(4, 0, 0,8) ,

(0, 6, 8,0) . 3

Ejemplo 5.5. Los puntos extremos del conjunto realizable del ejemplo 5.2
son:

( 300, 100, 0, 80, 0 ) ,
( 220, 180, 0, 0, 80 ) ,
( 300, 0, 100, 280, 0 ) ,
( 0, 290, 110, 0, 300 ) ,
( 0, 0, 400, 580, 300 ) . 3

Proposición 5.2. Si F es un poliedro, es decir, si F es acotado, entonces
todo punto de F es combinación convexa de sus puntos extremos.
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42 CAṔITULO 5. CONVEXOS EN OPTIMIZACIÓN LINEAL

5.2. Direcciones

Para la caracterización de los puntos de un politopo no acotado es ne-
cesario estudiar la obtención de las direcciones y las direcciones extremas.

Proposición 5.3. Sea F 6= ∅. d 6= 0 es dirección de F si y solamente si
Ad = 0, d ≥ 0.

Demostración: ⇒) Sea d dirección de F . Para todo x en F , para todo
µ ≥ 0

y = x+ µd está en F ,

es decir, Ay = b , y ≥ 0, entonces b = Ay = A(x+µd) = Ax+µAd = b+µAd,
de donde µAd = 0 para todo µ ≥ 0, luego Ad = 0; y ≥ 0, es decir,
yi = xi + µdi ≥ 0 para todo i y para todo µ ≥ 0, entonces di ≥ 0 para
todo i, o sea, d ≥ 0.

⇐) La demostración de esta implicación es inmediata. �

Se deduce, según la proposición, que las direcciones de F 6= ∅ no depen-
den de b.

Ejemplo 5.6. Hallar las direcciones de F , donde

A =

 1 1 1 0 0
1 2 0 1 0
1 0 0 0 1

 , b =

 400
580
300

 .
Estos datos son los mismos del ejemplo 5.2 , entonces F 6= ∅. Para resolver
Ad = 0, hay que convertir la matriz [A 0] en una matriz equivalente,
escalonada reducida.  1 0 0 0 1 0

0 1 0 1/2 −1/2 0
0 0 1 −1/2 −1/2 0

 .
La solución general se puede expresar en función de d4 y d5. Por ejemplo,
la segunda fila de esta matriz significa que d2 + d4/2− d5/2 = 0. Entonces
d2 = −d4/2 + d5/2. Aśı la expresión general de la posible dirección es:

d = (−d5,−d4/2 + d5/2, d4/2 + d5/2, d4, d5) ≥ 0 .
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5.2. DIRECCIONES 43

Como −d5, d5 ≥ 0, entonces d5 = 0. Entonces −d4/2, d4/2 ≥ 0, luego
d4 = 0. Es claro que no hay soluciones de esta forma tales que d ≥ 0, d 6= 0.
Es decir, F no tiene direcciones y, por lo tanto, es acotado.

En este ejemplo particular hubiera sido muy sencillo intercambiar co-
lumnas para dejar primero las columnas tres, cuatro y cinco y enseguida las
correspondientes a d1, d2 obteniéndose inmediatamente la matriz escalonada
reducida; entonces:

d = (d1, d2,−d1 − d2,−d1 − 2d2,−d1) ≥ 0 ,

y las conclusiones finales son las mismas. 3

Ejemplo 5.7. Hallar las direcciones de F , donde

A =

[
1 2 −1 0
5 2 0 −1

]
, b =

[
4

12

]
.

Estos datos son los mismos del ejemplo 5.4 , entonces F 6= ∅. Al resolver
Ad = 0 (intercambiando las columnas 1 , 2 con las columnas 3 , 4 ) se
obtiene la solución general:

d = (d1, d2, d1 + 2d2, 5d1 + 2d2) ≥ 0 .

En este caso siempre que d1, d2 ≥ 0, d1 o d2 6= 0, se tendrá una dirección
de F . Por lo tanto, F no es acotado. Por ejemplo: (1, 0, 1, 5), (0, 2, 4, 4),
(3, 1, 5, 17) son direcciones de F ˙ 3

Ejemplo 5.8. Considere el conjunto F , donde

A =

[
1 −1 1 0
1 −1 0 −1

]
, b =

[
1
−2

]
.

Entonces F 6= ∅ (x = (0, 2, 3, 0) ∈ F ) . Por ejemplo d = (1, 1, 0, 0) es una
dirección de F ya que Ad = 0, d ≥ 0

Si los datos cambian ligeramente:

A =

[
1 −1 1 0
1 −1 0 −1

]
, b =

[
1
2

]
,

aunque d = (1, 1, 0, 0) cumple con Ad = 0, d ≥ 0, no es dirección de F ya
que éste es vaćıo. 3
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44 CAṔITULO 5. CONVEXOS EN OPTIMIZACIÓN LINEAL

Sea D el conjunto de direcciones de F Ḋe este conjunto se puede tomar
un representante de cada clase de direcciones equivalentes. Esta escogencia
puede hacerse por normalización, es decir, escogiendo de cada clase un re-
presentante cuya norma valga uno. Al utilizar como norma

∑
|di| y como

en este caso particular todos los elementos de d son no negativos, entonces∑
|di| =

∑
diṠea D1 el conjunto de direcciones de F tales que la suma de

sus coordenadas sea uno, es decir,

D1 = {d : Ad = 0, d ≥ 0, d1 + d2 + . . .+ dn = 1} .

Proposición 5.4. El conjunto de direcciones extremas de F es, salvo equi-
valencia, el conjunto de puntos extremos del conjunto D1

Dicho de otra manera, las direcciones extremas de F son, salvo equiva-
lencia, las soluciones básicas realizables del sistema:

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn
1 1 . . . 1




d1
d2
d3

...
dn

 =


0
0
...
0
1


d ≥ 0 .

Corolario 5.2. Las direcciones extremas de F son, salvo equivalencia, so-
luciones no negativas de

BdB = −A·k , A·k no forma parte de B ,

dk = 1 ,

dj = 0 en los demás casos ,

para todas las posibles submatrices B, de tamaño m×m invertibles y todas
las posibles escogencias de A·k.

Ejemplo 5.9. Utilizando la proposición 5.4 , hallar las direcciones extremas
de F , donde

A =

[
1 2 −1 0
5 2 0 −1

]
, b =

[
4

12

]
.

Para encontrar las direcciones extremas hay que empezar por hallar las
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soluciones básicas de: 1 2 −1 0
5 2 0 −1
1 1 1 1



d1
d2
d3
d4

 =

 0
0
1


d ≥ 0 .

Estas son:
(−2/11, 5/11, 8/11, 0 ) ,
( 2/9, −1/9, 0, 8/9 ) ,
( 1/7, 0, 1/7, 5/7 ) ,
( 0, 1/5, 2/5, 2/5 ) .

Las dos últimas soluciones básicas son realizables y, por lo tanto, son (salvo
equivalencia) las direcciones extremas de F . 3

Ejemplo 5.10. Utilizando el corolario 5.2 para la misma matriz A y el
mismo vector columna b del ejemplo anterior se tiene:

Si B = [A·1 A·2] y si BdB = −A·3, entonces dB = (−2/8, 5/8) y
d = (−2/8, 5/8, 1, 0) no es dirección extrema.

Si B = [A·1 A·2] y −A·k = −A·4, entonces dB = (−2/8,−1/8) y
d = (2/8,−1/8, 0, 1) no es dirección extrema.

Si B = [A·1 A·3] y −A·k = −A·2, entonces dB = (−2/5, 8/5) y
d = (−2/5, 1, 8/5, 0) no es dirección extrema.

Si B = [A·1 A·3] y −A·k = −A·4, entonces dB = (1/5, 1/5), d =
(1/5, 0, 1/5, 1). Esta dirección es equivalente a (1/7, 0, 1/7, 5/7).

Aśı, sucesivamente, se escogen todas las posibilidades para B y en
cada caso todas las posibilidades para −A·k . Es posible que diferentes
parejas B,−A·k den lugar a direcciones iguales o equivalentes. 3

EJERCICIOS

En los ejercicios 5.1 a 5.8 convierta el problema a la forma estándar,
halle los puntos extremos del conjunto factible, halle las direcciones,
halle las direcciones extremas usando la proposición 5.4, halle las di-
recciones extremas usando el corolario 5.2.
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5.1. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

5.2. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + x2 ≥ 6, 4x1 +
3x2 ≤ 18, 2x1 + 3x2 ≤ 12, x ≥ 0.

5.3. Minimizar z = 4x1+5x2 con las restricciones x1+x2 ≥ 12, 4x1+3x2 ≥
18, x ≥ 0.

5.4. Minimizar z = 4x1+5x2 con las restricciones x1+x2 ≥ 12, 4x1−3x2 ≤
18, x ≥ 0.

5.5. Minimizar z = 4x1+5x2 con las restricciones x1+x2 ≥ 12, 4x1−3x2 =
18, x ≥ 0.

5.6. Minimizar z = 4x1 + 5x2 con las restricciones 4x1−3x2 ≤ −2, −4x1 +
3x2 ≤ 3, x ≥ 0.

5.7. Minimizar z = 4x1 + 5x2 con las restricciones 4x1−3x2 ≤ −2, −4x1 +
3x2 ≤ 1, x ≥ 0.

5.8. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + x2 ≥ 5, 2x1 +
3x2 ≤ 12, 4x1 + 3x2 ≤ 18, x ≥ 0.

5.9. Sea F ′ = {x : Ax ≥ b, x ≥ 0} 6= ∅. Encuentre una caracterización
para las direcciones de F ′, análoga a la de la proposición 5.3.
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Caṕıtulo 6

DOS TEOREMAS

Los teoremas presentados en este caṕıtulo son muy importantes en OL,
en especial para la justificación del método simplex y para la deducción
del método de descomposición. El método de descomposición de Dantzig
y Wolfe sirve para resolver problemas de OL muy grandes que tienen una
estructura angular por bloques [Las70].

6.1. Representación

Proposición 6.1. Teorema de representación. Todo punto de F (con-
junto admisible de un problema de optimización lineal en la forma estándar)
no vaćıo, se puede expresar como una combinación convexa de los puntos ex-
tremos, más una combinación lineal no negativa de las direcciones extremas,
es decir, F también se puede representar como

F = {x = λ1x
1 + λ2x

2 + . . .+ λkx
k + µ1d

1 + µ2d
2 + . . .+ µsd

s :

λi ≥ 0∀i λ1 + λ2 + . . .+ λk = 1, µj ≥ 0∀j},

siendo x1, x2, . . ., xk los puntos extremos (k ≥ 1)

y d1, d2, . . ., ds las direcciones extremas (s ≥ 0) .

En particular F es acotado si y solamente si s = 0. Este teorema también
es válido sobre otros politopos.
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Ejemplo 6.1.

A =

[
1 2 −1 0
5 2 0 −1

]
, b =

[
4

12

]
.

Los puntos extremos de F son: (2, 1, 0, 0), (4, 0, 0, 8), (0, 6, 8, 0) y sus direc-
ciones extremas (salvo equivalencia) son: (0, 1, 2, 2), (1, 0, 1, 5).

El punto x = (2, 3, 4, 4) está en F ya que Ax = b, x ≥ 0.

x = 0(2, 1, 0, 0) + 1/2(4, 0, 0, 8) + 1/2(0, 6, 8, 0) + 0(0, 1, 2, 2) + 0(1, 0, 1, 5).

También

x = 1(2, 1, 0, 0) + 0(4, 0, 0, 8) + 0(0, 6, 8, 0) + 2(0, 1, 2, 2) + 0(1, 0, 1, 5). 3

La expresión de un punto x de F , en función de los puntos extremos y
las direcciones extremas, no es necesariamente única.

Ejemplo 6.2. Sea C el conjunto de parejas (x1, x2) tales que

x1 + 2x2 ≥ 3
2x1 + x2 ≥ 3

x ≥ 0.

Sus puntos extremos son (1, 1), (3, 0), (0, 3) y sus direcciones extremas (salvo
equivalencia) son (1, 0), (0, 1).

Los puntos (1, 1), (3, 1) están en C.

(1, 1) = 1(1, 1) + 0(3, 0) + 0(0, 3),

(3, 1) = 0(1, 1) + 1(3, 0) + 0(3, 0) + 1(0, 1),

(3, 1) = 1(1, 1) + 0(3, 0) + 0(0, 3) + 2(1, 0). 3

Corolario 6.1. El conjunto F es vaćıo si y solamente si no tiene puntos
extremos.

6.2. Optimalidad

Proposición 6.2. El valor óptimo z∗ de minimizar z = cTx en F , es
acotado (inferiormente), si F es acotado, o sea, si no tiene direcciones, o
bien, si para toda dirección extrema d de F se tiene que cTd ≥ 0.
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Demostración: Supongamos que F es acotado. Como F es cerrado, en-
tonces es compacto y como z es continua, por el teorema de Weierstrass se
tiene que z alcanza su mı́nimo en un punto de F .

Supongamos ahora que F no es acotado. De acuerdo con el teorema de
representación, resolver el problema

min z = cTx

en F = {x : Ax = b, x ≥ 0},

es equivalente a resolver este otro problema

min z = cTx

x ∈


k∑
i=1

λix
i +

s∑
j=1

µjd
j : dλi ≥ 0,

k∑
i=1

λi = 1, µj ≥ 0

 .

Es decir, hay que minimizar el valor de z dado por:

z =
k∑
i=1

λic
Txi +

s∑
j=1

µjc
Tdj , λi ≥ 0,

k∑
i=1

λi = 1, µj ≥ 0.

Sean xu, xv tales que

cTxu = min
1≤i≤k

{cTxi},

cTxv = max
1≤i≤k

{cTxi}.

Entonces, como λi ≥ 0

k∑
i=1

λic
Txi ≥

k∑
i=1

λic
Txu = cTxu

k∑
i=1

λi = cTxu.

De manera análoga
k∑
i=1

λic
Txi ≤ cTxv,

y aśı

cTxv +
s∑
j=1

µjc
Tdj ≥ z ≥ cTxu +

s∑
j=1

µjc
Tdj , µj ≥ 0.

Luego, cuando F no es acotado, el valor de z es acotado inferiormente, si y
solamente si, cTd ≥ 0 para toda dirección extrema d. �

49



50 CAṔITULO 6. DOS TEOREMAS

Corolario 6.2. Si el problema de minimizar z = cTx en F es acotado
(inferiormente), entonces el óptimo se obtiene en un punto extremo (por
ejemplo en xu).

Corolario 6.3. Si el problema de minimizar z = cTx en F es acotado (in-
feriormente), entonces cualquier combinación convexa de puntos extremos
óptimos también es un punto óptimo.

Proposición 6.3. Teorema de optimalidad . Consideremos el problema
de minimizar z = cTx en F , con z acotado inferiormente. El valor óptimo z∗

se obtiene en por lo menos un punto extremo, y todos los puntos óptimos se
pueden expresar como una combinación convexa de puntos extremos óptimos
(puede haber varios) más una combinación lineal no negativa de direcciones
extremas tales que cTd = 0.

Ejemplo 6.3. Minimizar z = cTx en F = {x : Ax = b, x ≥ 0} donde A,
b están dados en el ejemplo 6.1 , para diferentes coeficientes de la función
objetivo.

a) c = (3, 2, 0, 0)

b) c = (3, 0, 0, 0)

c) c = (−2,−1, 0, 0)

d) c = (4, 8, 0, 0) .

a)

cTx1 = 8,

cTx2 = 12,

cTx3 = 12,

cTd1 = 2,

cTd2 = 3.

Entonces z es acotado inferiormente.

z∗ = 8, x∗ = x1 = (2, 1, 0, 0).

En este ejemplo la solución óptima es única.
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b)

cTx1 = 6,

cTx2 = 12,

cTx3 = 0,

cTd1 = 0,

cTd2 = 3.

Entonces z es acotado inferiormente.

z∗ = 0, x∗ = x3 + µd1 = (0, 6, 8, 0) + µ(0, 1, 2, 2)

= (0, 6 + µ, 8 + 2µ, 2µ), con µ ≥ 0.

El conjunto de soluciones óptimas tiene un número infinito de puntos y,
además, no es acotado.

c)

cTx1 = −5,

cTx2 = −8,

cTx3 = −6,

cTd1 = −1,

cTd2 = −2.

Entonces z no es acotado inferiormente.

d)

cTx1 = 16,

cTx2 = 16,

cTx3 = 48,

cTd1 = 8,

cTd2 = 4.

Entonces z es acotado inferiormente.

z∗ = 16, x∗ = λ1x
1 + λ2x

2, λ1, λ2 ≥ 0, λ1 + λ2 = 1.

El conjunto de puntos óptimos tiene un número infinito de puntos y es
acotado. 3
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Ejemplo 6.4.

A =

 1 1 1 0 0
1 2 0 1 0
1 0 0 0 1

 , b =

 400
580
300

 .
a) c = (−1,−1.4, 0, 0, 0),

b) c = (−2,−2, 0, 0, 0).

Los puntos extremos de F son:

( 0, 0, 400, 580, 300 ),
( 300, 0, 100, 280, 0 ),
( 300, 100, 0, 80, 0 ),
( 220, 180, 0, 0, 80 ),
( 0, 290, 110, 0, 300 ).

F no tiene direcciones extremas, entonces es acotado y cualquier problema
de optimización lineal en este conjunto tiene óptimo acotado.

a)

cTx1 = 0,

cTx2 = −300,

cTx3 = −440,

cTx4 = −472,

cTx5 = −406,

z∗ = −472, x∗ = x4 = (220, 180, 0, 0, 80).

En este ejemplo la solución óptima es única.

b)

cTx1 = 0,

cTx2 = −600,

cTx3 = −800,

cTx4 = −800,

cTx5 = −580,
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z∗ = −800, x∗ = λ1x
3 + λ2x

4

= λ1(300, 100, 0, 80, 0) + λ2(220, 180, 0, 0, 80),

λ1, λ2 ≥ 0, λ1 + λ2 = 1.

El conjunto de puntos óptimos de este ejemplo es infinito y acotado. 3

Considérese la siguiente notación:

P = conjunto de puntos extremos de F ,

D = conjunto de direcciones extremas de F salvo equivalencia (en

D no hay dos direcciones extremas equivalentes),

D− = {d ∈ D : cTd < 0},
Do = {d ∈ D : cTd = 0},
F ∗ = conjunto de puntos óptimos de F (cuando F 6= ∅ y z es acotado

inferiormente),

P∗ = {x ∈ P 6= ∅ : cTx = min{cTy : y ∈ P}},
cnn(X) = conjunto de combinaciones lineales no negativas (con escalares

no negativos) de elementos de X,

z∗ = valor óptimo de z, cuando F 6= ∅ y z está acotado inferiormente,

z∗ = −∞, cuando F 6= ∅ y z no está acotado inferiormente,

z∗ = +∞, cuando F = ∅.

El teorema de representación se puede expresar aśı:

F 6= ∅ ⇐⇒ P 6= ∅,
F 6= ∅ =⇒ F = cc(P) + cnn(D).

El teorema de optimalidad se puede expresar aśı:

F ∗ 6= ∅ ⇐⇒ F 6= ∅,D− = ∅,
F 6= ∅,D− = ∅ =⇒ F ∗ = cc(P∗) + cnn(Do).

Utilizando el teorema de optimalidad se puede resolver cualquier problema
de OL, de manera bien precisa. Este proceso finito se basa en el hecho de
que el número de puntos extremos y el número de direcciones extremas son
finitos. Más aún, para hallar todos los puntos extremos, basta con estudiar
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todas las posibilidades para las soluciones básicas. De manera semejante,
para hallar todas las direcciones extremas, basta con estudiar todas las po-
sibilidades de uno de los dos métodos (proposición 5.4 y corolario 5.2). El
proceso para resolver un problema de OL en la forma estándar es el siguiente:

hallar P
si P = ∅ ent F = ∅
sino

hallar D, D−, Do
si D− 6= ∅ ent z∗ = −∞
sino

si Do = ∅
F ∗ es acotado
si |P∗| = 1 ent F ∗ = P∗
sino |F ∗| =∞, F ∗ = cc(P∗)

sino
|F ∗| =∞, F ∗ no es acotado
F ∗ = cc(P∗) + cnn(Do)

fin-si
fin-si

fin-si

Los resultados anteriores sirven para entender mejor el método simplex y
para interpretar, de manera más adecuada, algunos de sus resultados. Sin
embargo, salvo para ejemplos muy pequeños, estos resultados no son prácti-
cos para resolver problemas de Optimización Lineal.

EJERCICIOS

En los ejercicios 6.1 a 6.10 convierta el problema a la forma estándar,
halle los puntos extremos del conjunto factible, halle las direcciones
extremas, y aplicando el teorema de optimalidad encuentre la solución
del problema.

6.1. Minimizar z = −1.1x1− 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

6.2. Minimizar z = −0.8x1− 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.
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6.3. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

6.4. Minimizar z = 4x1+3x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤
4, x ≥ 0.

6.5. Minimizar z = 5x1+5x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤
4, x ≥ 0.

6.6. Minimizar z = x1−2x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤ 4,
x ≥ 0.

6.7. Minimizar z = −2.5x1 + x2 con las restricciones x1 + x2 ≥ 12, 5x1 −
2x2 ≤ 4, x ≥ 0.

6.8. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + x2 ≥ 5, 2x1 +
3x2 ≤ 12, 4x1 + 3x2 ≤ 18, x ≥ 0.

6.9. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + x2 ≥ 6, 2x1 +
3x2 ≤ 12, 4x1 + 3x2 ≤ 18, x ≥ 0.

6.10. Minimizar z = 4x1 + 5x2 con las restricciones 4x1−3x2 ≤ −2, −4x1 +
3x2 ≤ 1, x ≥ 0.
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Caṕıtulo 7

EL MÉTODO SIMPLEX

Los teoremas y resultados vistos anteriormente permiten hallar el óptimo
de un problema de optimización lineal en la forma estándar, en un núme-
ro finito de pasos: buscar todos los puntos extremos (todas las soluciones
básicas realizables) y entre ellos escoger el mejor o los mejores; además, es
necesario buscar las direcciones extremas para saber si el óptimo está aco-
tado o no lo está. Pero este proceso es muy dispendioso y largo, aún con la
ayuda de un computador. El método simplex, creado por G. B. Dantzig al
final de la década del cuarenta, permite hacer una búsqueda de soluciones
básicas realizables, pero con la ventaja de ir siempre mejorando el valor de z
al pasar de una solución básica realizable a otra (si no hay soluciones básicas
degeneradas), hasta llegar a un punto extremo óptimo o hasta saber que el
valor de z no es acotado (inferiormente).

Salvo indicación contraria, se supondrá la ausencia de soluciones
básicas realizables degeneradas.

Recuérdese además que, de acuerdo con la notación utilizada, siempre
que haya operaciones entre matrices (multiplicaciones o adiciones) se consi-
deran los vectores de Rl como matrices columna, es decir, matrices l × 1.

7.1. Condiciones de optimalidad

Antes de pasar al método simplex en śı, es conveniente estudiar las con-
diciones de optimalidad para una solución básica realizable cualquiera, sin
tener que compararla con otros puntos extremos.
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Considérese el problema de optimización lineal tal como se ha supuesto
hasta ahora, es decir, un problema de minimización en la forma estándar
con una matriz de coeficientes de tamaño m× n, con m ≤ n y de rango m.

Dada una matriz B, de tamaño m ×m, invertible, submatriz de A, tal
que la solución básica correspondiente sea realizable, es decir,

xB = B−1b ≥ 0,

xL = 0,

se desea saber si este punto extremo x = (xB, xL) es óptimo o no.

Como la matriz A es de rango m, entonces en el sistema lineal Ax = b
hay p = n−m variables independientes y m variables que dependen de ellas.
De esta forma, todo el problema se puede plantear únicamente en función
de las variables independientes, llamadas también libres o no básicas.

El problema

min z = cTx

Ax = b

x ≥ 0,

se puede escribir

min z = cTBxB + cTLxL

BxB + LxL = b

xB ≥ 0, xL ≥ 0,

entonces
xB = B−1b−B−1LxL,

y aśı se tiene el problema únicamente en función de las variables libres xL:

min z = cTB(B−1b−B−1LxL) + cTLxL

xL ≥ 0.

La expresión de z se puede agrupar aśı:

z = cTBB
−1b− cTBB−1LxL + cTLxL

= cTBB
−1b+ (cTL − cTBB−1L)xL

= cTBB
−1b+ (cL − LTB−1

T
cB)TxL.
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Si se define
c̃L = cL − LTB−1

T
cB,

entonces
z = cTBB

−1b+ c̃TLxL.

El vector c̃L tiene exactamente p = n −m componentes, es decir, una por
cada variable libre; estos coeficientes se llaman usualmente costos reduci-
dos o relativos de las variables libres. También se les acostumbra a denotar
por cj − zj .

Es posible definir de manera análoga los costos reducidos para las varia-
bles básicas:

c̃B = cB −BTB−1
T
cB = 0.

Esta propiedad es una caracteŕıstica muy importante: los costos reduci-
dos de las variables básicas son nulos.

Utilizando únicamente las variables libres y sus costos reducidos, el pro-
blema de optimización lineal queda ahora aśı:

min z = cTBB
−1b+ c̃TLxL

xL ≥ 0.

Supongamos, por el momento, que las variables básicas son las m primeras
y que las p siguientes son las variables libres. Esta suposición no es restric-
tiva, pues simplemente se puede considerar como un reordenamiento de las
variables.

min z = cTBB
−1b+ c̃m+1xm+1 + c̃m+2xm+2 + . . .+ c̃nxn

xm+1, xm+2, . . . , xn ≥ 0.

De lo anterior se puede deducir lo siguiente:

z es igual a una constante (cTBB
−1b), más una expresión lineal de las

variables libres.

Para la solución básica realizable en estudio, las variables libres son
nulas y el valor de z está dado por cTBB

−1b.

z está expresado únicamente en función de las variables libres y si se
considera que alguna de éstas cambia, tiene que ser necesariamente
aumentando su valor, es decir, pasando de cero a un valor positivo, ya
que ninguna variable puede ser negativa.
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Si el costo reducido c̃j de una variable libre es negativo, al pasar ésta
de cero a un valor positivo, el valor de z disminuye indicando que śı
es conveniente modificar esta variable libre xj aumentando su valor.

Si los costos reducidos de todas las variables libres son no negativos,
ninguna de esas variables debeŕıa modificarse, es decir, la solución
básica realizable no debe ser modificada, es decir, es óptima.

Proposición 7.1. Para una solución básica realizable, si los costos reduci-
dos de las variables libres son no negativos, entonces esta solución es óptima.
Una solución básica realizable no degenerada es óptima si y solamente si los
costos reducidos de las variables libres son no negativos

c̃L = cL − LTB−1
T
cB ≥ 0.

Ejemplo 7.1.

min z = −x1 − 1.4x2

x1 + x2 + x3 = 400
x1 + 2x2 + x4 = 580
x1 + x5 = 300

x ≥ 0.

Sea

B = [A·3 A·4 A·5].

La solución básica correspondiente es x = (0, 0, 400, 580, 300).

c̃L =

[
c̃1
c̃2

]
=

[
−1.0
−1.4

]
−
[

1 1 1
1 2 0

] 1 0 0
0 1 0
0 0 1

−1T  0
0
0

 ,
c̃L =

[
c̃1
c̃2

]
=

[
−1.0
−1.4

]
.

Luego este punto extremo (no degenerado) no es óptimo.

Para este mismo problema, si:

B = [A·1 A·2 A·5] =

 1 1 0
1 2 0
1 0 1

 ,
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entonces

B−1 =

 2 −1 0
−1 1 0
−2 1 1

 , B−1b =

 220
180
80

 .
El punto extremo correspondiente es x = (220, 180, 0, 0, 80) ,

c̃L =

[
c̃3
c̃4

]
=

[
0
0

]
−
[

1 0 0
0 1 0

] 2 −1 0
−1 1 0
−2 1 1

T  −1
−1.4

0


c̃L =

[
c̃3
c̃4

]
=

[
0.6
0.4

]
.

Luego este punto extremo es óptimo y el valor óptimo de z es: z∗ = −472,
valor que se puede obtener de dos formas:

z = cTx =
[
−1 −1.4 0 0 0

]


220
180

0
0

80

 = −472,

z = cTBB
−1b =

[
−1 −1.4 0

]  220
180
80

 = −472. 3

Ejemplo 7.2. Considere el problema

min z = −x1 − x2

x1 + 2x2 + x3 = 3
2x1 + x2 + x4 = 3
4x1 + 5x2 + x5 = 9

x ≥ 0.

y el punto
x = (1, 1, 0, 0, 0).

Esta solución básica factible degenerada se puede obtener con

B =
[
A·1 A·2 A·4

]
.

Entonces al calcular los costos reducidos de las variables libres x3 y x5 se
obtiene

c̃TL =
[
−1/3 1/3

]
.
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Como la solución es degenerada, no se puede concluir que el punto no sea
óptimo. Este mismo punto se puede obtener considerando

B =
[
A·1 A·2 A·3

]
y aśı c̃TL =

[
c̃4 c̃5

]
=
[

1/6 1/6
]
,

lo cual indica que el punto śı es óptimo. 3

7.2. Deducción matricial del método simplex

La deducción matricial del método simplex que aparece a continuación,
es la que provee la justificación de las tablas del simplex. . Sin embargo, en
la práctica, esta deducción no se utiliza, pero en cambio, śı se utilizan las
tablas. Para ayudar a la comprensión de la deducción puede ser útil seguir
las diferentes partes del desarrollo del ejemplo 7.3 en las páginas siguientes.

Para aplicar el método simplex a un problema de minimización en la
forma estándar se requiere además (ejemplo 7.3.1) :

b ≥ 0,

se puede formar Im (matriz identidad de orden m) con m columnas
de A.

La primera suposición es muy fácil de cumplir, pues cuando hay un bi
negativo se multiplica toda la igualdad por −1. Más adelante se verá como
tratar el caso en el que no se cumple la segunda suposición.

Sean:

A1 = A,

b1 = b.

En esta primera iteración es muy fácil obtener la solución básica realizable
(ejemplo 7.3.1), pues basta tomar:

B1 = Im

L1 conformada por las columnas restantes,

y la solución básica realizable es:

x1B = b1,

x1L = 0,

x1 = (x1B, x
1
L).
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Para pasar a la siguiente solución básica realizable x2, que, además, debe ser
mejor (su valor de z debe ser menor), únicamente se cambiará una columna
de B1: una columna de B1 dejará de ser básica y pasará a ser libre y
también una columna de L1 dejará de ser libre para convertirse en básica.
De manera análoga, una variable básica se volverá libre, y una variable libre
se convertirá en básica.

Además, se pasará del sistema

A1x = b1 donde B1 = Im,

b1 ≥ 0,

a otro sistema equivalente (que tiene exactamente las mismas soluciones):

A2x = b2 donde también B2 = Im,

b2 ≥ 0.

Este proceso se repite hasta llegar al óptimo o hasta saber que el óptimo no
es acotado.

Al precisar más estas ideas, es necesario detallar varios pasos:

¿Cómo son las condiciones de optimalidad?

¿Cómo se escoge la variable libre que se convierte en básica (la variable
que “entra” a la base)?

¿Cuándo el valor óptimo de z no es finito, es decir, el valor de z no es
acotado (inferiormente)?

¿Cuál es la variable que deja de ser básica y se convierte en libre (la
variable que “sale”de la base)?

¿Cómo se modifican los coeficientes de Ak, bk para pasar a Ak+1, bk+1?

En lo que sigue sobre el método simplex, salvo indicación contraria, para
no recargar demasiado las fórmulas, se suprimirá el supeŕındice, es decir,
cuando no haya supeŕındice se supondrá que es k y cuando el supeŕındice
sea ’ (una comilla) se supondrá que es k + 1.

Con las suposiciones del método simplex (Bk = Im) el cálculo de los
costos reducidos se simplifica bastante y las condiciones de optimalidad
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resultan muy sencillas. (ejemplo 7.3.3):

c̃L = cL − LTcB ≥ 0.

Además, el valor de z es muy sencillo de calcular:

z = cTBb

Sean: β lam-upla formada por los ı́ndices de las columnas (y de las variables)
básicas en el orden adecuado (para formar la matriz identidad), λ el vector
de p = n−m componentes, formado por los ı́ndices de las columnas libres.

β = (β1, β2, . . . , βm),

λ = (λ1, λ2, . . . , λp),

entonces, por ejemplo,

xB = (xβ1 , xβ2 , . . . , xβm),

xL = (xλ1 , xλ2 , . . . , xλp).

El cálculo de los costos reducidos de las variables libres (cL−LTcB) se puede
explicitar aśı:

c̃L = cL −


(LT)1·
(LT)2·

...
(LT)p·

 cB

c̃L = cL −


(LT)1·cB
(LT)2·cB

...
(LT)p·cB



c̃L = cL −


(A·λ1)TcB
(A·λ2)TcB

...
(A·λp)

TcB.


El resultado anterior se puede presentar, individualmente, para cada costo
reducido:

c̃λi = cλi − (A·λi)
TcB i = 1, . . . , p,
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o también

c̃j = cj − (A·j)
TcB = cj − cTBA·j para la variable libre xj .

La igualdad anterior es válida también para las variables básicas, pero para
estas variables no es necesario calcular el costo reducido ya que es nulo.
Efectuando el producto matricial se tiene:

c̃j = cj − (a1jcβ1 + a2jcβ2 + . . .+ amjcβm)

= cj −
m∑
i=1

aijcβi .

Si c̃kj < 0 para alguna variable libre (y xk es un solución básica realizable no

degenerada), entonces xk no es una solución óptima.

Si c̃kj ≥ 0 para todas las variables libres, entonces xk śı es una solución
óptima.

En el caso óptimo hay dos posibilidades:

i) para todas las variables libres c̃j > 0,

ii) para alguna variable libre c̃j = 0.

En el caso ii) la(s) variable(s) libre(s) tal(es) que c̃j = 0 puede(n) tomar
valores positivos sin que esto haga aumentar el valor de z, es decir, el valor
óptimo z∗ permanece óptimo al variar xj de cero a un valor positivo. Esto
quiere decir, si no se trata de una solución realizable básica degenerada,
que hay varios puntos extremos óptimos, más aún, hay un número infini-
to de puntos óptimos (cualquier combinación convexa de puntos extremos
óptimos).

En el caso i), si el punto no es degenerado, cualquier modificación de una
variable libre xj , por pequeña que sea, hace aumentar (empeorar) el valor
de z; o sea, el punto xk es el único óptimo.

Hay varios criterios para escoger una variable, entre las libres, con coefi-
ciente c̃j < 0, para que deje de ser nula y tome un valor positivo, volviéndose
también variable básica. Uno de estos criterios, tal vez el más usado, es esco-
ger la variable con costo reducido más pequeño, es decir, la de costo reducido
“más negativo”. Aśı se escoge la variable libre que hace disminuir más la
función objetivo z por cada unidad que aumente esta variable libre.
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Otro criterio consiste simplemente en escoger cualquier variable libre con
costo reducido negativo, por ejemplo, la primera encontrada.

Finalmente, el mejor criterio es escoger la variable libre que más hace
disminuir, en total, el valor de z. Por ejemplo, si c̃1 = −3 y c̃3 = −5 y si x1
puede aumentar hasta 11 y x3 puede aumentar hasta 6, entonces es mucho
mejor escoger la variable x1 pues produce, en total, una disminución de
33. Aunque este criterio es el mejor, en la práctica no se usa pues requiere
conocer el máximo valor que puede tomar cada variable libre con costo
reducido negativo, y esto implica muchas más operaciones y comparaciones.

Sea xe la variable que “entra” a la base.

c̃e = min{c̃j : c̃j < 0}.

Al tomar xe un valor positivo, las variables básicas pueden modificarse, pues
son función de las variables libres (ej. 7.3.4).

xB = B−1b−B−1LxL = b− LxL

xB = b− [L·1 . . . L·p]

 xλ1
...
xλp


= b−

p∑
i=1

L·ixλi

xB = b−
p∑
i=1

A·λixλi .

Como únicamente la variable libre xe se vuelve positiva, las demás variables
libres siguen siendo nulas, entonces

xB = b− xeA·e,

xβi = bi − xeaie, i = 1, . . . ,m.

La variable xe, que vale cero, va a tomar valores positivos y entre más grande
sea, más disminuye el valor de z. Se puede presentar un inconveniente si
alguna (o algunas) variable básica se vuelve negativa, pues esto no está
permitido. Es claro que ello podŕıa suceder únicamente para las variables
básicas con coeficiente aie positivo. Entonces la solución es muy sencilla,
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basta aumentar xe hasta cuando la primera variable básica con aie positivo
se anule.

xβi = 0 si xe =
bi
aie
·

El nuevo valor de xe será el máximo valor que pueda tomar, o sea, el mayor
valor sin que ninguna variable básica sea negativa, o sea,

x′e =
bσ
aσe

= min

{
bi
aie

: aie > 0, i = 1, ...,m

}
.

Este hecho determina, al mismo tiempo, cuál es la primera variable básica
que se anula con valores positivos de xe, es decir, cuál es la variable básica
que “sale” de las básicas (ejemplo 7.3.5). Si se llega a presentar “empate”
en el cociente mı́nimo para dos o más variables básicas, se puede escoger
como variable básica que sale cualquiera de las “empatadas”, por ejemplo,
la primera encontrada; en la siguiente tabla la solución básica realizable
obtenida será degenerada.

xs = xβσ = variable que “sale” de las básicas.

El sub́ındice s indica la posición de la variable de 1 a n; el sub́ındice σ indica
la posición de la variable de 1 a m, es decir, entre las variables básicas.

Si la variable xe (u otra variable libre con coeficiente c̃j < 0) puede au-
mentar de manera ilimitada sin disminuir el valor de las variables básicas,
entonces también el valor de z puede disminuir ilimitadamente y aśı el ópti-
mo no es acotado. Esto se tiene cuando todos los elementos de la columna
correspondiente A·e son menores o iguales a cero.

Si aie ≤ 0 para i = 1, 2, . . . ,m, entonces el óptimo no es acotado.

Lo que resta de una iteración cualquiera del método simplex, es simple-
mente hacer las modificaciones adecuadas para pasar de Ak, bk a Ak+1, bk+1

de tal manera que Bk+1 = Im.

En la iteración k
βk = (β1, β2, . . . , βσ, . . . , βm),

en la iteración k+1 (ejemplo 7.3.6)

βk+1 = (β1, β2, . . . , e, . . . , βm).

Al tomar las columnas de Ak correspondientes a βk se tiene, obviamente, la
matriz identidad.[

Ak·β1 Ak·β2 . . . Ak·βσ . . . Ak·βm
]

= Im.
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Pero al tomar la columnas de Ak correspondientes a βk+1 ya no se tiene la
matriz identidad.

[
Ak·β1 Ak·β2 . . . Ak·e . . . Ak·βm

]
=



1 0 . . . ak1e . . . 0
0 1 . . . ak2e . . . 0
...

...
. . .

...
. . .

...
0 0 . . . akσe . . . 0
...

...
. . .

...
. . .

...
0 0 . . . akme . . . 1


= Qk

Esta matriz Qk es muy fácil de construir, se toma la matriz identidad de
orden m y se cambia su columna σ por la columna A·e .

El determinante de Qk es aσe, valor no nulo (más aún, es positivo), enton-
ces Qk es invertible (y (Qk)−1 también es invertible), aśı el sistema Akx = bk

se puede premultiplicar por Qk
−1

, obteniéndose el sistema equivalente

Ak+1x = bk+1,

donde

Ak+1 = (Qk)−1Ak, bk+1 = (Qk)−1bk.

Entonces [
Ak+1

·β1 Ak+1
·β2 . . . Ak+1

·e . . . Ak+1
·βm

]
= Im,

que es exactamente lo deseado.

Fácilmente se comprueba que Qk
−1

tiene la siguiente forma (ver ejemplo
7.3.7):

(Qk)−1 =



1 0 . . . −ak1e/akσe . . . 0
0 1 . . . −ak2e/akσe . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 1/akσe . . . 0
...

...
. . .

...
. . .

...
0 0 . . . −akme/akσe . . . 1


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Explicitando los productos (Qk)−1Ak y (Qk)−1bk, se tiene:

ak+1
ij = akij −

akiea
k
σj

akσe
, i = 1, ...,m , i 6= σ, j = 1, ..., n,

bk+1
i = bki −

akieb
k
σ

akσe
, i = 1, ...,m, i 6= σ,

ak+1
σj =

akσj
akσe

, j = 1, ..., n,

bk+1
σ =

bkσ
akσe
·

Se puede comprobar que las fórmulas anteriores pueden ser vistas simple-
mente como el resultado de efectuar operaciones elementales sobre las filas
de Ak, bk utilizando la fila σ, para obtener el valor uno en la posición (σ, e)
y el valor cero en las otras posiciones (i, e) de la columna e (ejemplo 7.3.8).

Con el nuevo sistema Ak+1x = bk+1 se efectúa el mismo proceso y aśı
sucesivamente (ejemplo 7.3.9).

En el método simplex, casi siempre se pasa de un punto xk a un punto
mejor xk+1. En el peor de los casos xk y xk+1 son igualmente buenos. Más
precisamente, si xk no es degenerado, entonces cTxk+1 < cTxk. En general,
cTxk+1 ≤ cTxk.

Puesto que el número de puntos extremos (soluciones básicas realiza-
bles) es finito y (en ausencia de soluciones básicas realizables degeneradas)
siempre se pasa de un punto extremo a uno estrictamente mejor, entonces
el método simplex es un proceso iterativo finito. Más aún, las estad́ısticas
muestran [Dan63] que, para n bastante mayor que m, el número promedio
de iteraciones vaŕıa aproximadamente entre m y 3m, valores mucho meno-
res que Cnm = n!/(m!(n −m)!) (número de combinaciones de m elementos
tomados dentro de n elementos).

En presencia de degeneramiento, ciertas reglas (perturbación infinitesi-
mal, reglas lexicográficas, método de Bland) permiten evitar que en algún
momento el proceso se vuelva ćıclico, impidiendo la obtención del óptimo.
Además, en aplicaciones reales, el degeneramiento aparece muy pocas veces,
y de estas pocas veces, la mayoŕıa de las veces no da lugar a un ciclo sin
fin. Más aún, casi todos los ejemplos de ciclos sin fin conocidos, han sido
construidos expresamente con esta finalidad. Por esta razón, casi siempre,
como en la mayoŕıa de los programas de computador comerciales, no es ne-
cesario preocuparse por el ciclado. Sin embargo, śı es útil colocar un número
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máximo de iteraciones. Si se llegara a alcanzar este número máximo de ite-
raciones se tendŕıa, o bien, un número máximo de iteraciones muy pequeño,
o bien, se trata posiblemente de un problema ćıclico.

Ejemplo 7.3.
max z = x1 + 1.4x2

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

Introduciendo variables de holgura

min z = −x1 − 1.4x2

x1 + x2 + x3 = 400
x1 + 2x2 + x4 = 580
x1 + x5 = 300

x ≥ 0.

A =

 1 1 1 0 0
1 2 0 1 0
1 0 0 0 1

 , b =

 400
580
300

 .
Ejemplo 7.3.1 : Es claro que se cumplen las condiciones del método sim-
plex: b ≥ 0 y las columnas tercera, cuarta y quinta de A forman la matriz
identidad.

Ejemplo 7.3.2 :

L1 =

 1 1
1 2
1 0

 , c1B =

 0
0
0

 , c1L =

[
−1.0
−1.4

]
.

De manera inmediata se tiene el primer punto extremo (solución básica
realizable) dado por el método simplex.

x1B = (x3, x4, x5) = (400, 580, 300),

x1 = (0, 0, 400, 580, 300),

z = cTB1b
1 = [0 0 0]b1 = 0.

El paso que sigue es averiguar si xk es óptimo.
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Ejemplo 7.3.3 :

c̃1L = c1L − L1T
c1B =

[
−1.0
−1.4

]
−
[

1 1 1
1 2 0

] 0
0
0


c̃1L =

[
−1.0
−1.4

]
,

luego x1 no es óptimo.

Ejemplo 7.3.4 : La variable que “entra” a la base es entonces

xe = x2.

Ejemplo 7.3.5 : Para escoger la variable que sale de la base hay que efectuar
los cocientes:

b11
a112

=
400

1
= 400,

b12
a122

=
580

2
= 290,

b13
a132

: no se calcula ya que a132 ≤ 0.

La variable que “sale” es la segunda variable básica.

xβσ = xβ2 ,

xs = x4.

Ejemplo 7.3.6 : En la segunda iteración las variables básicas serán: x3, x2, x5
y las variables libres x1, x4.

Ejemplo 7.3.7 :

Q1 =

 1 1 0
0 2 0
0 0 1

 , (Q1)−1 =

 1 −1/2 0
0 1/2 0
0 0 1

 .
Ejemplo 7.3.8 : Ahora se pasa a un sistema equivalente A2x = b2 donde
A2, b2 se pueden obtener de dos maneras, bien sea premultiplicando A1, b1
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por la matriz (Q1)−1, es decir, A2 = (Q1)−1A1, b2 = (Q1)−1b1, o bien, por
medio de operaciones elementales sobre las filas de A1, b1 para obtener un
uno en la posición (2,2) y ceros en el resto de la segunda columna.

A2 =

 1/2 0 1 −1/2 0
1/2 1 0 1/2 0

1 0 0 0 1

 , b2 =

 110
290
300

 .
Ejemplo 7.3.9 :

x2B = (x3, x2, x5) = (110, 290, 300),

x2 = (0, 290, 110, 0, 300),

z = −406.

El valor de z2 se puede obtener de tres maneras:

i) z2 = cTx2 =
[
−1 −1.4 0 0 0

] [
0 290 110 0 300

]T
,

ii) z2 = cTB2b
2 =

[
0 −1.4 0

] [
110 290 300

]T
,

iii) z2 = z1 + c̃1e
b1σ
a1σe

= z1 + c̃1ex
1
e = 0 + (−1.4)(290).

c̃2L =

[
−1

0

]
−
[

1/2 1/2 1
−1/2 1/2 0

] 0
−1.4

0


c̃2L =

[
−3/10

7/10

]
,

luego x2 no es óptimo.

xe = x1,

b21
a211

=
110

1/2
= 220,

b22
a221

=
290

1/2
= 580,

b23
a231

=
300

1
= 300,

xβσ = xβ1 ,

xs = x3.
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Ahora las nuevas variables básicas serán: x1, x2, x5 y las variables libres
x3, x4.

Q2 =

 1/2 0 0
1/2 1 0

1 0 1

 , (Q2)−1 =

 2 0 0
−1 1 0
−2 0 1

 .
El nuevo sistema equivalente está dado por:

A3 =

 1 0 2 −1 0
0 1 −1 1 0
0 0 −2 1 1

 , b3 =

 220
180
80.



x3B = (x1, x2, x5) = (220, 180, 80),

x3 = (220, 180, 0, 0, 80),

z = −472.

c̃3L =

[
0
0

]
−
[

2 −1 −2
−1 1 1

] −1.0
−1.4

0

 ,
c̃3L =

[
3/5
2/5

]
,

luego x3 śı es óptimo ya que c̃3L ≥ 0, entonces

x∗ = (220, 180, 0, 0, 80) es el único punto óptimo ,

z∗ = −472 es el valor mı́nimo de z.

Como el problema inicial era de maximización, entonces

z∗ = 472. 3

EJERCICIOS

En los ejercicios 7.1 a 7.6 convierta el problema a la forma estándar,
averigüe si cada uno de los puntos dados es factible. Si lo es, calcule
los costos reducidos para saber si el punto es óptimo.
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7.1. Minimizar z = −1.1x1− 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

a) x = (0, 0).

b) x = (1, 4).

c) x = (1, 1).

d) x = (7, 0).

7.2. Minimizar z = −1.1x1− 1.1x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

a) x = (1, 4).

b) x = (3, 2).

c) x = (1, 1).

d) x = (2, 3).

7.3. Minimizar z = 4x1+3x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤
4, x ≥ 0.

a) x = (0, 12).

b) x = (4, 8).

c) x = (5, 10).

d) x = (2, 10).

7.4. Minimizar z = −2x1 − 3x2 con las restricciones x1 + x2 ≥ 12, 5x1 −
2x2 ≤ 4, x ≥ 0.

a) x = (0, 12).

b) x = (4, 8).

c) x = (2, 10).

7.5. Minimizar z = −2.5x1 + x2 con las restricciones x1 + x2 ≥ 12, 5x1 −
2x2 ≤ 4, x ≥ 0.

a) x = (4, 8).

b) x = (0, 12).

c) x = (6, 13).

d) x = (8, 18).

e) x = (10, 20).
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7.6. Minimizar z = 1.1x1 + 1.2x2 con las restricciones x1 + 2x2 ≥ 3, 2x1 +
x2 ≥ 3, x1 + x2 ≥ 2, x ≥ 0.

a) x = (1, 1).

b) x = (0, 3).

En los ejercicios 7.7 a 7.12 convierta el problema a la forma estándar.
Si se cumplen las condiciones, aplique el método simplex hasta encon-
trar el óptimo, o hasta saber que no hay óptimo acotado.

7.7. Minimizar z = −1.1x1− 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

7.8. Minimizar z = 4x1+3x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤
4, x ≥ 0.

7.9. Minimizar z = x5 con las restricciones x1 + x2 − x3 + x5 = 12, 5x1 −
2x2 + x4 = 4, x ≥ 0.

7.10. Minimizar z = 4x1 + 3x2 con las restricciones x2 − 5x3 − x4 = 8,
x1 − 2.5x3 + x4 = 4, x ≥ 0.

7.11. Minimizar z = 4x1 − 3x2 con las restricciones x2 − 5x3 − x4 = 8,
x1 − 2.5x3 + x4 = 4, x ≥ 0.

7.12. Minimizar z = −1.1x1− 1.1x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.
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Caṕıtulo 8

TABLAS DEL MÉTODO
SIMPLEX

8.1. Una primera tabla para el simplex

Los datos y valores del método simplex se pueden organizar en una tabla,
de tal manera que se facilite la solución manual de un problema pequeño de
programación lineal.
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x1 x2 x3 xn

c1 c2 c3 cn

a11 a12 a13 a1n

a21 a22 a23 a2n

am1 am2 am3 amn

c̃1 c̃2 X c̃n

xβ1

xβ2

xβm

cβ1

cβ2

cβm

b1

b2

bm

b1
a1e

X

bm
ame

z

Algunos valores de esta tabla se obtienen de manera inmediata: c1, c2,
..., cn, . . ., aij , ..., b1, ..., bm.

A la izquierda, fuera de la tabla, hay una columna indicando las variables
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básicas xβ1 , . . . , xβm . La primera columna, dentro de la tabla, contiene los
elementos de cB: cβ1 , ..., cβm , es decir, los coeficientes de la función objetivo
correspondientes a las variables básicas (en el orden adecuado). En la última
fila están los valores c̃j . Para las variables básicas su valor es cero, y no hay
necesidad de calcularlo; se puede escribir el número 0 o también se podŕıa
indicar con un signo X . Para las variables libres

c̃j = cj − (cβ1a1j + cβ2a2j + . . .+ cβmamj),

es decir, es el valor de cj correspondiente, menos la suma de los productos,
término a término, de los elementos de la columna cB y la j- ésima columna
de A.

A partir de la tabla se sabe inmediatamente el valor de cada variable
xj . El valor de cada una de las variables básicas (las que están señaladas
en la columna izquierda) es exactamente el valor del término independiente
bi que está, al frente, en la última columna de la tabla (a la derecha). Las
demás variables tienen valor 0 por ser libres.

El valor de z corresponde simplemente a la suma de los productos,
término a término, de los elementos de la columna cB y de la columna
de términos independientes (los bi), que está al lado derecho.

z = cβ1b1 + cβ2b2 + . . .+ cβmbm.

Una vez calculados los costos reducidos c̃j , se puede saber si la tabla es
óptima o no. Recordemos que se tiene el óptimo si los costos reducidos c̃j
son no negativos, para todas las variables libres.

Si la tabla no es óptima se escoge la variable que entra a la base (aquella
cuyo coeficiente c̃j sea el menor). Para visualizar mejor, se resalta la columna
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correspondiente de A, es decir, A·e.
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.......
......
.......
......

................................................................................................................................................................................................................
.............
........

aσe aσj

aijaie

Los valores del extremo derecho de la tabla bi/aie, son simplemente los
cocientes de los términos independientes bi y los elementos de la columna
resaltada (la columna que entra), cuando éstos son positivos. Cuando los
coeficientes aie son menores o iguales a cero el cociente no se efectúa (y se
puede indicar por un signo x ). La escogencia de la variable básica que sale
xβσ se hace buscando el mı́nimo de los cocientes. De nuevo para visualizar
mejor, se resalta la fila correspondiente.

Si ninguno de los cocientes bi/aie se efectúa, el valor de z no es acotado
(inferiormente).

Para empezar la iteración siguiente únicamente queda por calcular la
nueva tabla, con base en las fórmulas, pero teniendo en cuenta algunas
simplificaciones:

Las columnas de la nueva tabla correspondientes a las nuevas variables
básicas forman la matriz identidad y, por lo tanto, no es necesario hacer
operaciones sino simplemente dar los valores adecuados.

Para el cálculo de la fila σ únicamente hay que dividir todos sus ele-
mentos por el elemento aσe, llamado pivote.

Para los otros valores

ak+1
ij = akij −

akiea
k
σj

akσe
,
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es decir, el nuevo valor de aij es igual al antiguo valor menos el pro-
ducto de los dos elementos “resaltadosçorrespondientes, dividido por el
elemento pivote aσe. Los elementos “resaltadosçorrespondientes son:
el elemento de la misma fila de aij (la fila i) que está en la columna de
la variable que entra (la columna e ), es decir, aie, y el elemento de la
misma columna de aij (columna j ) que está en la fila correspondiente
a la variable básica que sale (fila σ ), es decir, aσj .

Es claro que si en la fila resaltada (fila de la variable básica que sale)
hay un elemento nulo, entonces los elementos de esa columna no se alteran
al pasar a la siguiente tabla. De manera semejante, si en la columna resal-
tada (columna de la variable que entra) hay un elemento nulo, entonces los
elementos de esta fila no se alteran al pasar a la siguiente tabla.

Ejemplo 8.1.

min z = −x1 − 1.4x2

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

Ante todo se colocan en la primera tabla los valores “inmediatos”.
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−1 −1.4 0 0 0

1 1 1 0 0

1 2 0 1 0

1 0 0 0 1

x3

x4

x5

0

0

0

400

580

300

x = (0, 0, 400, 580, 300).
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Luego se calculan los costos reducidos.
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−1 −1.4 0 0 0

1 1 1 0 0

1 2 0 1 0

1 0 0 0 1

x3

x4

x5

0

0

0

400

580

300

0−1 −1.4 0 0 0

Se averigua si la tabla es óptima. Si no lo es, se escoge la variable que entra
a la base.

xe = x2.
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−1 −1.4 0 0 0

1 1 1 0 0

1 2 0 1 0

1 0 0 0 1

x3

x4

x5

0

0

0

400

580

300

0−1 −1.4 0 0 0
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Si en la columna de la variable que entra hay elementos positivos, se efectúan
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los cocientes bi/aie para aie > 0.
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−1 −1.4 0 0 0

1 1 1 0 0

1 2 0 1 0

1 0 0 0 1

x3

x4

x5

0

0

0

400

580

300

0−1 −1.4 0 0 0
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400

290

X

Se escoge la variable básica que sale.

xβσ = xβ2 ,

xs = x4.
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−1 −1.4 0 0 0

1 1 1 0 0

1 2 0 1 0

1 0 0 0 1

x3

x4

x5

0

0

0

400

580

300

0−1 −1.4 0 0 0
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400

290

X

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .
.......
.....
.......
......
.......
...................................................................................................................................................................................................................................
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.............

Ahora hay que construir la nueva tabla. En ella se colocan los valores
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inmediatos. En las columnas 3, 2, 5 debe estar la matriz identidad.
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−1 −1.4 0 0 0

0 1 0

1 0 0

0 0 1

x3

x2

x5

0

−1.4

0

0 0 0

Se calculan los demás valores de A y de b. He aqúı el ejemplo de un cálculo:

a211 = 1− (1× 1)

2
= 1/2.
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−1 −1.4 0 0 0

0.5 0 1 −0.5 0

0.5 1 0 0.5 0

1 0 0 0 1

x3

x2

x5

0

−1.4

0

110

290

300

−4060 0 0

x = (0, 290, 110, 0, 300).

Se calculan los nuevos costos reducidos, se verifica si la tabla es óptima, se
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escoge la variable que entra, se escoge la variable que sale, ...
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−1 −1.4 0 0 0

0.5 0 1 −0.5 0

0.5 1 0 0.5 0

1 0 0 0 1

x3

x2

x5

0

−1.4

0

110

290

300

−406−0.3 0 0 0.7 0
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580

300
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xe = x1,

xβσ = xβ1 ,

xs = x3.
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−1 −1.4 0 0 0

1 0 2 −1 0

0 1 −1 1 0

0 0 −2 1 1

x1

x2

x5

−1

−1.4

0

220

180

80

−4720 0 0.6 0.4 0

x∗ = (220, 180, 0, 0, 80).

Como los costos reducidos c̃3, c̃4 ≥ 0, entonces el x obtenido es óptimo; este
x∗ es óptimo único ya que c̃3, c̃4 > 0; el valor óptimo de la función objetivo
es z∗ = −472. 3

Ejemplo 8.2.

min z = x5 + x6

x1 + 2x2 − x3 + x5 = 4
5x1 + 2x2 − x4 + x6 = 12

x ≥ 0.
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En este ejemplo también se puede aplicar directamente el método simplex,
ya que b ≥ 0 y, además, con las columnas quinta y sexta se tiene la matriz
identidad.

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......



0 0 0 0 1 1

1 2 −1 0 1 0

5 2 0 −1 0 1

−6 −4 1 1 0 0

x5

x6

1

1

4
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4

2.4

16
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x = (0, 0, 0, 0, 4, 12),

xe = x1,

xβσ = xβ2 ,

xs = x6.
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0 0 0 0 1 1

0 1.6 −1 0.2 1 −0.2

1 0.4 0 −0.2 0 0.2

0 −1.6 1 −0.2 0 1.2

x5

x1

1

0

1.6

2.4

1

6

1.6
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x = (2.4, 0, 0, 0, 1.6, 0),

xe = x2,

xβσ = xβ1 ,

xs = x5.

85
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0 0 0 0 1 1

0 1 −5/8 1/8 5/8 −1/8

1 0 1/4 −1/4 −1/4 1/4

0 0 0 0 1 1

x2

x1

0

0

1

2

0

x∗ = (2, 1, 0, 0, 0, 0).

Esta solución básica realizable es óptima puesto que todos los costos redu-
cidos de variables libres son no negativos. Como, además, algunos de éstos
son nulos y la solución no es degenerada, entonces se puede afirmar que hay
un número infinito de soluciones óptimas para este problema. 3

8.2. Una tabla más compacta para el simplex

La tabla del método simplex se puede ver de otra manera, muy semejan-
te, pero con la diferencia de que hay menos fórmulas para pasar de una tabla
a la siguiente. Las pequeñas diferencias se basan en los siguientes hechos:

Se puede demostrar que los costos reducidos de la tabla k+ 1 se pueden
calcular directamente a partir de los costos reducidos de la tabla k, mediante
la siguiente fórmula:

c̃k+1
j = c̃kj −

c̃kea
k
σj

akσe
.

Como se véıa en el caṕıtulo 7 , el nuevo valor de z se puede calcular direc-
tamente mediante la siguiente fórmula:

zk+1 = zk +
c̃keb

k
σ

akσe
,

o también:

−zk+1 = −zk − c̃keb
k
σ

akσe
.

Si se supone que los costos reducidos forman la fila m+1, que el valor de −z
es el elemento en la posición (m+1, n+1) y que los términos independientes
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de las igualdades hacen parte de la columna n + 1, entonces se tiene una
matriz Âk de tamaño (m+ 1) ×(n+ 1) con la siguiente estructura:

Âk =


ak11 ak12 . . . ak1n bk1
ak21 ak22 . . . ak2n bk2
...

...
. . .

...
...

akm1 akm2 . . . akmn bkm
c̃k1 c̃k2 . . . c̃kn −zk


Aśı las fórmulas para calcular bk+1

i , c̃k+1
j , −zk+1 se convierten en:

ak+1
i,n+1 = aki,n+1 −

akiea
k
σ,n+1

akσe
, i = 1, . . . ,m,

ak+1
m+1,j = akm+1,j −

akm+1,ea
k
σj

akσe
, j = 1, . . . , n,

ak+1
m+1,n+1 = akm+1,n+1 −

akm+1,ea
k
σ,n+1

akσe
.

Esto quiere decir que las fórmulas del caṕıtulo 7 son válidas también para
i = m+ 1 y para j = n+ 1.

ak+1
ij = akij −

akiea
k
σj

akσe
, i = 1, ...,m+ 1, i 6= σ, j = 1, ..., n+ 1,

ak+1
σj =

akσj
akσe

, j = 1, ..., n+ 1.

Mediante estas fórmulas se calculan todos los elementos para pasar de la
tabla k a la tabla k + 1.

Queda por ver cómo se construye la primera tabla Â1. Esta se puede
construir utilizando las fórmulas para calcular los primeros costos reducidos
y el valor de −z, o bien se puede obtener a partir de la construcción de una
tabla inicial Â0 donde estén A, b, los costos cj y el valor de −z = 0.

Â0 =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm
c1 c2 . . . cn 0


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Para pasar de Â0 a Â1 basta con efectuar operaciones elementales sobre las
filas de Â0 de tal manera que en la fila m+1 se obtenga el valor cero para las
variables básicas, es decir, se obtiene aśı, al mismo tiempo, en la fila m+ 1
los costos reducidos c̃j y el valor de −z.

Una convención muy utilizada es resaltar el elemento pivote aσe, ence-
rrándolo entre un ćırculo o un cuadrado, mostrando con esto al mismo tiem-
po la columna de la variable que entra y la fila de la variable básica que
sale.

Ejemplo 8.3. Consideremos los mismos datos del ejemplo 8.2:

min z = x5 + x6

x1 + 2x2 − x3 + x5 = 4
5x1 + 2x2 − x4 + x6 = 12

x ≥ 0.

Â0 =

 1 2 −1 0 1 0 4
5 2 0 −1 0 1 12
0 0 0 0 1 1 0


La columnas que forman la matriz identidad 2×2 son la quinta y la sexta, en-
tonces hay que buscar, mediante operaciones elementales entre filas, el valor
cero en las posiciones (3,5) y (3,6). Esto se obtiene fácilmente sustrayendo
de la tercera fila una vez la primera fila y una vez la segunda fila.

Â1 :
x5
x6
−z

 1 2 −1 0 1 0 4

5 2 0 −1 0 1 12
−6 −4 1 1 0 0 −16


x = (0, 0, 0, 0, 4, 12),

z = 16.

xe = x1,

xβσ = xβ2 ,

xs = x6.

Un ejemplo del cálculo de los costos reducidos en la segunda tabla es:

a234 = a134 −
a131a

1
24

a121
,

a234 = 1− (−6)(−1)

5
= −0.2.
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8.2. UNA TABLA MÁS COMPACTA PARA EL SIMPLEX 89

Â2 :
x5
x1
−z

 0 1.6 −1 0.2 1 −0.2 1.6
1 0.4 0 −0.2 0 0.2 2.4
0 −1.6 1 −0.2 0 1.2 −1.6


x = (2.4, 0, 0, 0, 1.6, 0),

z = 1.6.

xe = x2,

xβσ = xβ1 ,

xs = x5.

Â3 :
x2
x1
−z

 0 1 −5/8 1/8 5/8 −1/8 1
1 0 1/4 −1/4 −1/4 1/4 2
0 0 0 0 1 1 0


x∗ = (2, 1, 0, 0, 0, 0),

z∗ = 0. 3

Los costos reducidos c̃j son denotados frecuentemente como cj − zj o
también zj − cj (dependiendo de la convención utilizada). También es muy
frecuente colocar la fila de costos reducidos como primera fila, es decir,
encima de las filas de A.

Ejemplo 8.4. Consideremos los mismos datos del ejemplo 8.1 , la matriz
inicial Â0 es:

Â0 =


1 1 1 0 0 400
1 2 0 1 0 580
1 0 0 0 1 300

−1.0 −1.4 0 0 0 0


Las variables básicas son x3, x4, x5. En la cuarta fila se tiene el valor cero
para estas columnas, o sea, ya se tienen los costos reducidos, es decir, en
este caso la matriz Â1 es igual a la matriz Â0.

Â1 :

x3
x4
x5
−z


1 1 1 0 0 400

1 2 0 1 0 580
1 0 0 0 1 300

−1.0 −1.4 0 0 0 0


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x = (0, 0, 400, 580, 300),

z = 0.

xe = x2,

xβσ = xβ2 ,

xs = x4.

Â2 :

x3
x2
x5
−z


1/2 0 1 −1/2 0 110

1/2 1 0 1/2 0 290
1 0 0 0 1 300

−3/10 0 0 7/10 0 406


x = (0, 290, 110, 0, 300),

z = −406.

xe = x1,

xβσ = xβ1 ,

xs = x3.

Â3 :

x1
x2
x5
−z


1 0 2 −1 0 220
0 1 −1 1 0 180
0 0 −2 1 1 80
0 0 3/5 2/5 0 472


x∗ = (220, 180, 0, 0, 80).

z∗ = −472. 3

EJERCICIOS

En los ejercicios 8.1 a 8.6 convierta el problema a la forma estándar. Si
se cumplen las condiciones, aplique el método simplex hasta encontrar
el óptimo, o hasta saber que no hay óptimo acotado.

8.1. Minimizar z = −1.1x1− 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

8.2. Minimizar z = 4x1+3x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤
4, x ≥ 0.
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8.3. Minimizar z = x5 con las restricciones x1 + x2 − x3 + x5 = 12, 5x1 −
2x2 + x4 = 4, x ≥ 0.

8.4. Minimizar z = 4x1 + 3x2 con las restricciones x2 − 5x3 − x4 = 8,
x1 − 2.5x3 + x4 = 4, x ≥ 0.

8.5. Minimizar z = 4x1 − 3x2 con las restricciones x2 − 5x3 − x4 = 8,
x1 − 2.5x3 + x4 = 4, x ≥ 0.

8.6. Minimizar z = −1.1x1− 1.1x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

91
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Caṕıtulo 9

MÉTODO DE LAS DOS
FASES

9.1. Problema artificial

Para poder utilizar el método simplex se requiere tener términos inde-
pendientes no negativos (b ≥ 0) y, además, poder obtener la matriz identidad
escogiendo adecuadamente m columnas de la matriz A. Esto no sucede con
frecuencia, pero se puede obviar este inconveniente mediante el siguiente
artificio.

Introducir tantas variables como se necesiten para que con las columnas
correspondientes se obtengan las columnas faltantes de la matriz identidad.
Estas se llaman variables artificiales y como han sido forzadas a hacer
parte de igualdades su valor debeŕıa ser cero.

Con estas variables artificiales se obtiene una solución básica factible
de un problema artificial, pero no del problema real. Para obligar a estas
variables artificiales a anularse, en una primera fase, se minimiza una función
objetivo artificial cuyo valor es la suma de las variables artificiales.

Si al obtener el óptimo de la función objetivo artificial, éste no es cero,
es decir, en el óptimo artificial alguna(s) variable(s) artificial(es) no es(son)
nula(s), entonces el problema no tiene solución, es decir, no hay puntos
factibles.

En el mejor de los casos al obtener el óptimo de la función objetivo
artificial todas las variables artificiales son libres (todas son nulas), se habrá
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94 CAṔITULO 9. MÉTODO DE LAS DOS FASES

obtenido aśı una solución factible básica con variables básicas no artificiales.
Esto permite utilizar el método simplex con la función objetivo original,
suprimiendo las columnas correspondientes a todas las variables artificiales
(libres y nulas). Esta es la segunda fase.

Si en la primera fase (minimización de la función objetivo artificial) se
desea disminuir el número de cálculos, se puede, en cada iteración, eliminar
la columna correspondiente a la variable que sale (variable básica que se
vuelve libre, nula ) si ésta es artificial.

De todas maneras hay que evitar en la primera fase y en la segunda fase,
que las variables artificiales libres vuelvan a ser básicas.

Ejemplo 9.1.
min z = 3x1 + 10x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Introduciendo variables de holgura se tiene:

min z = 3x1 + 10x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12

x ≥ 0.

En este caso no se tiene la matriz identidad y es necesario introducir dos va-
riables artificiales: x5, x6 para formar con sus columnas la matriz identidad
de tamaño 2× 2.

Primera fase:

min za = x5 + x6

x1 + 2x2 − x3 + x5 = 4
5x1 + 2x2 − x4 + x6 = 12

x ≥ 0.

Estos datos de la primera fase corresponden exactamente a los ejemplos
8.2 y 8.3 resueltos anteriormente, con la única salvedad de que se hubieran
podido suprimir las columnas quinta y sexta a medida que saĺıan de la
base. Entonces la tabla óptima de la primera fase, habiendo suprimido las
columnas de las variables artificiales que se volvieron libres (x5 y x6) es la
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siguiente:

Â3 :
x2
x1
−za

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
0 0 0 0 0


x = (2, 1, 0, 0),

za = 0.

Como todas las variables artificiales son nulas, entonces el problema śı tiene
soluciones factibles; además, se tiene ahora la matriz identidad con variables
no artificiales.

Segunda Fase:

Ahora es necesario colocar en esta tabla los coeficientes de la verdadera
función objetivo:

x2
x1

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
3 10 0 0 0


En la última fila debeŕıan aparecer los costos reducidos, en particular el
valor cero para las variables básicas (la segunda y la primera); esto no se
tiene, pero se puede conseguir fácilmente al sustraer de la tercera fila tres
veces la segunda fila y diez veces la primera fila.

x2
x1
−z

 0 1 −5/8 1/8 1

1 0 1/4 −1/4 2
0 0 11/2 −1/2 −16


z = 16,

xe = x4,

xβσ = xβ1 ,

xs = x2.

x4
x1
−z

 0 8 −5 1 8
1 2 −1 0 4
0 4 3 0 −12


x∗ = (4, 0, 0, 8),

z∗ = 12.
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Puesto que los costos reducidos son positivos, entonces el punto extremo
obtenido es la única solución óptima. 3

Ejemplo 9.2.

min z = 3x1 + 4x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

La primera fase es exactamente la misma del ejemplo anterior. La diferencia
está en la fila de costos al empezar la segunda fase.

x2
x1

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
3 4 0 0 0


A la tercera fila hay que restarle tres veces la segunda y cuatro veces la
primera fila para obtener los costos reducidos.

x2
x1
−z

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
0 0 7/4 1/4 −10



x∗ = (2, 1, 0, 0),

z∗ = 10.

El punto óptimo es único. En este ejemplo se obtuvo directamente el punto
óptimo al finalizar la primera fase. 3

9.2. Conjunto no factible

Ejemplo 9.3.

min z = 3x1 + 4x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12
x1 + x2 ≤ 1

x ≥ 0.
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Introduciendo variables de holgura:

min z = 3x1 + 4x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12
x1 + x2 + x5 = 1

x ≥ 0.

Como no se tiene la matriz identidad de tamaño 3×3 es necesario introducir
dos variables artificiales x6, x7.

Primera fase

min za = x6 + x7

x1 + 2x2 − x3 + x6 = 4
5x1 + 2x2 − x4 + x7 = 12
x1 + x2 + x5 = 1

x ≥ 0.

Â0 :

x6
x7
x5


1 2 −1 0 0 1 0 4
5 2 0 −1 0 0 1 12
1 1 0 0 1 0 0 1
0 0 0 0 0 1 1 0


Para obtener los costos reducidos en la cuarta fila es necesario restarle una
vez la primera fila y una vez la segunda fila.

Â1 :

x6
x7
x5
−za


1 2 −1 0 0 1 0 4
5 2 0 −1 0 0 1 12

1 1 0 0 1 0 0 1
−6 −4 1 1 0 0 0 −16


xa = (0, 0, 0, 0, 1, 4, 12),

za = 16,

xe = x1,

xβσ = xβ3 ,

xs = x5.

Â2 :

x6
x7
x1
−za


0 1 −1 0 −1 1 0 3
0 −3 0 −1 −5 0 1 7
1 1 0 0 1 0 0 1
0 2 1 1 6 0 0 −10


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x∗a = (1, 0, 0, 0, 0, 3, 7),

z∗a = 10.

Aqúı se tiene el óptimo de la función objetivo artificial, con variables artifi-
ciales no nulas (x6 = 3, x7 = 7), esto quiere decir que el problema original
no tiene solución, es decir, no hay puntos que cumplan todas las restriccio-
nes. El anterior ejemplo es exactamente el 3.7 resuelto mediante el método
gráfico. 3

En resumen, para resolver el siguiente problema de OL con variables no
negativas y con restricciones ≤, =, o ≥,

min z = cTx

Ai·x S bi, i = 1, ...,m,

x ≥ 0

el esquema general es el siguiente:

datos: : c, A, b, tipos de restricciones
modificar restricciones para que bi ≥ 0, ∀i
introducir variables de holgura
si B 6= I

introducir variables artificiales
resolver la primera fase
si z∗a > 0

z∗ = +∞, es decir, F = ∅
parar

fin-si
fin-si
F 6= ∅
resolver segunda fase
en el resultado final hay dos posibilidades:

z∗ es finito
z∗ = −∞

En la primera fase, cuando es necesaria, siempre z∗a ≥ 0, es decir, nunca se
da que z∗a = −∞. Si se puede llegar a la segunda fase, entonces no es posible
que z∗ = +∞.
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EJERCICIOS

En los ejercicios 9.1 a 9.7 convierta el problema a la forma estándar.
Aplique el método simplex o el método de las dos fases.

9.1. Minimizar z = −x1 − 0.1x2 con las restricciones x1 + x2 ≤ 4, x2 ≥ 2,
x1 + 2x2 ≤ 6, x ≥ 0.

9.2. Minimizar z = 1.1x1 + 1.2x2 + 1.3x3 + 1.4x4 con las restricciones x3 +
x4 ≥ 1, x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x ≥ 0.

9.3. Minimizar z = 8x1 + 4x2 + 2x3 + x4 con las restricciones x3 + x4 ≥ 1,
x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x ≥ 0.

9.4. Minimizar z = 8x1 + 4x2 + 2x3 + x4 con las restricciones x3 + x4 ≥ 1,
x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x1 + x2 + x3 + 2x4 ≤ 1, x ≥ 0.

9.5. Minimizar z = 10x1 + 11x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x ≥ 0.

9.6. Minimizar z = 10x1 + 25x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x ≥ 0.

9.7. Minimizar z = 10x1 + 25x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x1 + x2 ≤ 4, x ≥ 0.
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Caṕıtulo 10

CASOS ESPECIALES DEL
MÉTODO SIMPLEX

10.1. Óptimo no acotado

En un problema real generalmente no se presenta un óptimo no acotado,
pues es casi imposible aumentar sin ĺımite las ganancias o disminuir de
manera indefinida los costos. Lo que śı puede haber sucedido es que no
se tuvo en cuenta alguna restricción. Sin embargo, es útil poder hacer el
análisis del caso de óptimo no acotado.

A partir de la última tabla del método simplex, cuando el óptimo no es
acotado, se puede obtener, de manera inmediata, una dirección del conjunto
de puntos factibles, a lo largo de la cual la función objetivo disminuye inde-
finidamente. Para esto basta con tomar B = I y considerar como columna
A·k la columna correspondiente a la variable que entra, en la cual no hay
ningún elemento positivo:

BdB = −A·k, entonces

dB = −A·k ≥ 0,

dk = 1,

dj = 0 en los demás casos.

Se puede mostrar, además, que el valor cTd está dado exactamente por el
costo reducido de la variable que entra c̃e.
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Ejemplo 10.1.
min z = −10x1 − 8x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Introduciendo variables de holgura se tiene:

min z = −10x1 − 8x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12

x ≥ 0.

Como no se tiene la matriz identidad es necesario introducir dos variables
artificiales, x5 y x6. La primera fase para este problema es exactamente la
misma del ejemplo 9.1 y aśı en el óptimo de la primera fase se tiene:

Â3 :
x2
x1
−za

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
0 0 0 0 0

 .
Colocando los costos originales

Âk :
x2
x1

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2

−10 -8 0 0 0

 .
Calculando los costos reducidos

Âk :
x2
x1
−z

 0 1 −5/8 1/8 1

1 0 1/4 −1/4 2

0 0 -5/2 -3/2 28

 ,
x = (2, 1, 0, 0),

z = −28,

xe = x3,

xβσ = xβ2 ,

xs = x1.

Âk :
x2
x3
−z

 5/2 1 0 −1/2 6
4 0 1 −1 8

10 0 0 -4 48

 ,
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x = (0, 6, 8, 0),

z = −48,

xe = x4

En este caso, al buscar cuál variable sale de la base, se observa que no
hay coeficientes ai4 positivos, esto quiere decir que, cuando x4 aumenta,
ninguna de las variables básicas disminuye, entonces no hay restricciones
que impidan que x4 aumente indefinidamente, disminuyendo aśı el valor de
la función objetivo también indefinidamente. Se dice entonces que el óptimo
no es acotado.

dB =

[
d2
d3

]
= −

[
−1/2
−1

]
=

[
1/2

1

]
,

d4 = 1,

dj = 0 en los demás casos,

d = (0, 1/2, 1, 1),

cTd = c̃e = c̃4 = −4.

Es decir, los puntos de la forma

x+ µd = (0, 6, 8, 0) + µ(0, 1/2, 1, 1), µ ≥ 0,

son puntos factibles para los cuales la función objetivo vale

z = −48 + µ(−4), µ ≥ 0. 3

10.2. Conjunto de puntos óptimos infinito y aco-
tado

Este caso se presenta cuando hay más de un punto extremo óptimo, y
para todas las direcciones extremas (si las hay) cTd > 0.

Si en la tabla óptima del simplex el punto extremo óptimo no es dege-
nerado, y una variable libre tiene costo reducido nulo, y su columna tiene
algún elemento positivo, entonces con seguridad se puede obtener otro punto
extremo óptimo, entrando esa variable libre a la base. Si el punto extre-
mo óptimo es degenerado, entonces no hay seguridad de obtener otro punto
extremo óptimo.
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Ejemplo 10.2.
min z = 8x1 + 16x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Estas restricciones son exactamente las mismas del ejemplo anterior. Enton-
ces es necesario introducir dos variables de holgura, dos variables artificiales,
efectuar la primera fase y colocar los costos originales.

Âk :
x2
x1

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
8 16 0 0 0

 .
Calculando los costos reducidos

Âk :
x2
x1
−z

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
0 0 8 0 -32

 ,
x∗ = (2, 1, 0, 0),

z∗ = 32.

Como el costo reducido de la variable libre x4 es nulo y, además, la solución
básica no es degenerada, entonces se puede afirmar que hay un número
infinito de soluciones óptimas.

La tabla del método simplex permite en este caso encontrar otro punto
extremo óptimo. Como la variable libre x4 tiene costo reducido nulo, enton-
ces al incrementar el valor de esta variable, entrándola a la base, el valor de
z = 32, que es óptimo, no se modifica, y entonces sigue siendo óptimo. Aśı
se obtiene otro punto extremo óptimo. Efectuando combinaciones convexas
de puntos extremos óptimos se obtienen puntos óptimos.

xe = x4,

xβσ = xβ1 ,

xs = x2.

Âk :
x4
x1
−z

 0 8 −5 1 8
1 2 −1 0 4
0 0 8 0 −32

 ,
104



10.3. CONJUNTO DE PUNTOS ÓPTIMOS NO ACOTADO 105

x∗ = (4, 0, 0, 8), es otro punto extremo óptimo.

z∗ = 32 (¡obviamente!).

Las observaciones sobre la penúltima tabla son también válidas para la tabla
anterior. Para obtener otro punto extremo óptimo se entraŕıa a la base la
variable x2 y saldŕıa la variable x4. Al hacer las operaciones correspondientes
se tendŕıa de nuevo la penúltima tabla.

En este sencillo ejemplo únicamente hay dos puntos extremos óptimos.
Sus combinaciones convexas dan todos los puntos óptimos.

x∗ = (2 + 2λ, 1− λ, 0, 8λ), λ ∈ [0, 1]. 3

10.3. Conjunto de puntos óptimos no acotado

Este caso se presenta cuando el valor de z es acotado, es decir, hay
óptimo finito, pero hay por lo menos una dirección extrema tal que cTd = 0.

Si en la tabla óptima del simplex hay una variable libre con costo redu-
cido nulo y su columna no tiene ningún elemento positivo, entonces al tratar
de entrar la variable libre de costo reducido nulo, no se puede escoger una
variable que salga de la base. Esto permite obtener fácilmente una dirección
extrema tal que cTd = 0.

Ejemplo 10.3.
min z = 7x1

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Estas restricciones son exactamente las mismas del ejemplo anterior. Enton-
ces es necesario introducir dos variables de holgura, dos variables artificiales,
efectuar la primera fase. En seguida hay que colocar los costos originales.

Âk :
x2
x1

 0 1 −5/8 1/8 1
1 0 1/4 −1/4 2
7 0 0 0 0

 .
Calculando los costos reducidos

Âk :
x2
x1
−z

 0 1 −5/8 1/8 1

1 0 1/4 −1/4 2

0 0 -7/4 7/4 −14

 ,
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106 CAṔITULO 10. CASOS ESPECIALES DEL MÉTODO SIMPLEX

x = (2, 1, 0, 0),

z = 14,

xe = x3,

xβσ = xβ2 ,

xs = x1.

Âk :
x2
x3
−z

 5/2 1 0 −1/2 6
4 0 1 −1 8
7 0 0 0 0

 ,
x∗ = (0, 6, 8, 0),

z∗ = 0,

xe = x4.

La variable libre x4 tiene costo reducido nulo y, como la solución no es
degenerada, entonces hay infinitos puntos óptimos. Para tratar de encontrar
más puntos extremos óptimos habŕıa que tratar de entrar la variable x4 a la
base. Sin embargo, no hay ningún elemento positivo en la cuarta columna,
esto quiere decir que no se puede escoger cuál variable sale de la base. Aśı
se puede obtener una dirección d, a lo largo de la cual el valor de z no se
modifica y, por lo tanto, sigue siendo óptimo.

dB =

[
d2
d3

]
= −

[
−1/2
−1

]
=

[
1/2

1

]
,

d4 = 1,

dj = 0 en los demás casos,

d = (0, 1/2, 1, 1),

cTd = c̃e = c̃4 = 0.

Es decir los puntos de la forma

x∗ + µd = (0, 6, 8, 0) + µ(0, 1/2, 1, 1), µ ≥ 0,

son puntos óptimos para los cuales la función objetivo vale

z∗ = 0 + µ(0), µ ≥ 0,

z∗ = 0. 3
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10.4. Variables artificiales básicas nulas

Un caso particular se presenta cuando se llega al óptimo de la prime-
ra fase con todas las variables artificiales nulas, pero algunas de ellas son
todav́ıa básicas. Esto significa dos cosas importantes, la primera es que el
problema śı tiene solución, es decir, śı tiene puntos que cumplan todas las
restricciones, la segunda es que no se tiene la matriz identidad con variables
no artificiales, ya que algunas variables artificiales son todav́ıa básicas.

En este caso hay dos posibilidades:

la primera consiste en pasar a la segunda fase con las variables arti-
ficiales básicas nulas, dándoles un costo nulo para la función objetivo
original, con la condición de no volverlas a dejar entrar a la base, si en
algún momento se vuelven libres (por ejemplo, suprimiendo la columna
correspondiente al salir una variable artificial nula de la base).

la segunda consiste en sacar primero las variables artificiales nulas de
la base, para empezar la segunda fase con todas las variables básicas no
artificiales. En esta opción, después de haber suprimido las columnas
de las variables artificiales libres, para cada variable artificial básica
nula xj , se puede presentar uno de los dos casos siguientes:

• en la fila correspondiente a xj todos los coeficientes son nulos,
salvo el de la misma variable xj cuyo valor es uno. Esto quiere
decir que la fila expresa la siguiente igualdad: xj = 0. Lo anterior
es cierto, pero no tiene ninguna información adicional, luego esta
fila se puede suprimir. Se reduce aśı el número de restricciones y
el orden de la matriz identidad en una unidad.

• en la misma fila, aparte del coeficiente uno para la misma variable,
hay otros coeficientes no nulos. En este caso mediante operacio-
nes elementales (“pivoteando”sobre uno de estos coeficientes no
nulos), se puede entrar a la base una variable no artificial y sacar
esta variable artificial nula. Entre las variables con coeficiente
no nulo en esta fila, se escoge la que entra a la base mediante uno
de los siguientes criterios:

◦ cualquier variable.

◦ aquella variable con costo menor.
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◦ aquella variable con coeficiente dominante (el mayor en valor
absoluto), para buscar precisión numérica, ya que este co-
eficiente va a ser utilizado como divisor. Este es uno de los
pocos casos donde el pivote puede ser negativo.

Ejemplo 10.4.

min z = 4x1 + 2x2 + 5x3

x1 + x2 + x3 = 3
x1 + 2x2 + 3x3 = 6

4x1 + 5x2 + 6x3 = 15
x ≥ 0.

Introduciendo 3 variables artificiales x4, x5, x6, la tabla inicial de la primera
fase es la siguiente:

Â0 :

x4
x5
x6


1 1 1 1 0 0 3
1 2 3 0 1 0 6
4 5 6 0 0 1 15
0 0 0 1 1 1 0

 .
La tabla óptima de la primera fase, después de suprimir las columnas de las
variables artificiales libres x4, x5 es la siguiente:

Â3 :
x1
x3
x6
−za


x1 x2 x3 x6
1 0.5 0 0 1.5
0 0.5 1 0 1.5
0 0 0 1 0
0 0 0 0 0

 .

En este caso todas las variables artificiales son nulas, luego hay puntos fac-
tibles. Pero hay una variable artificial nula en la base: x6. Si se escoge la
opción de ir directamente a la segunda fase, entonces se coloca la fila de
costos originales:

Âk :
x1
x3
x6


x1 x2 x3 x6
1 0.5 0 0 1.5
0 0.5 1 0 1.5
0 0 0 1 0
4 2 5 0 0

 .
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Calculando costos reducidos:

Âk :
x1
x3
x6
−z


x1 x2 x3 x6
1 0.5 0 0 1.5
0 0.5 1 0 1.5
0 0 0 1 0
0 -2.5 0 0 −13.5

 ,

x = (1.5, 0, 1.5, 0),

z = 13.5,

xe = x2,

xβσ = xβ1 ,

xs = x1.

Âk :
x2
x3
x6
−z


x1 x2 x3 x6
2 1 0 0 3
−1 0 1 0 0

0 0 0 1 0
5 0 0 0 -6

 ,

x∗ = (0, 3, 0),

z∗ = 6.

Si en este mismo ejemplo se busca quitar las variables artificiales nulas de
la base, antes de pasar a la segunda fase, hay que sacar a x6 de la base.
Veamos que pasa con la fila correspondiente, es decir, la tercera fila de la
última tabla de la primera fase. Esta fila indica simplemente que x6 = 0,
luego se puede suprimir sin ninguna pérdida de información.

En este caso, desde el principio hab́ıa una restricción redundante. Se
puede ver, por ejemplo, que la tercera restricción es simplemente la suma de
tres veces la primera y una vez la segunda. Sin embargo, en general, es dis-
pendioso, dif́ıcil o casi imposible averiguar si hay restricciones redundantes.
Más aún, cuando se plantea un problema es preferible escribir restricciones,
que de pronto podŕıan ser redundantes, que pecar por ausencia de restric-
ciones.

El problema queda entonces con dos restricciones. Al colocar los costos
de la función objetivo real se tiene:

x1
x3

 1 1/2 0 1.5
0 1/2 1 1.5
4 2 5 0

 .
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Calculando costos reducidos:

Âk =
x1
x3
−z

 1 0.5 0 1.5
0 0.5 1 1.5
0 -2.5 0 −13.5

 ,

x = (1.5, 0, 1.5),

z = 13.5,

xe = x2,

xβσ = xβ1 ,

xs = x1.

Âk =
x2
x3
−z

 2 1 0 3
−1 0 1 0

5 0 0 -6

 ,

x∗ = (0, 3, 0),

z∗ = 6. 3

Ejemplo 10.5.

min z = 4x1 + 5x2 + x3 + 4x4 + 2x5 + x6

6x1 + 7x2 + 10x3 + 11x4 + 14x5 + 15x6 ≤ 63
x1 + x2 + x3 + x4 + x5 + x6 = 6
x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≥ 21
x1 + x3 + x5 = 3

3x1 + 3x2 + 5x3 + 5x4 + 7x5 + 7x6 ≥ 30
x ≥ 0.

Para este problema es necesario introducir tres variables de holgura x7, x8,
x9, y cuatro variables artificiales x10, x11, x12, x13. Inicialmente la base está
formada por las variables x7, x10, x11, x12, x13. Al cabo de tres iteraciones
se obtiene la tabla óptima de la primera fase. Entraron las variables x5, x6,
x1. Salieron las variables x12, x11, x7. La tabla óptima, después de suprimir
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las columnas de las variables artificiales libres x12 y x11, es la siguiente:

x1
x10
x6
x5
x13
−za



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x13

1 1 1/2 1/2 0 0 1/2 5/4 0 0 0 3

0 0 0 0 0 0 −1/3 −2/3 0 1 0 0

0 1 0 1 0 1 1/3 2/3 0 0 0 3
0 −1 1/2 −1/2 1 0 −1/2 −5/4 0 0 0 0
0 0 0 0 0 0 −1/3 1/3 −1 0 1 0
0 0 0 0 0 0 2/3 1/3 1 0 0 0


Como el valor de za es cero, entonces śı hay puntos factibles, sin embargo,

hay variables artificiales básicas nulas. El objetivo es sacar las variables
artificiales de la base antes de pasar a la segunda fase, bien sea suprimiendo
la fila correspondiente, bien sea pivoteando para que una variable no artificial
entre a la base.

La segunda fila, la de la variable básica x10, no se puede suprimir puesto
que hay valores no nulos (−1/3 y -2/3) fuera del valor uno en la columna de
x10. En este caso hay que escoger una variable entre x7 y x8 para que entre
a la base. Se observa que en este caso (entrar x7 o x8), el pivote resulta
negativo.

Si el criterio es buscar mayor precisión numérica, debe entrar la variable
de coeficiente dominante (mayor en valor absoluto), es decir, la variable x8.

Si se desea entrar la variable de menor costo hay empate, pues en este
ejemplo ambas son variables de holgura y tienen costo nulo.

Al pivotear sobre el coeficiente -2/3, para que entre la variable x8 y salga
la variable artificial x10, se obtiene la siguiente tabla

x1
x8
x6
x5
x13



x1 x2 x3 x4 x5 x6 x7 x8 x9 x13

1 1 1/2 1/2 0 0 −1/8 0 0 0 3
0 0 0 0 0 0 1/2 1 0 0 0
0 1 0 1 0 1 0 0 0 0 3
0 −1 1/2 −1/2 1 0 1/8 0 0 0 0

0 0 0 0 0 0 −1/2 0 −1 1 0


Como de costumbre, no se calcula la columna de una variable artificial que
sale de la base.
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Para sacar la variable artificial x13 de la base, se puede pivotear sobre el
coeficiente −1 para que entre la variable x9.

x1
x8
x6
x5
x9



x1 x2 x3 x4 x5 x6 x7 x8 x9

1 1 1/2 1/2 0 0 −1/8 0 0 3
0 0 0 0 0 0 1/2 1 0 0
0 1 0 1 0 1 0 0 0 3
0 −1 1/2 −1/2 1 0 1/8 0 0 0
0 0 0 0 0 0 1/2 0 1 0


.

Colocando los costos reales:

x1
x8
x6
x5
x9



1 1 1/2 1/2 0 0 −1/8 0 0 3
0 0 0 0 0 0 1/2 1 0 0
0 1 0 1 0 1 0 0 0 3
0 −1 1/2 −1/2 1 0 1/8 0 0 0
0 0 0 0 0 0 1/2 0 1 0
4 5 1 4 2 1 0 0 0 0


Calculando costos reducidos

x1
x8
x6
x5
x9
−z



1 1 1/2 1/2 0 0 −1/8 0 0 3
0 0 0 0 0 0 1/2 1 0 0
0 1 0 1 0 1 0 0 0 3

0 −1 1/2 −1/2 1 0 1/8 0 0 0

0 0 0 0 0 0 1/2 0 1 0
0 2 −2 2 0 0 1/4 0 0 −15


,

x = (3, 0, 0, 0, 0, 3, 0, 0, 0),

z = 15,

xe = x3,

xβσ = xβ4 ,

xs = x5.

Âk :

x1
x8
x6
x3
x9
−z


1 2 0 1 −1 0 −1/4 0 0 3
0 0 0 0 0 0 1/2 1 0 0
0 1 0 1 0 1 0 0 0 3
0 −2 1 −1 2 0 1/4 0 0 0
0 0 0 0 0 0 1/2 0 1 0
0 −2 0 0 4 0 3/4 0 0 −15


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x = (3, 0, 0, 0, 0, 3, 0, 0, 0),

z = 15.

En este caso se obtuvo el mismo punto de la tabla anterior. Simplemente
una variable nula que era básica se volvió libre y una variable libre se volvió
básica, pero nula. Obviamente, el valor de z no mejoró de una tabla a
la otra. Esta situación se puede presentar únicamente cuando la solución
básica realizable es degenerada. Sin embargo, también es cierto que, aún en
presencia de soluciones degeneradas, puede haber mejoŕıa de una tabla a la
siguiente.

xe = x2,

xβσ = xβ1 ,

xs = x1.

x2
x8
x6
x3
x9
−z



1/2 1 0 1/2 −1/2 0 −1/8 0 0 3/2
0 0 0 0 0 0 1/2 1 0 0

−1/2 0 0 1/2 1/2 1 0 0 0 3/2
1 0 1 1 1 0 1/8 0 0 3
0 0 0 0 0 0 1/2 0 1 0
1 0 0 1 3 0 1/2 0 0 −12

 ,

x∗ = (0, 3/2, 3, 0, 0, 3/2, 0, 0, 0),

z∗ = 12. 3

EJERCICIOS

En los ejercicios 10.1 a 10.5 convierta el problema a la forma estándar.
Aplique el método simplex o el método de las dos fases. Estudie en
detalle la solución (dirección extrema en óptimo no acotado, varios
puntos extremos óptimos, dirección extrema en conjunto óptimo no
acotado, variables artificiales básicas nulas).

10.1. Maximizar z = 4x1 + 5x2 con las restricciones 4x1 + 3x2 ≥ 20, x1 +
2x2 ≥ 10, x ≥ 0.

10.2. Minimizar z = 15x1 + 30x2 con las restricciones 4x1 + 3x2 ≥ 20,
x1 + 2x2 ≥ 10, x ≥ 0.
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10.3. Minimizar z = 10x1 − 10x2 con las restricciones 4x1 + 3x2 ≥ 20,
x1 + 2x2 ≥ 10, −x1 + x2 ≤ 7, x ≥ 0.

10.4. Minimizar z = 2x1+8x2 con las restricciones 4x1+3x2 = 20, x1+2x2 ≥
10, 3x1 + x2 ≥ 10, x ≥ 0.

10.5. Minimizar z = 2x1+8x2+x3 con las restricciones 4x1+3x2+x3 = 20,
x1 + 2x2 + x3 = 10, 3x1 + x2 = 10, x ≥ 0.
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Caṕıtulo 11

MÉTODO DE
PENALIZACIÓN

Este método también es conocido con los nombres: M-grande, gran-M
o big-M. Sirve para resolver, en un solo proceso (o fase), un problema de
programación lineal. Al mismo tiempo que se busca anular las variables
artificiales para obtener un punto factible, también se puede tratar de que
ese punto factible no esté muy alejado del óptimo. De esta manera, es
posible que el número de iteraciones sea menor que la suma del número de
iteraciones de la primera y segunda fase en el método de las dos fases.

11.1. Costos y costos reducidos

En el método de penalización se construye una función objetivo de pe-
nalización que tiene en cuenta tanto los costos originales o reales, como los
valores artificiales para las variables artificiales. Para las variables originales
el coeficiente en la función objetivo de penalización es simplemente el coefi-
ciente real. Para las variables de holgura el coeficiente es cero. Para cada
una de las variables artificiales el coeficiente es M , indicando un valor que
puede ser muy grande. De esta manera, cualquier costo o costo reducido (o
el valor de −z) se puede expresar de la forma:

c̃j = ρj + αjM,

Se podŕıa hablar de una parte real ρj y de una parte artificial αj .

115
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Al comparar con cero (para las condiciones de optimalidad) un costo redu-
cido expresado en esta forma, se tiene:

c̃j > 0 si


αj > 0,

o también si

αj = 0 y ρj > 0.

c̃j = 0 si αj = 0 y ρj = 0.

c̃j < 0 si


αj < 0,

o también si

αj = 0 y ρj < 0.

Como cada costo o costo reducido necesita dos coeficientes: ρj y αj , entonces
es necesario tener dos filas para los costos reducidos (en lugar de una): una
para los coeficientes ρj y otra para los coeficientes αj .

En el método de las dos fases durante la primera fase no se tienen en
cuenta, de ninguna manera, los verdaderos coeficientes de la función objeti-
vo. Esto hace que al obtener un punto factible al final de la primera fase,
éste pueda estar muy alejado de un punto óptimo, pues únicamente se han
tenido en cuenta los costos artificiales de las variables artificiales.

11.2. Escogencia de la variable que entra

Para la escogencia de la variable que entra a la base en el método de
penalización hay dos enfoques posibles:

1) Dar prioridad parcial a los coeficientes αj (provenientes de las varia-
bles artificiales) y al mismo tiempo tener en cuenta los coeficientes ρj
(provenientes de los coeficientes reales de las variables originales). Esto
aumenta las posibilidades de que el primer punto factible encontrado
esté más cerca de un punto óptimo. Aśı el número de iteraciones en
el método de penalización puede ser menor que la suma de iteraciones
de la primera y segunda fase en el método de las dos fases.

2) Dar prioridad absoluta a los coeficientes αj y tener en cuenta los
coeficientes ρj solamente cuando ya todos los αj se han anulado o
cuando ya no hay variables artificiales básicas. Este enfoque es el
mismo del método de las dos fases, salvo que se hace en una sola fase
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más general. Aśı se favorece posiblemente la obtención rápida de un
punto factible, pero éste puede estar alejado de un punto óptimo.

La escogencia de la variable que sale de la base se hace exacta-
mente como en el método simplex.

Dando prioridad parcial a los costos artificiales, se tiene el siguiente
criterio para escoger la variable libre, no artificial, que entra a la base.

Buscar entre las variables libres no artificiales con αj < 0, aque-
lla cuyo coeficiente ρj sea mı́nimo. Dicho de otra forma:

c̃e = ρe + αeM tal que ρe = min{ρj : αj < 0}.

Si el anterior paso no es posible, es decir, si no hay variables libres no
artificiales con αj < 0, entonces es necesario escoger entre las variables
libres no artificiales con αj = 0 y con ρj < 0, aquella con coeficiente
ρj mı́nimo:

c̃e = ρe + αeM tal que ρe = min{ρj : αj = 0, ρj < 0}.

Si esto tampoco es posible, se concluye que la solución actual es óptima
para el problema de penalización. Obviamente si hay variables artificiales
no nulas el problema real no tiene solución.

De la misma manera que en el método simplex, cuando una variable
artificial se vuelve libre, se puede suprimir su columna. También se puede
suprimir toda la fila m + 2, la correspondiente a los coeficientes artificiales
αj , cuando todas las variables artificiales sean libres.

Ejemplo 11.1. Son los mismos datos del ejemplo 9.1.

min z = 3x1 + 10x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Introduciendo variables de holgura y artificiales

x1 + 2x2 − x3 + x5 = 4
5x1 + 2x2 − x4 + x6 = 12

x ≥ 0.

117



118 CAṔITULO 11. MÉTODO DE PENALIZACIÓN

La función objetivo de penalización será:

min zp = 3x1 + 10x2 +Mx5 +Mx6,

o también

min zp = (3 + 0M)x1 + (10 + 0M)x2 + (0 + 0M)x3

+ (0 + 0M)x4 + (0 + 1M)x5 + (0 + 1M)x6.

Entonces la tabla inicial es:

Â0 :
x5
x6
ρj
αj


x1 x2 x3 x4 x5 x6

1 2 −1 0 1 0 4
5 2 0 −1 0 1 12
3 10 0 0 0 0 0
0 0 0 0 1 1 0

 .

Para obtener costos reducidos se necesita obtener el valor cero para las
variables básicas en las filas de ρj y de αj , es decir, la tercera y cuarta filas;
para esto basta con restar de la cuarta fila una vez la primera fila y una vez
la segunda fila.

Â1 :
x5
x6
ρj
αj


x1 x2 x3 x4 x5 x6

1 2 −1 0 1 0 4

5 2 0 −1 0 1 12
3 10 0 0 0 0 0
−6 −4 1 1 0 0 −16

 ,

x = (0, 0, 0, 0, 4, 12),

zp = 16M.

Aqúı las variables libres x1, x2 tienen coeficiente αj negativo y de ellas la de
menor coeficiente ρj es la variable x1. Luego x1 va a entrar a la base. Aśı
entonces sale de la base la variable x6.

xe = x1,

xβσ = xβ2 ,

xs = x6.
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Â2 :
x5
x1
ρj
αj


x1 x2 x3 x4 x5

0 1.6 −1 0.2 1 1.6
1 0.4 0 −0.2 0 2.4
0 8.8 0 0.6 0 −7.2
0 −1.6 1 −0.2 0 −1.6

 ,

x = (2.4, 0, 0, 0, 1.6),

zp = 7.2 + 1.6M.

Las variables libres x2, x4 tienen coeficiente αj negativo. De ellas la de
menor coeficiente ρj es la variable x4. Luego x4 va a entrar a la base.

xe = x4,

xβσ = xβ1 ,

xs = x5.

Â3 :

x4
x1
ρj
αj


0 8 −5 1 8
1 2 −1 0 4
0 4 3 0 −12
0 0 0 0 0

 ,

x∗ = (4, 0, 0, 8),

z∗ = 12.

En el ejemplo anterior, hubo únicamente dos iteraciones; en cambio la so-
lución del mismo problema por el método de las dos fases (ejemplo 9.1)
requirió tres iteraciones: dos en la primera fase y una en la segunda. 3

Si se da prioridad absoluta a los costos artificiales, se tiene el siguiente
criterio para escoger la variable libre no artificial que entra a la base.

Buscar entre las variables libres no artificiales con αj < 0, aque-
lla cuyo coeficiente αj sea mı́nimo. Dicho de otra forma:

c̃e = ρe + αeM tal que αe = min{αj : αj < 0}.

Si el anterior paso no es posible, es decir, si no hay variables libres no
artificiales con αj < 0, entonces es necesario escoger entre las variables
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libres no artificiales con αj = 0 y con ρj < 0, aquella con coeficiente
ρj mı́nimo.

c̃e = ρe + αeM tal que ρe = min{ρj : αj = 0, ρj < 0}.

Si esto tampoco es posible, se concluye que la solución actual es óptima
para el problema de penalización. Es obvio que si hay variables artificiales
no nulas el problema real no tiene solución.

La aplicación de la prioridad absoluta para los costos artificiales, como
se aprecia en el siguiente ejemplo, dará los mismos pasos del método de las
dos fases.

Ejemplo 11.2.
min z = 3x1 + 10x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Este es exactamente el mismo enunciado del ejemplo anterior, pero ahora se
dará prioridad total a los costos artificiales.

La tabla inicial es:

Â0 :
x5
x6
ρj
αj


x1 x2 x3 x4 x5 x6

1 2 −1 0 1 0 4
5 2 0 −1 0 1 12
3 10 0 0 0 0 0
0 0 0 0 1 1 0

 .

La tabla con costos reducidos es la siguiente:

Â1 :
x5
x6
ρj
αj


x1 x2 x3 x4 x5 x6

1 2 −1 0 1 0 4

5 2 0 −1 0 1 12
3 10 0 0 0 0 0
−6 −4 1 1 0 0 −16

 ,

x = (0, 0, 0, 0, 4, 12),

zp = 16M.

Es claro que hasta acá no hay ninguna diferencia con el método anterior.
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Aqúı las variables libres x1, x2 tienen coeficiente αj negativo. De ellas
la de menor coeficiente αj es la variable x1. Luego x1 va a entrar a la base.

xe = x1,

xβσ = xβ2 ,

xs = x6.

Â2 :
x5
x1
ρj
αj


x1 x2 x3 x4 x5

0 1.6 −1 0.2 1 1.6
1 0.4 0 −0.2 0 2.4
0 8.8 0 0.6 0 −7.2
0 −1.6 1 −0.2 0 −1.6

 ,

x = (2.4, 0, 0, 0, 1.6),

zp = 7.2 + 1.6M.

Las variables libres x2, x4 tienen coeficiente αj negativo. De ellas la de
menor coeficiente αj es la variable x2. Luego x2 va a entrar a la base.

xe = x2,

xβσ = xβ1 ,

xs = x5.

Â3 :

x2
x1
ρj
αj


0 1 −5/8 1/8 1

1 0 1/4 −1/4 2
0 0 5.5 −0.5 −16
0 0 0 0 0

 ,

x = (2, 1, 0, 0),

z = 16.

Como la fila de coeficientes αj tiene únicamente ceros se puede suprimir.

xe = x4,

xβσ = xβ1 ,

xs = x2.

Â4 :
x4
x1
ρj

 0 8 −5 1 8
1 2 −1 0 4
0 4 3 0 −12

 ,
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x∗ = (4, 0, 0, 8),

z∗ = 12. 3

11.3. Conjunto no factible

Ejemplo 11.3.
min z = 3x1 + 4x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12
x1 + x2 ≤ 1

x ≥ 0.

Introduciendo variables de holgura x3, x4 y x5 y las artificiales x6 y x7, se
tiene:

x1 + 2x2 − x3 + x6 = 4
5x1 + 2x2 − x4 + x7 = 12
x1 + x2 − x4 + x5 = 1

x ≥ 0.

La función objetivo de penalización será:

zp = 3x1 + 4x2 +Mx6 +Mx7.

Entonces la tabla inicial es:

Â0 :

x6
x7
x5
ρj
αj



x1 x2 x3 x4 x5 x6 x7

1 2 −1 0 0 1 0 4
5 2 0 −1 0 0 1 12
1 1 0 0 1 0 0 1
3 4 0 0 0 0 0 0
0 0 0 0 0 1 1 0


.

Calculando costos reducidos

Â1 :

x6
x7
x5
ρj
αj



x1 x2 x3 x4 x5 x6 x7

1 2 −1 0 0 1 0 4
5 2 0 −1 0 0 1 12

1 1 0 0 1 0 0 1
3 4 0 0 0 0 0 0
−6 −4 1 1 0 0 0 −16


,
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x = (0, 0, 0, 0, 1, 4, 12),

zp = 16M,

xe = x1,

xβσ = xβ3 ,

xs = x5.

Â2 :

x6
x7
x1
ρj
αj



x1 x2 x3 x4 x5 x6 x7

0 1 −1 0 −1 1 0 3
0 −3 0 −1 −5 0 1 7
1 1 0 0 1 0 0 1
0 1 0 0 −3 0 0 −3
0 2 1 1 6 0 0 −10


,

x = (1, 0, 0, 0, 0, 3, 7),

z∗p = 3 + 10M.

Todos los coeficientes αj de las variables libres son positivos, entonces los
costos reducidos son positivos, luego ya se alcanzó el óptimo. Como hay
variables artificiales no nulas, x6 y x7, entonces se puede afirmar que el
problema no tiene puntos realizables, es decir, no tiene solución. 3

EJERCICIOS

En los ejercicios 11.1 a 11.12 convierta el problema a la forma estándar.
Aplique el método simplex o el método de penalización.

11.1. Minimizar z = −x1 − 0.1x2 con las restricciones x1 + x2 ≤ 4, x2 ≥ 2,
x1 + 2x2 ≤ 6, x ≥ 0.

11.2. Minimizar z = 1.1x1 + 1.2x2 + 1.3x3 + 1.4x4 con las restricciones x3 +
x4 ≥ 1, x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x ≥ 0.

11.3. Minimizar z = 8x1 + 4x2 + 2x3 + x4 con las restricciones x3 + x4 ≥ 1,
x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x ≥ 0.

11.4. Minimizar z = 8x1 + 4x2 + 2x3 + x4 con las restricciones x3 + x4 ≥ 1,
x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x1 + x2 + x3 + 2x4 ≤ 1, x ≥ 0.
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11.5. Minimizar z = 10x1 + 11x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x ≥ 0.

11.6. Minimizar z = 10x1 + 25x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x ≥ 0.

11.7. Minimizar z = 10x1 + 25x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x1 + x2 ≤ 4, x ≥ 0.

11.8. Maximizar z = 4x1 + 5x2 con las restricciones 4x1 + 3x2 ≥ 20, x1 +
2x2 ≥ 10, x ≥ 0.

11.9. Minimizar z = 15x1 + 30x2 con las restricciones 4x1 + 3x2 ≥ 20,
x1 + 2x2 ≥ 10, x ≥ 0.

11.10. Minimizar z = 10x1 − 10x2 con las restricciones 4x1 + 3x2 ≥ 20,
x1 + 2x2 ≥ 10, −x1 + x2 ≤ 7, x ≥ 0.

11.11. Minimizar z = 2x1+8x2 con las restricciones 4x1+3x2 = 20, x1+2x2 ≥
10, 3x1 + x2 ≥ 10, x ≥ 0.

11.12. Minimizar z = 2x1+8x2+x3 con las restricciones 4x1+3x2+x3 = 20,
x1 + 2x2 + x3 = 10, 3x1 + x2 = 10, x ≥ 0.
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Caṕıtulo 12

MÉTODO SIMPLEX
REVISADO

12.1. Generalidades

En el método simplex, se parte de una matriz Â0 de tamaño (m+ 1)×
(n+ 1) y mediante operaciones elementales se construye Â1, después Â2,...,
Âk, hasta obtener una solución óptima, o hasta saber que el óptimo no es
acotado (únicamente en la segunda fase), o bien hasta llegar a la conclusión
de que el problema no tiene puntos realizables (únicamente en la primera
fase).

Las operaciones elementales que permiten pasar de Âk a Âk+1 se pueden
expresar mediante la premultiplicación de Âk por una matriz T̂ k, de tamaño
(m+ 1)× (m+ 1), invertible.

Â1 = T̂ 0Â0,

Â2 = T̂ 1Â1,

...

Âk+1 = T̂ kÂk.

Sea T̂ 0 la matriz que permite pasar de Â0 a Â1, es decir, la que permite
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obtener los costos reducidos iniciales. Es fácil comprobar que

T̂ 0 =


0

Im
...
0

−cTB 1

 .
De manera semejante, la matriz T̂ k que permite pasar de Âk a Âk+1, es
decir, la que permite obtener la matriz identidad para las nuevas variables
básicas y al mismo tiempo actualizar los costos reducidos, es simplemente
una ampliación de la matriz (Qk)−1 definida en el caṕıtulo 7:

T̂ k =


0

(Qk)−1
...
0

0 −c̃ke/akσe 0 1

 .
Ejemplo 12.1. La obtención de los costos reducidos para los datos del
ejemplo 8.3 se puede representar mediante la premultiplicación de Â0 por
T̂ 0 para obtener Â1.

Â0 =

 1 2 −1 0 1 0 4
5 2 0 −1 0 1 12
0 0 0 0 1 1 0

 ,
T̂ 0 =

 1 0 0
0 1 0
−1 −1 1

 ,
Â1 = T̂ 0Â0 =

 1 2 −1 0 1 0 4
5 2 0 −1 0 1 12
−6 −4 1 1 0 0 −16

 . 3

Ejemplo 12.2. Para el mismo ejemplo 8.3 , la matriz T̂ 1 representa el paso
de Â1 a Â2.

T̂ 1 =

 1 −1/5 0
0 1/5 0
0 6/5 1

 ,
Â2 = T̂ 1Â1 =

 0 1.6 −1 0.2 1 −0.2 1.6
1 0.4 0 −0.2 0 0.2 2.4
0 −1.6 1 −0.2 0 1.2 −1.6

 . 3
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Todas las operaciones elementales efectuadas sobre la matriz Â0 se pue-
den agrupar de la siguiente manera:

Â1 = T̂ 0Â0,

Â2 = T̂ 1Â1 = T̂ 1T̂ 0Â0,

...

Âk = T̂ k−1T̂ k−2 . . . T̂ 2T̂ 1T̂ 0Â0,

Âk = ŜkÂ0,

donde
Ŝk = T̂ k−1 T̂ k−2 . . . T̂ 2T̂ 1T̂ 0.

Por construcción Ŝk es cuadrada, de ordenm+1, invertible (por ser producto
de matrices invertibles) y representa todas las operaciones elementales que
se efectúan sobre Â0, para obtener Âk. En particular

Ŝ0 = Im+1,

Ŝ1 = T̂ 0,

Ŝk+1 = T̂ kŜk.

Al comparar la última igualdad con la igualdad Âk+1 = T̂ kÂk, se deduce que
para pasar de Ŝk a Ŝk+1 hay que efectuar exactamente las mismas
operaciones elementales requeridas para pasar de Âk a Âk+1 , o sea,
para pasar de Ŝk a Ŝk+1 hay que utilizar fórmulas sencillas iguales a las de
método simplex.

Se puede mostrar que la matriz Ŝk tiene la siguiente forma:

Ŝk =


0

Bk−1 ...
0

−cT
Bk
Bk−1 1

 ,

donde Bk−1 es la inversa de la matriz Bk formada por las columnas de la ma-
triz A0 = A, correspondientes a las variables básicas en la k-ésima iteración,
y cT

Bk
es el vector fila formado por los costos (en el orden correspondiente)

de las variables básicas.
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128 CAṔITULO 12. MÉTODO SIMPLEX REVISADO

Ejemplo 12.3. Considérese la tabla Â2 del ejemplo 8.3 . Alĺı las variable
básicas son x5 y x1, entonces:

B2 =

[
1 1
0 5

]
,

B2−1 =

[
1 −0.2
0 0.2

]
,

cTB2 =
[

1 0
]
,

−cTB2B
2−1 =

[
−1 0.2

]
,

Ŝ2 =

 1 −0.2 0
0 0.2 0
−1 0.2 1

 .
Fácilmente se comprueba que Â2 = Ŝ2Â0. 3

En el método simplex revisado, MSR, la matriz Â0 no se modifica, en
cambio, en cada iteración se va construyendo expĺıcitamente la matriz Ŝk,
y algunas partes de Âk que son absolutamente indispensables para aplicar
el método simplex.

Las partes de la matriz Âk, que estrictamente se necesitan son:

los términos independientes (incluyendo el valor de −zk) : b̂k,

los costos reducidos de las variables libres : ckL,

la columna de la variable que entra : Âk·e .

Entonces toda la información indispensable para el MSR se puede agru-
par en una matriz de tamaño (m+ 1)× (m+ 3):

R̂k =
[

Ŝk b̂k Âk·e

]
.

De manera más expĺıcita:

R̂k =


0 bk1 ak1e

Bk−1 ...
...

...
0 bkm akme

−cT
Bk
Bk−1 1 −zk c̃ke

 .
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El valor de −zk se puede obtener como cualquier otro elemento de la matriz
R̂k. Pero también se puede hallar mediante la siguiente fórmula (la misma
del método simplex).

−zk = −cTBkB
k−1b0.

Esta fórmula se puede efectuar de dos maneras equivalentes:

i) −zk = (−cT
Bk
Bk−1)b0,

ii) −zk = −cT
Bk

(Bk−1b0).

La primera forma consiste en multiplicar los m primeros elementos de la fila
m+ 1 de R̂k, por los términos independientes iniciales y después sumar. La
segunda consiste en multiplicar −cT

Bk
(los costos de las variables básicas de

la iteración) por los términos independientes de la misma iteración y después
sumar.

La columna m+ 3 de R̂k, correspondiente a la variable que entra, no se
necesita cuando se llega al óptimo.

Conocer la matriz R̂k, saberla utilizar y saberla modificar para obtener
R̂k+1 es, ni más ni menos, el MSR.

Antes de pasar a detallar el procedimiento para la construcción de R̂0

o de R̂1 y de los pasos necesarios para pasar de R̂k a R̂k+1, veamos en un
ejemplo las principales ventajas del MSR. Consideremos un problema en la
forma estándar con muchas más variables que restricciones: 9 restricciones
y 99 variables.

La tabla del método simplex tiene entonces 10×100 = 1000 elementos,
la mayoŕıa de los cuales son modificados en cada iteración. La tabla
del MSR tiene 10×12 = 120 elementos que también son modificados en
cada iteración. Obviamente es mucho más económico (menos tiempo,
luego más barato) modificar 120 elementos que 1000.

Es posible corregir o volver a calcular de manera más precisa Bk−1 al
cabo de cierto número de iteraciones.

En problemas muy grandes puede suceder lo siguiente: Âk no cabe en
memoria central (aunque śı en disco) y, sin embargo, R̂0 śı cabe en
memoria central; es claro que el acceso a memoria central es mucho
más rápido que a cualquier unidad de disco.
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Para empezar a aplicar el MSR se requieren las mismas condiciones que
para empezar el método simplex:

1. problema de minimización en la forma estándar:

min z = cTx

Ax = b

x ≥ 0,

2. b ≥ 0,

3. m columnas de A forman la matriz identidad.

12.2. Algoritmo del MSR

A continuación está el esquema general del algoritmo del MSR y, poste-
riormente, están los detalles sobre cada paso del algoritmo:

verificar que el problema cumple las condiciones

construir las primeras m+ 2 columnas de la matriz R̂1.
calcular los costos reducidos de las variables libres
mientras la solución no sea óptima

escoger la variable que entra

construir la columna de la variable que entra Âk·e
si el óptimo es no acotado, (Ak·e ≤ 0), ent parar
escoger la variable que sale

modificar los elementos de las primeras m+ 2 columnas de R̂
calcular los nuevos costos reducidos

fin-mientras

La construcción de R̂0 no es necesaria; además, si se construyera no
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habŕıa que hacer ningún cálculo:

R̂0 =
[

Im+1 b̂0 ?
]
,

R̂0 =


1 0 . . . 0 0 b01 ?

0 1 . . .
...

... b02 ?
...

...
. . . 0 0

...
...

0 0 . . . 1 0 b0m ?
0 0 . . . 0 1 0 ?

 .

La única diferencia entre la tabla Â0 y la tabla Â1 está en la última fila: la
tabla Â0 tiene los costos cj y la tabla Â1 tiene los costos reducidos c̃j . Esto

hace que la única diferencia entre R̂0 y R̂1 esté en la última fila. Entonces
para obtener R̂1 son necesarios los siguientes cálculos:

−cTB1B
1−1 = −cTB1Im = −cTB1 ,

−z1 = −cTB1b
1 = −cTB1b

0.

Hasta el momento se ha construido la mayor parte de R̂1, sólo falta por
obtener (cuando sea necesario) la columna de la variable que entra.

R̂1 =


1 0 . . . 0 0 b1 ?
0 1 . . . 0 0 b2 ?
...

...
. . .

...
...

...
...

0 0 . . . 1 0 bm ?
−cTB1 1 −z1 ?

 .

Los costos reducidos de las variables libres, en cualquier iteración, se obtie-
nen multiplicando escalarmente el vector fila conformado por los primeros
m+ 1 elementos de la fila m+ 1 de R̂k, es decir, multiplicar Ŝkm+1,· por las

columnas de Â0 correspondientes a las variables libres de la iteración k:

cTLk = Ŝkm+1,· L̂
0,k.

Aśı el valor de un costo reducido está dado por:

c̃j =
[
−cT

Bk
Bk−1 1

]
Â0

·j =
[
−cT

Bk
Bk−1 1

] [ A0
·j
cj

]
= cj − cTBkB

k−1A0
·j .
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El criterio de optimalidad es exactamente el mismo del método simplex. Si

c̃Lk ≥ 0,

entonces la solución factible obtenida es óptima.

La escogencia de la variable libre que entra a la base se hace exactamente
de la misma forma que en el método simplex: aquella variable libre de costo
reducido mı́nimo.

c̃ke = min
1≤j≤n

{c̃kj : xj es variable libre}

e = argmin
1≤j≤n

{c̃kj : xj es variable libre}.

La columna de la variable que entra Âk·e está compuesta por Ak·e y por c̃ke
en la posición m + 1. El vector columna de m componentes Ak·e se obtiene

multiplicando la matriz Bk−1, que ocupa las primeras m filas y las primeras
m columnas de R̂k, por la columna de A0 correspondiente a la variable que
entra.

Âk·e =

[
Ak·e
c̃ke

]
=

[
Bk−1A0

·e
c̃ke

]
.

Esta construcción es exactamente equivalente a:

Âk·e = ŜkÂ0
·e.

Recuérdese que Ŝk corresponde a las primeras m+ 1 columnas de R̂k.

La escogencia de la variable básica que sale de la base, también se hace
de la misma forma que en el método simplex:

xs = xβσ ,

bkσ
akσe

= min
1≤i≤m

{ b
k
i

akie
: akie > 0},

σ = argmin
1≤i≤m

{ b
k
i

akie
: akie > 0}.

En términos de elementos de R̂k:

σ = argmin
1≤i≤m

{
rki,m+2

rki,m+3

: rki,m+3 > 0}.
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12.2. ALGORITMO DEL MSR 133

La actualización de la matriz R̂k para obtener las primeras m+ 2 columnas
de R̂k+1 se hace mediante operaciones elementales, tomando como elemento
pivote akσe = rkσ,m+3, es decir, las fórmulas son semejantes a las del método
simplex.

rk+1
ij = rkij −

rkσjr
k
ie

rkσe
, i 6= σ, j = 1, . . . ,m+ 2,

rk+1
σj =

rkσj

rkσ,m+3

, j = 1, . . . ,m+ 2.

Ejemplo 12.4. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 7.1:

min z = −x1 − 1.4x2

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

Introduciendo variables de holgura

min z = −x1 − 1.4x2

x1 + x2 + x3 = 400
x1 + 2x2 + x4 = 580
x1 + x5 = 300

x ≥ 0.

La matriz Â0 es entonces:

Â0 =


1 1 1 0 0 400
1 2 0 1 0 580
1 0 0 0 1 300
−1 −1.4 0 0 0 0

 .
Las variables básicas en la primera iteración son: x3, x4, x5. La obtención
de la matriz R̂0 es inmediata:

R̂0 =

x3
x4
x5


1 0 0 0 400 ?
0 1 0 0 580 ?
0 0 1 0 300 ?
0 0 0 1 0 ?

 .
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Para pasar a R̂1 basta con colocar, en el sitio de los primeros m = 3 elemen-
tos de la fila m + 1 = 4, el vector fila −cTB1 . Además, es necesario calcular
el valor de −z1 = −cTB1b

0.

−cTB1 =
[

0 0 0
]
,

−z1 = −
[

0 0 0
]  400

580
300

 = 0.

En este ejemplo sencillo no hubo ninguna modificación al pasar de R̂0 a R̂1:

R̂1 =

x3
x4
x5
−z


1 0 0 0 400 ?
0 1 0 0 580 ?
0 0 1 0 300 ?
0 0 0 1 0 ?

 ,

x = (0, 0, 400, 580, 300),

z = 0.

El cálculo de los primeros costos reducidos de las variables libres, x1 y x2,
da:

c̃TL1 = Ŝ1
4·L̂

0,1 =
[

0 0 0 1
] 

1 1
1 2
1 0
−1 −1.4

 =
[
−1 −1.4

]
.

Esto indica que la solución factible actual no es óptima y que la variable que
entra es xe = x2.

Ahora se requiere calcular la columna Â1
·e:

A1
·e = B1−1A0

·e =

 1 0 0
0 1 0
0 0 1

 1
2
0

 =

 1
2
0

 .
Entonces

Â1
·e =


1
2
0

−1.4

 ,
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R̂1 =

x3
x4
x5
−z


1 0 0 0 400 1

0 1 0 0 580 2
0 0 1 0 300 0
0 0 0 1 0 −1.4

 .
En esta iteración no se puede afirmar que el óptimo sea no acotado, entonces
el proceso continua con la escogencia de la variable que sale de la base,
efectuando los cocientes

400

1
= 400,

580

2
= 290.

La variable que sale es entonces

xβσ = xβ2 ,

xs = x4.

Ahora se actualiza la matriz R̂ modificando las m+2 = 5 primeras columnas.
Se utiliza como pivote rσ,m+3 = r26 = 2.

R̂2 =

x3
x2
x5
−z


1 −0.5 0 0 110 ?
0 0.5 0 0 290 ?
0 0 1 0 300 ?
0 0.7 0 1 406 ?

 ,

x = (0, 290, 110, 0, 300),

z = −406.

c̃TL2 = Ŝ2
4·L̂

0,2 =
[

0 0.7 0 1
] 

1 0
1 1
1 0
−1 0

 =
[
−0.3 0.7

]
.

Esto indica que la solución factible actual no es óptima y que la variable que
entra es xe = x1.

Ahora se requiere calcular la columna Â2
·e:

A2
·e = B2−1A0

·e =

 1 −0.5 0
0 0.5 0
0 0 1

 1
1
1

 =

 0.5
0.5

1

 .
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Entonces

Â1
·e =


0.5
0.5

1
−0.3

 ,

R̂2 =

x3
x2
x5
−z


1 −0.5 0 0 110 0.5
0 0.5 0 0 290 0.5
0 0 1 0 300 1
0 0.7 0 1 406 −0.3

 .
En esta iteración tampoco se puede afirmar que el óptimo sea no acotado,
entonces el proceso continua con la escogencia de la variable que sale de la
base, efectuando los cocientes

110

0.5
= 220,

290

0.5
= 580,

300

1
= 300.

La variable que sale es entonces

xβσ = xβ1 ,

xs = x3.

Ahora se actualiza la matriz R̂, modificando las m+ 2 = 5 primeras colum-
nas. Se utiliza como pivote rσ,m+3 = r16 = 0.5.

R̂3 =

x1
x2
x5
−z


2 −1 0 0 220 ?
−1 1 0 0 180 ?
−2 1 1 0 80 ?
0.6 0.4 0 1 472 ?

 ,

x = (220, 180, 0, 0, 80),

z = −472.

c̃TL3 = Ŝ3
4·L̂

0,3 =
[

0.6 0.4 0 1
] 

1 0
0 1
0 0
0 0

 =
[

0.6 0.4
]
.

Esto indica que la solución factible obtenida es óptima y única.

En cualquier iteración del MSR se puede verificar la construcción de la
tabla. Esto, además de ilustrativo, podŕıa ser útil para detectar errores en
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12.2. ALGORITMO DEL MSR 137

ejemplos pequeños hechos a mano. La última tabla se puede tomar como
ejemplo para verificar: B−1, −cTBB−1, b = B−1b0, −z.

Las variables básicas son x1, x2, x5. Al efectuar el producto deB (toman-
do de Â0 las columnas básicas) por la matriz conformada por las primeras
m filas y m columnas de R̂k, se debe obtener la matriz identidad. 1 1 0

1 2 0
1 0 1

 2 −1 0
−1 1 0
−2 1 1

 =

 1 0 0
0 1 0
0 0 1

 . X
En las primeras m posiciones de la fila m+ 1 de R̂k debe esta el vector fila
−cTBB−1:

−cTBB−1 =
[
−1 −1.4 0

]  2 −1 0
−1 1 0
−2 1 1

 =
[

0.6 0.4 0
]
.X

Comprobación de bk, o sea, de los primeros m elementos de la columna m+2
de R̂k:

B−1b0 =

 2 −1 0
−1 1 0
−2 1 1

 400
580
300

 =

 220
180
80

 . X
La comprobación del valor de −z se puede hacer de dos maneras:

−z = (−cTBB−1)b0 =
[

0.6 0.4 0
]  400

580
300

 = −472, X

−z = −cTB(B−1b0) = −
[

1 1.4 0
]  220

180
80

 = −472. 3

La tabla del MSR presentada aqúı, puede diferir de las tablas presentadas
en algunos libros. Las diferencias pueden ser dos: con respecto a la columna
m+ 1 y a la fila m+ 1. Como la columna m+ 1 siempre tiene la forma: 0 0
. . . 1, entonces puede ser suprimida. La fila m+ 1 algunas veces es colocada
como primera fila.
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EJERCICIOS

En los ejercicios 12.1 a 12.6 convierta el problema a la forma estándar.
Si se cumplen las condiciones, aplique el MSR.

12.1. Minimizar z = −1.1x1− 1.2x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.

12.2. Minimizar z = 4x1+3x2 con las restricciones x1+x2 ≥ 12, 5x1−2x2 ≤
4, x ≥ 0.

12.3. Minimizar z = x5 con las restricciones x1 + x2 − x3 + x5 = 12, 5x1 −
2x2 + x4 = 4, x ≥ 0.

12.4. Minimizar z = 4x1 + 3x2 con las restricciones x2 − 5x3 − x4 = 8,
x1 − 2.5x3 + x4 = 4, x ≥ 0.

12.5. Minimizar z = 4x1 − 3x2 con las restricciones x2 − 5x3 − x4 = 8,
x1 − 2.5x3 + x4 = 4, x ≥ 0.

12.6. Minimizar z = −1.1x1− 1.1x2 con las restricciones x1 + x2 ≤ 5, 2x1 +
3x2 ≤ 14, 4x1 + 3x2 ≤ 18, x ≥ 0.
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Caṕıtulo 13

EL MÉTODO DE LAS DOS
FASES Y EL MÉTODO
SIMPLEX REVISADO

13.1. De la primera a la segunda fase

La adaptación del método de las dos fases al MSR es muy fácil: en la
primera fase se trabaja con los coeficientes de la función objetivo artificial
y, además, no se calculan los costos reducidos para las variables artificiales
libres. Para pasar a la segunda fase (si hay soluciones factibles) es necesario
tener en cuenta los verdaderos coeficientes de la función objetivo, esto hace
cambiar en la tabla del MSR, únicamente −cTBB−1 y −z .

Ejemplo 13.1. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 9.1 :

min z = 3x1 + 10x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Introduciendo variables de holgura se tiene:

min z = 3x1 + 10x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12

x ≥ 0.
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Es necesario introducir variables artificiales y considerar durante la primera
fase la función objetivo artificial.

min za = x5 + x6

x1 + 2x2 − x3 + x5 = 4
5x1 + 2x2 − x4 + x6 = 12

x ≥ 0.

La matriz Â0 es entonces:

Â0 =

 1 2 −1 0 1 0 4
5 2 0 −1 0 1 12
0 0 0 0 1 1 0

 .
Las variables básicas en la primera iteración son: x5 y x6. La obtención de
la matriz R̂0 es inmediata:

R̂0 =
x5
x6

 1 0 0 4 ?
0 1 0 12 ?
0 0 1 0 ?

 .
Para pasar a R̂1 basta con colocar en el sitio de los primeros m = 2 elementos
de la fila m + 1 = 3, el vector fila −cTB1 y además, calcular el valor de
−z1 = −cTB1b

0.

−cTB1 = −
[

1 1
]

=
[
−1 −1

]
,

−z1 = −
[

1 1
] [ 4

12

]
= −16.

En este ejemplo śı hubo cambios al pasar de R̂0 a R̂1.

R̂1 =
x5
x6
−za

 1 0 0 4 ?
0 1 0 12 ?
−1 −1 1 −16 ?

 ,
x = (0, 0, 0, 0, 4, 12),

za = 16.

El cálculo de los primeros costos reducidos de las variables libres, x1, x2, x3
y x4, da:

c̃TL1 = Ŝ1
3·L̂

0,1 =
[
−1 −1 1

]  1 2 −1 0
5 2 0 −1
0 0 0 0


=
[
−6 −4 1 1

]
.
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Esto indica que la solución factible artificial no es óptima y que la variable
que entra es

xe = x1.

Ahora se requiere calcular la columna A1
·e:

A1
·e = B1−1A0

·e =

[
1 0
0 1

] [
1
5

]
=

[
1
5

]
.

Entonces

Â1
·e =

 1
5
−6

 ,
R̂1 =

x5
x6
−za

 1 0 0 4 1

0 1 0 12 5
−1 −1 1 −16 −6

 .
En esta iteración no se puede afirmar que el óptimo sea no acotado (en
la primera fase nunca se presenta el caso de óptimo artificial no acotado),
entonces el proceso continua con la escogencia de la variable que sale de la
base, efectuando los cocientes

4

1
= 4,

12

5
= 2.4.

La variable que sale es entonces

xβσ = xβ2 ,

xs = x6.

Ahora se actualiza la matriz R̂ modificando las m+2 = 4 primeras columnas;
se utiliza como pivote rσ,m+3 = r25 = 5.

R̂2 =
x5
x1
−za

 1 −0.2 0 1.6 ?
0 0.2 0 2.4 ?
−1 0.2 1 −1.6 ?

 ,
x = (2.4, 0, 0, 0, 1.6, 0),

za = 1.6.
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Como la variable artificial x6 se volvió libre, entonces no se le calcula su
costo reducido.

c̃TL2 = Ŝ2
3·L̂

0,2 =
[
−1 0.2 1

]  2 −1 0
2 0 −1
0 0 0


=
[
−1.6 1 −0.2

]
.

Esto indica que la solución artificial actual no es óptima y que la variable
que entra es:

xe = x2.

Ahora se requiere calcular la columna A·e:

A2
·e = B2−1A0

·e =

[
1 −0.2
0 0.2

] [
2
2

]
=

[
1.6
0.4

]
.

Entonces

Â2
·e =

 1.6
0.4
−1.6

 ,
R̂2 =

x5
x1
−za

 1 −0.2 0 1.6 1.6
0 0.2 0 2.4 0.4
−1 0.2 1 −1.6 −1.6

 .
En esta iteración no se puede afirmar que el óptimo sea no acotado, entonces
el proceso continua con la escogencia de la variable que sale de la base,
efectuando los cocientes

1.6

1.6
= 1,

2.4

0.4
= 6.

La variable que sale es entonces

xβσ = xβ1 ,

xs = x5.

Ahora se actualiza la matriz R̂ modificando las m+2 = 4 primeras columnas;
se utiliza como pivote rσ,m+3 = r15 = 1.6.

R̂3 =
x2
x1
−za

 0.625 −0.125 0 1 ?
−0.250 0.250 0 2 ?

0 0 1 0 ?

 ,
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x = (2, 1, 0, 0, 0, 0),

za = 0.

Como todas las variables artificiales son nulas se puede afirmar que ya se
obtuvo el óptimo de la primera fase con una solución factible. De todas
maneras esto se puede comprobar mediante el cálculo de los costos reducidos
de las variables libres no artificiales.

c̃TL3 = Ŝ3
3·L̂

0,3 =
[

0 0 1
]  −1 0

0 −1
0 0


=
[

0 0
]
.

Empezando la segunda fase es necesario modificar la matriz inicial Â0, su-
primiendo las columnas de las variables artificiales libres, y tener en cuenta
los verdaderos costos. También es necesario efectuar cambios en la matriz
R̂k.

Â0 =

 1 2 −1 0 4
5 2 0 −1 12
3 10 0 0 0

 .
La modificación de la última fila de la matriz R̂k se obtiene mediante las
siguientes operaciones:

−cTBB−1 = −
[

10 3
] [ 0.625 −0.125
−0.250 0.250

]
=
[
−5.5 0.5

]
,

−z = −cTBB−1b0 = (−cTBB−1)b0

=
[
−5.5 0.5

] [ 4
12

]
= −16.

Entonces la nueva matriz R̂k es:

R̂3 =
x2
x1
−z

 0.625 −0.125 0 1 ?
−0.250 0.250 0 2 ?
−5.5 0.5 1 −16 ?

 ,
x = (2, 1, 0, 0),

z = 16.
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El proceso continúa entonces normalmente con la obtención de los costos
reducidos de las variables libres.

c̃TL3 = Ŝ3
3·L̂

0,3 =
[
−5.5 0.5 1

]  −1 0
0 −1
0 0


=
[

5.5 −0.5
]
.

Esto indica que la solución factible actual no es óptima y que la variable que
entra es:

xe = x4.

Ahora se requiere calcular la columna A·e:

A3
·e = B3−1A0

·e =

[
0.625 −0.125
−0.250 0.250

] [
0
−1

]
=

[
0.125
−0.250

]
.

Entonces

Â3
·e =

 0.125
−0.250
−0.5

 ,
R̂3 =

x2
x1
−z

 0.625 −0.125 0 1 0.125
−0.250 0.250 0 2 −0.250
−5.5 0.5 1 −16 −0.5

 .
En esta iteración no se puede afirmar que el óptimo sea no acotado, entonces
el proceso continúa con la escogencia de la variable que sale de la base; en
este caso únicamente puede salir x2.

xβσ = xβ1 ,

xs = x2.

Ahora se actualiza la matriz R̂ modificando las m+2 = 4 primeras columnas;
se utiliza como pivote rσ,m+3 = r15 = 0.125.

R̂4 =
x4
x1
−z

 5 −1 0 8 ?
1 0 0 4 ?
−3 0 1 −12 ?

 ,
x = (4, 0, 0, 8),

z = 12.

144



13.2. CONJUNTO NO FACTIBLE 145

De nuevo es necesario el cálculo de los costos reducidos de las variables libres.

c̃TL4 = Ŝ4
3·L̂

0,4 =
[
−3 0 1

]  2 −1
2 0

10 0


=
[

4 3
]
.

Ahora śı se puede afirmar que la solución factible obtenida corresponde al
único óptimo. 3

13.2. Conjunto no factible

Ejemplo 13.2. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 9.3:

min z = 3x1 + 4x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12
x1 + x2 ≤ 1

x ≥ 0.

Introduciendo variables de holgura:

min z = 3x1 + 4x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12
x1 + x2 + x5 = 1

x ≥ 0.

Como no se tiene la matriz identidad de tamaño 3×3 es necesario introducir
dos variables artificiales x6, x7 y considerar durante la primera fase la función
objetivo artificial.

min za = x6 + x7

x1 + 2x2 − x3 + x6 = 4
5x1 + 2x2 − x4 + x7 = 12
x1 + x2 + x5 = 1

x ≥ 0.
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Â0 =


1 2 −1 0 0 1 0 4
5 2 0 −1 0 0 1 12
1 1 0 0 1 0 0 1
0 0 0 0 0 1 1 0

 .
Las variables básicas en la primera iteración son: x6, x7, x5. La obtención
de la matriz R̂0 es inmediata:

R̂0 =

x6
x7
x5


1 0 0 0 4 ?
0 1 0 0 12 ?
0 0 1 0 1 ?
0 0 0 1 0 ?

 .
Para pasar a R̂1 basta con colocar, en el sitio de los primeros m = 3 elemen-
tos de la fila m + 1 = 4, el vector fila −cTB1 , y además, calcular el valor de
−z1 = −cTB1b

0 .

−cTB1 = −
[

1 1 0
]

=
[
−1 −1 0

]
,

−z1 = −
[

1 1 0
]  4

12
1

 = −16.

En este ejemplo śı hubo cambios al pasar de R̂0 a R̂1.

R̂1 =

x6
x7
x5
−za


1 0 0 0 4 ?
0 1 0 0 12 ?
0 0 1 0 1 ?
−1 −1 0 1 −16 ?

 ,
x = (0, 0, 0, 0, 1, 4, 12),

za = 16.

El cálculo de los primeros costos reducidos de las variables libres x1, x2, x3, x4
da:

c̃TL1 = Ŝ1
4·L̂

0,1 =
[
−1 −1 0 1

] 
1 2 −1 0
5 2 0 −1
1 1 0 0
0 0 0 0


=
[
−6 −4 1 1

]
.

Esto indica que la solución factible artificial no es óptima y que la variable
que entra es:

xe = x1.
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Ahora se requiere calcular la columna A1
·e:

A1
·e = B1−1A0

·e =

 1 0 0
0 1 0
0 0 1

 1
5
1

 =

 1
5
1

 .
Entonces

Â1
·e =


1
5
1
−6

 ,

R̂1 =

x6
x7
x5
−za


1 0 0 0 4 1
0 1 0 0 12 5

0 0 1 0 1 1
−1 −1 0 1 −16 −6

 .
En esta iteración no se puede afirmar que el óptimo sea no acotado, entonces
el proceso continúa con la escogencia de la variable que sale de la base,
efectuando los cocientes

4

1
= 4 ,

12

5
= 2.4,

1

1
= 1.

La variable que sale es entonces

xβσ = xβ3 ,

xs = x5.

Ahora se actualiza la matriz R̂ modificando las m+2 = 5 primeras columnas;
se utiliza como pivote rσ,m+3 = r36 = 1.

R̂2 =

x6
x7
x1
−za


1 0 −1 0 3 ?
0 1 −5 0 7 ?
0 0 1 0 1 ?
−1 −1 6 1 −10 ?

 ,
x = (1, 0, 0, 0, 0, 3, 7),

za = 10.
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El proceso continúa entonces normalmente con la obtención de los costos
reducidos de las variables libres x2, x3, x4 y x5.

c̃TL2 = Ŝ2
4·L̂

0,2 =
[
−1 −1 6 1

] 
2 −1 0 0
2 0 −1 0
1 0 0 1
0 0 0 0


=
[

2 1 1 6
]
.

Los costos reducidos positivos indican que se tiene el óptimo de la primera
fase, sin embargo, hay variables artificiales no nulas (x6 = 3, x7 = 7), es
decir, el problema no tiene solución: es inconsistente. 3

13.3. Conjunto óptimo no acotado

Ejemplo 13.3. El enunciado de este ejemplo es exactamente el mismo del
ejemplo 10.1 :

min z = −10x1 − 8x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Introduciendo variables de holgura se tiene:

min z = −10x1 − 8x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12

x ≥ 0.

Como no se tiene la matriz identidad es necesario introducir dos variables
artificiales x5 y x6. La primera fase para este problema es exactamente la
misma del ejemplo 13.1 . Entonces los cambios se presentan en la segunda
fase. Al empezar la segunda fase es necesario modificar la matriz inicial
Â0, suprimir las columnas de las variables artificiales y tener en cuenta los
verdaderos costos. También hay que efectuar cambios en la matriz R̂k.

Â0 =

 1 2 −1 0 4
5 2 0 −1 12

−10 −8 0 0 0

 .
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La modificación de la última fila de la matriz R̂k se obtiene mediante las
siguientes operaciones:

−cTBB−1 = −
[
−8 −10

] [ 0.625 −0.125
−0.250 0.250

]
=
[

2.5 1.5
]
,

−z = −cTBB−1b0 = (−cTBB−1)b0 =
[

2.5 1.5
] [ 4

12

]
= 28.

Entonces la nueva matriz R̂k es:

R̂k =
x2
x1
−z

 0.625 −0.125 0 1 ?
−0.250 0.250 0 2 ?

2.5 1.5 1 28 ?

 ,
x = (2, 1, 0, 0),

z = −28.

El proceso continúa entonces normalmente con la obtención de los costos
reducidos de las variables libres.

c̃TL3 = Ŝ3
3·L̂

0,3 =
[

2.5 1.5 1
]  −1 0

0 −1
0 0


=
[
−2.5 −1.5

]
.

Esto indica que la solución factible actual no es óptima y que la variable que
entra es:

xe = x3.

Ahora se requiere calcular la columna A·e:

A3
·e = B3−1A0

·e =

[
0.625 −0.125
−0.250 0.250

] [
−1

0

]
=

[
−0.625

0.250

]
.

Entonces

Â3
·e =

 −0.625
0.250
−2.5

 ,
R̂k =

x2
x1
−z

 0.625 −0.125 0 1 −0.625
−0.250 0.250 0 2 0.25

2.5 1.5 1 28 −2.5

 .
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En esta iteración no se puede afirmar que el óptimo sea no acotado, entonces
el proceso continúa con la escogencia de la variable que sale de la base; en
este caso únicamente puede salir x1.

xβσ = xβ2 ,

xs = x1.

Ahora se actualiza la matriz R̂ modificando las m+2 = 4 primeras columnas;
se utiliza como pivote rσ,m+3 = r25 = 0.25.

R̂4 =
x2
x3
−z

 0 0.5 0 6 ?
−1 1 0 8 ?

0 4 1 48 ?

 ,

x = (0, 6, 8, 0),

z = −48.

De nuevo es necesario calcular los costos reducidos de las variables libres.

c̃TL4 = Ŝ4
3·L̂

0,4 =
[

0 4 1
]  1 0

5 −1
−10 0


=
[

10 −4
]
.

Esto indica que la solución factible actual no es óptima y que la variable que
entra es:

xe = x4.

Ahora se requiere calcular la columna A·e:

A4
·e = B4−1A0

·e =

[
0 0.5
−1 1

] [
0
−1

]
=

[
−0.5
−1

]
.

Entonces

Â4
·e =

 −0.5
−1
−4

 ,
R̂4 =

x2
x3
−z

 0 0.5 0 6 −0.5
−1 1 0 8 −1

0 4 1 48 −4

 .
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Aqúı es claro que no se puede escoger una variable que salga de la base,
es decir, el óptimo no es acotado. De igual manera, como en el método
simplex, se puede construir una dirección a lo largo de la cual la función
objetivo disminuye.

d = (0, 0.5, 1, 1).

Entonces los puntos de la forma

(0, 6, 8, 0) + µ(0, 0.5, 1, 1), µ ≥ 0,

son factibles. Para ellos la función objetivo vale −48 + µ(−4), es decir,
decrece indefinidamente. 3

EJERCICIOS

En los ejercicios 13.1 a 13.7 convierta el problema a la forma estándar.
Aplique el MSR, una o dos fases.

13.1. Minimizar z = −x1 − 0.1x2 con las restricciones x1 + x2 ≤ 4, x2 ≥ 2,
x1 + 2x2 ≤ 6, x ≥ 0.

13.2. Minimizar z = 1.1x1 + 1.2x2 + 1.3x3 + 1.4x4 con las restricciones x3 +
x4 ≥ 1, x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x ≥ 0.

13.3. Minimizar z = 8x1 + 4x2 + 2x3 + x4 con las restricciones x3 + x4 ≥ 1,
x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x ≥ 0.

13.4. Minimizar z = 8x1 + 4x2 + 2x3 + x4 con las restricciones x3 + x4 ≥ 1,
x2 + 2x4 ≥ 2, x1 + 3x4 ≥ 3, x1 + x2 + x3 + 2x4 ≤ 1, x ≥ 0.

13.5. Minimizar z = 10x1 + 11x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x ≥ 0.

13.6. Minimizar z = 10x1 + 25x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x ≥ 0.

13.7. Minimizar z = 10x1 + 25x2 con las restricciones 2x1 + 3x2 ≥ 12,
2x1 + x2 ≥ 8, x1 + x2 ≤ 4, x ≥ 0.
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Caṕıtulo 14

DUALIDAD

14.1. El problema dual

Considérese un problema de programación lineal en la forma general de
minimización (con desigualdades ≥), es decir:

min z = cTx

Ai·x ≥ bi, i ∈M1 ⊆M
Ai·x = bi, i ∈M rM1

xj ≥ 0, j ∈ N1 ⊆ N
xj ∈ R, j ∈ N rN1.

Se define su problema dual, PD, de la siguiente manera

max w = bTy

AT
j·y ≤ cj , j ∈ N1 ⊆ N

AT
j·y = cj , j ∈ N rN1

yi ≥ 0, i ∈M1 ⊆M
yi ∈ R, i ∈M rM1.

Recordemos que el problema inicial, llamado también el problema princi-
pal, primario o “primal”(este término puede ser anglicismo, pero es bastante
usado en el lenguaje técnico), denotado simplemente por PP , tiene n va-
riables y m restricciones, M = {1, 2, . . . ,m}, N = {1, 2, . . . , n}, M1 es el
conjunto de sub́ındices de las desigualdades del problema primal, M rM1
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es el conjunto de sub́ındices de las igualdades del problema primal, N1 es el
conjunto de sub́ındices de las variables no negativas en el primal, y N −N1

es el conjunto de sub́ındices de las variables no restringidas en el primal.

De la definición del problema dual se deducen ciertas analoǵıas y corres-
pondencias entre el problema primal y el dual:

PRIMAL DUAL
problema de minimización problema de maximización
desigualdades ≥ desigualdades ≤
m = número de restricciones m = número de variables
n = número de variables n = número de restricciones
A = matriz de coeficientes AT = matriz de coeficientes

de las restricciones de las restricciones
una desigualdad ≥ una variable no negativa
una igualdad una variable no restringida
una variable no negativa una desigualdad ≤
una variable no restringida una igualdad
cj = coeficiente de la función cj = término independiente

objetivo
bi = término independiente bi = coeficiente de la función

objetivo

Hasta ahora, según la definición, únicamente se puede hallar el dual de
un problema de minimización con desigualdades ≥ . Si se trata de un pro-
blema de maximización, habŕıa que convertirlo primero en un problema de
minimización. Más adelante se verá que también se puede hallar directa-
mente el dual de un problema de maximización con desigualdades ≤ .

Ejemplo 14.1. Hallar el problema dual del siguiente problema primal:

min z = x1 + 2x2 + 3x3 + 4x4

5x1 + 6x2 + 7x3 − 8x4 ≥ 9
15x1 + 16x2 + 17x3 + 18x4 = 19
10x1 + 11x2 + 12x3 + 13x4 ≤ 14

xj ≥ 0 , j = 2, 3, 4,
x1 ∈ R .

El primer paso es convertir este problema en uno equivalente de minimiza-
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ción con desigualdades ≥ .

min z = x1 + 2x2 + 3x3 + 4x4

5x1 + 6x2 + 7x3 − 8x4 ≥ 9
15x1 + 16x2 + 17x3 + 18x4 = 19
−10x1 − 11x2 − 12x3 − 13x4 ≥ −14

xj ≥ 0 , j = 2, 3, 4,
x1 ∈ R .

Su dual es entonces:

max w = 9y1 + 19y2 − 14y3

5y1 + 15y2 − 10y3 = 1
6y1 + 16y2 − 11y3 ≤ 2
7y1 + 17y2 − 12y3 ≤ 3
−8y1 + 18y2 − 13y3 ≤ 4

y1, y3 ≥ 0
y2 ∈ R

Ejemplo 14.2. Hallar el dual de un problema en la forma mixta:

min z = cTx

Ai·x ≥ bi, i ∈M1 ⊆M
Ai·x = bi, i ∈M rM1

x ≥ 0.

Su dual es:

max w = bTy

ATy ≤ c
yi ≥ 0, i ∈M1 ⊆M
yi ∈ R, i ∈M rM1. 3

Ejemplo 14.3. Hallar el dual de un problema en la forma estándar:

min z = cTx

Ax = b

x ≥ 0.
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Su dual es:

max w = bTy

ATy ≤ c
y ∈ Rm. 3

Ejemplo 14.4. Hallar el dual de un problema en la forma canónica:

min z = cTx

Ax ≥ b
x ≥ 0.

Su dual es:

max w = bTy

ATy ≤ c
y ≥ 0. 3

Es interesante observar que, de estos últimos tres ejemplos, únicamente
el dual de un problema en la forma canónica también está en una de esas
formas y, más exactamente, también está en la forma canónica. Por esta
razón, la mayoŕıa de los teoremas y resultados de dualidad están dados para
problemas (primal y dual) en la forma canónica. De ahora en adelante, salvo
que se diga expresamente lo contrario, cuando se hable de problema primal
y problema dual, se tratará de problemas en la forma canónica.

14.2. Propiedades

Proposición 14.1. El dual del dual es el primal.

Demostración: El problema primal en la forma general es:

min z = cTx

Ai·x ≥ bi, i ∈M1 ⊆M
Ai·x = bi, i ∈M rM1

xj ≥ 0, j ∈ N1 ⊆ N
xj ∈ R, j ∈ N rN1.
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Su dual es:

max w = bTy

AT
j·y ≤ cj , j ∈ N1 ⊆ N

AT
j·y = cj , j ∈ N rN1

yi ≥ 0, i ∈M1 ⊆M
yi ∈ R, i ∈M rM1.

Para hallar el dual de PD, por ahora, hay que colocarlo en la forma de
minimización con desigualdades ≥ :

min w′ = −bTy
−AT

j·y ≥ −cj , j ∈ N1 ⊆ N
−AT

j·y = −cj , j ∈ N rN1

yi ≥ 0, i ∈M1 ⊆M
yi ∈ R, i ∈M rM1.

El dual del dual es:

max ζ = −cTξ
−ATT

i·ξ ≤ −bi, i ∈M1 ⊆M
−ATT

i·ξ = −bi, i ∈M rM1

ξj ≥ 0, j ∈ N1 ⊆ N
ξj ∈ R, j ∈ N rN1.

Al convertir el problema anterior en un problema de minimización con de-
sigualdades ≥ y teniendo en cuenta que ATT = A, se tiene:

min ζ = cTξ

Ai·ξ ≥ bi, i ∈M1 ⊆M
Ai·ξ = bi, i ∈M rM1

ξj ≥ 0, j ∈ N1 ⊆ N
ξj ∈ R, j ∈ N rN1.

Lo anterior es, salvo el nombre de las variables, el problema primal. �

El teorema anterior es válido, salvo equivalencia, para problemas prima-
les en formas diferentes a la general. Esto permite hallar directamente el
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dual de un problema que está en la forma de maximización con restricciones
≤ , sin tener que convertirlo primero en un problema de minimización con
desigualdades ≥ . La demostración se puede hacer directamente o utilizando
el siguiente resultado.

Proposición 14.2. El problema dual de un problema equivalente al primal,
es equivalente a su dual.

Ejemplo 14.5. Hallar el dual de

max z = x1 + 1.4x2

−x1 − x2 ≥ −400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

En este ejemplo basta con cambiar el signo de la primera desigualdad y ya
queda listo para hallar su dual:

max z = x1 + 1.4x2

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

Entonces su dual es:

min w = 400y1 + 580y2 + 300y3

y1 + y2 + y3 ≥ 1
y1 + 2y2 + 3y3 ≥ 1.4

y ≥ 0.

Proposición 14.3. Teorema de dualidad débil: Si x̄ es solución factible
de PP y ȳ es solución factible del PD, entonces

bTȳ ≤ cTx̄.

Demostración : Como x̄ y ȳ son soluciones factibles, entonces:

Ax̄ ≥ b,
x̄ ≥ 0,

ATȳ ≤ c,
ȳ ≥ 0.
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En particular

(Ax̄)i ≥ bi,
ȳi ≥ 0.

Luego

ȳi(Ax̄)i ≥ ȳibi.

Entonces

m∑
i=1

ȳi(Ax̄)i ≥
m∑
i=1

ȳibi,

es decir,

ȳTAx̄ ≥ ȳTb,

o sea,

x̄TATȳ ≥ bTȳ.

Partiendo de

x̄ ≥ 0,

ATȳ ≤ c,

se llega a

x̄TATȳ ≤ x̄Tc = cTx̄. �

Ejemplo 14.6.
min z = 3x1 + 4x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Su dual es
max w = 4y1 + 12y2

y1 + 5y2 ≤ 3
2y1 + 2y2 ≤ 4

y ≥ 0.
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Sean: x̄ = (4, 3), ȳ = (1, 0). Se puede verificar que x̄ es una solución factible
de PP, es decir, cumple las dos restricciones y, además, sus componentes
son no negativas. Por otro lado, ȳ es una solución factible de PD. Además,
z = cTx̄ = 24, w = bTȳ = 4. Esto concuerda con el teorema. 3

Ejemplo 14.7. Consideremos los mismos PP y PD del ejemplo anterior.

Sean: x̄ = (4, 3), ȳ = (10, 0). El punto x̄ es una solución factible de PP;
z = cTx̄ = 24; w = bTȳ = 40. Luego ȳ no puede ser una solución factible de
PD, pues si lo fuera contradiŕıa el teorema. 3

Las dos proposiciones siguientes se deducen inmediatamente de la última
proposición.

Proposición 14.4. Sean: x̄ solución factible de PP y ȳ solución factible de
PD. Si bTȳ = cTx̄, entonces x̄ es punto óptimo (minimizador) de PP y ȳ es
punto óptimo (maximizador) de PD.

Proposición 14.5. Si uno de los dos problemas, el primal o el dual, tiene
soluciones factibles con óptimo no acotado , entonces el otro problema no
tiene soluciones factibles.

Ejemplo 14.8. Consideremos el PP y el PD del ejemplo 14.6

Sean: x̄ = (2, 1), ȳ = (7/4, 1/4). Se puede verificar que x̄ es solución
factible de PP. También ȳ es solución factible de PD. Además, cTx = 10,
bTȳ = 10. Entonces x̄ es solución óptima de PP y ȳ es solución óptima de
PD. 3

Ejemplo 14.9. Consideremos el problema de los ejemplos 3.4 y 10.1 .

min z = −10x1 − 8x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Su dual es
max w = 4y1 + 12y2

y1 + 5y2 ≤ −10
2y1 + 2y2 ≤ −8

y ≥ 0.

Como se véıa en los ejemplos 3.4 y 10.1, el PP tiene óptimo no acotado. Esto
permite afirmar que el PD no tiene soluciones factibles. Para este caso es
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fácil comprobar que no existen valores de y1, y2, no negativos, que cumplan
con las dos restricciones. 3

Proposición 14.6. Teorema de dualidad fuerte: Si el PP tiene pun-
to óptimo (minimizador) x∗, entonces el PD también tiene punto óptimo
(maximizador) y∗ y además cTx∗ = bTy∗.

Demostración : Para resolver el PP, es necesario introducir variables de
holgura y obtener el problema PP’ en la forma estándar.

min z = cTx

Ax− Ih = b

x, h ≥ 0.

Este problema se puede escribir como

min z = c′
T
x′

A′x′ = b

x′ ≥ 0,

donde x′ = [xT hT]T es un vector columna (n + m) × 1, c′ = [cT 0T]T es
un vector columna (n+m)× 1, A′ = [A − I] es una matriz m× (n+m).

Como el PP tiene punto óptimo, los costos reducidos correspondientes
son no negativos:

c̃′ = c′ −A′TB−1T
c′B ≥ 0[

c
0

]
−
[
AT

−I

]
B−1

T
c′B ≥ 0

Sea y = B−1
T
c′B. Entonces al expresar la última desigualdad por bloques se

tiene:

c−ATy ≥ 0,

0−−Iy ≥ 0.

Es decir, y es admisible para el PD. Por otro lado, en el simplex, z∗ =
cTBB

−1b = yTb = bTy, luego y no solo es admisible, sino que también es
óptimo. �

Si se utiliza el MSR, se tiene directamente yT en las m primeras posicio-
nes de la fila m+ 1 de la tabla del MSR.
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Ejemplo 14.10. Considere el problema

min z = 3x1 + 10x2

5x1 + 2x2 ≥ 12
x1 + x2 ≥ 3.5
x1 + 2x2 ≥ 4

x ≥ 0.

Para resolver este problema se introducen 3 variables de holgura (y 3 artifi-
ciales) y se obtiene

x∗ = (4, 0, 8, 1/2, 0).

Esto indica que las variables básicas son x1, x3 y x4. Entonces

B =

 5 −1 0
1 0 −1
1 0 0

 , B−1 =

 0 0 1
−1 0 5

0 −1 1

 .
Luego un punto óptimo de PD está dado por:

y = B−1
T
cB = B−1

T

 3
0
0

 =

 0
0
3

 .
Por otro lado, si se emplea el MSR, se obtiene y óptimo directamente de la
última tabla (los 3 primeros elementos de la fila 4):

x1
x3
x4
−z


0 0 1 0 4
−1 0 5 0 8

0 −1 1 0 1/2
0 0 −3 1 −12

 . 3

Corolario 14.1. Dos puntos x, y, factibles para el PP y el PD respectiva-
mente, son óptimos si y sólo si cTx = bTy.

Cuando uno de los dos problemas, el primal o el dual, no tiene soluciones
factibles no se puede afirmar que necesariamente el otro tenga óptimo no
acotado. La proposición 14.5 presenta una implicación y no una equivalen-
cia. En realidad hay dos posibilidades (para el otro problema): o bien tiene
óptimo no acotado, o bien tampoco tiene soluciones factibles.

La primera posibilidad se presenta en el ejemplo 14.9 , viendo que el dual
no tiene soluciones factibles y el otro tiene óptimo no acotado. La segunda
posibilidad se puede observar en el siguiente ejemplo [Baz77].
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Ejemplo 14.11.

min z = −x1 − x2
x1 − x2 ≥ 1
−x1 + x2 ≥ 1

x ≥ 0.

Su dual es

max w = y1 + y2

y1 − y2 ≤ −1
−y1 + y2 ≤ −1

y ≥ 0.

Por cualquier método, gráfico, simplex..., se puede verificar que el PP no
tiene solución y que el PD tampoco. 3

La siguiente proposición resume algunos de los anteriores resultados.

Proposición 14.7. Teorema fundamental de dualidad. Dados el PP
y el PD, una y solamente una de las siguientes afirmaciones es verdadera:

Ambos problemas tienen soluciones óptimas x∗, y∗, con el mismo valor
de la función objetivo: cTx∗ = bTy∗.

Un problema tiene óptimo no acotado y el otro no tiene solución.

Ninguno de los dos problemas tiene solución.

Proposición 14.8. Teorema de holgura complementaria. Sean x∗,
y∗ soluciones óptimas de PP y de PD. Entonces:

(Ai·x
∗ − bi)y∗i = 0, i = 1, . . . ,m,

(AT
j·y
∗ − cj)x∗j = 0, j = 1, . . . , n.

Dicho de otra forma: Si en el óptimo de un problema hay holgura (no nula)
en una restricción, entonces el valor óptimo de la variable correspondiente
del otro problema es nulo. Si en el óptimo de un problema una variable es
positiva, entonces la holgura es nula en la restricción correspondiente del
óptimo del otro problema.
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Demostración: Como x∗ y y∗ son óptimos, entonces son factibles y coin-
ciden en el valor de la función objetivo:

Ax∗ ≥ b ATy∗ ≤ c
x∗ ≥ 0 y∗ ≥ 0

cTx∗ = bTy∗.

Entonces

Ax∗ − b ≥ 0, x∗ ≥ 0, c−ATy∗ ≥ 0, y∗ ≥ 0.

Sean

α = y∗T(Ax∗ − b) ≥ 0, β = x∗T(c−ATy∗) ≥ 0.

α+ β = y∗TAx− y∗Tb+ x∗Tc− x∗TATy∗ = 0,

luego

α = 0, β = 0.

0 = α = y∗T(Ax∗ − b) =
m∑
i=1

y∗i (Ax
∗ − b)i =

m∑
i=1

y∗i (Ai·x
∗ − bi).

Si se tiene una suma nula de términos no negativos, entonces cada término
es nulo, es decir, y∗i (Ai·x

∗ − bi) = 0, para todo i. De manera semejante se
concluye que x∗j (cj −AT

j·y
∗) = 0, para todo j. �

Ejemplo 14.12. Consideremos el problema del ejemplo 14.5

max z = x1 + 1.4x2

x1 + x2 ≤ 400
x1 + 2x2 ≤ 580
x1 ≤ 300

x ≥ 0.

Su dual es:
min w = 400y1 + 580y2 + 300y3

y1 + y2 + y3 ≥ 1
y1 + 2y2 ≥ 1.4

y ≥ 0.

La solución de PP es x∗ = (220, 180).
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Como x∗1, x
∗
2 son positivas, entonces la holgura es nula en el óptimo del dual,

para la primera y para la segunda restricción (se tiene la igualdad y no la
desigualdad). Además, en el óptimo del primal, la holgura de la tercera
restricción no es nula: A3·x

∗ − b3 = 220 − 300 = −80 ; esto implica que la
tercera variable en el óptimo del dual debe ser nula. En resumen:

y∗1 + y∗2 + y∗3 = 1
y∗1 + 2y∗2 = 1.4

y∗3 = 0

Resolviendo este sistema se tiene:

y∗1 = 0.6,

y∗2 = 0.4,

y∗3 = 0.

También se hubiera podido utilizar la igualdad 400y∗1+580y∗2+300y∗3 = z∗ =
472, obtenida a partir de la proposición 14.4 (o de la proposición 14.6). 3

Sea PP’ el problema obtenido a partir de PP, al introducir variables de
holgura para obtener la forma estándar, es decir, un problema con n + m
variables, m restricciones. Sea PD’ el problema obtenido a partir de PD, al
introducir variables de holgura para obtener la forma estándar, es decir, un
problema con m+ n variables, n restricciones.

El teorema débil de holgura complementaria se puede expresar simple-
mente de la siguiente manera:

x∗n+i y
∗
i = 0, i = 1, ...,m,

y∗m+j x
∗
j = 0, j = 1, ..., n.

La siguiente proposición indica que la tabla óptima del método simplex
permite dar directamente información sobre la solución óptima del dual, o
viceversa.

Proposición 14.9. Sean: x∗ solución óptima de PP’, c̃ su vector de costos
reducidos, y∗ solución óptima de PD’ y b̃ su vector de costos reducidos.
Entonces

x∗j = b̃∗m+j , j = 1, ..., n,

x∗n+i = b̃∗i , i = 1, ...,m,

y∗i = c̃∗n+i, i = 1, ...,m,

y∗m+j = c̃∗j , j = 1, ..., n.
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166 CAṔITULO 14. DUALIDAD

Este resultado permite resolver el PD y utilizar sus valores óptimos para
obtener la solución de PP, o viceversa, resolver el PP y utilizar sus valores
óptimos para obtener la solución de PD. Este recurso es favorable cuando
la tabla de PD es más pequeña que la tabla de PP. Esto sucede, por lo
general, cuando el PP tiene muchas restricciones y pocas variables. De
todas maneras hay que tener en cuenta también el número de variables de
holgura y el número de variables artificiales.

Ejemplo 14.13.

min z = 5x1 + 4x2

x1 + x2 ≥ 5
3x1 + 2x2 ≥ 11
x1 + 2x2 ≥ 8

x ≥ 0.

Su dual es:

max w = 5y1 + 11y2 + 8y3

y1 + 3y2 + y3 ≤ 5
y1 + 2y2 + 2y3 ≤ 4

y ≥ 0.

Para resolver el PP hay que introducir 3 variables de holgura y 3 variables
artificiales; en la primera fase hay que trabajar con una tabla de 4×9 = 36
elementos. Además, es necesario efectuar por lo menos 3 iteraciones en la
primera fase para sacar las variables artificiales de la base.

Para resolver el PD hay que introducir 2 variables de holgura y trabajar
con una tabla de 3× 6 = 18 elementos. Directamente se tiene una solución
factible y no es necesaria la primera fase.

Al efectuar expĺıcitamente los cálculos se observa que para el primal se
hubieran requerido 3 + 1 = 4 iteraciones. Para el dual se necesitaron 0 +
3 = 3 iteraciones. En este ejemplo es evidente la ventaja de resolver el PD
para obtener la solución de PP.

La última tabla de la solución de PD por el método simplex es:

y2
y1
−w

 0 1 −1 1 −1 1
1 0 4 −2 3 2
0 0 1 1 4 21

 .
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Entonces

b̃∗1 = 0 = x∗2+1,

b̃∗2 = 0 = x∗2+2,

b̃∗3 = 1 = x∗2+3,

b̃∗3+1 = 1 = x∗1,

b̃∗3+2 = 4 = x∗2.

También es posible obtener los valores de los costos reducidos en la tabla
óptima de PP.

y∗1 = 2 = c̃∗2+1,

y∗2 = 1 = c̃∗2+2,

y∗3 = 0 = c̃∗2+3,

y∗3+1 = 0 = c̃∗1

y∗3+2 = 0 = c̃∗2.

Además

z∗ = 21. 3

EJERCICIOS

En los ejercicios 14.1 a 14.6, plantee el dual del problema propues-
to (puede haber dos caminos que llevan a resultados diferentes, pero
equivalentes).

14.1. Minimizar z = x1 + 2x2 − 4x3 + 8x4 con las restricciones x1 + 2x2 +
x3 + 3x4 ≥ 3, x2 + x3 − 2x4 = 8, 2x1 + x3 + x4 ≥ 10, x1, x2, x4 ≥ 0.

14.2. Minimizar z = x1 + 2x2 − 4x3 + 8x4 con las restricciones x1 + 2x2 +
x3 + 3x4 ≤ 3, x2 + x3 − 2x4 = 8, 2x1 + x3 + x4 ≤ 10, x1, x2, x4 ≥ 0.

14.3. Maximizar z = x1 + 2x2 − 4x3 + 8x4 con las restricciones x1 + 2x2 +
x3 + 3x4 ≤ 3, x2 + x3 − 2x4 = 8, 2x1 + x3 + x4 ≤ 10, x1, x2, x4 ≥ 0.
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168 CAṔITULO 14. DUALIDAD

14.4. Minimizar z = x1 + 2x2 − 4x3 + 8x4 con las restricciones x1 + 2x2 +
x3 + 3x4 ≥ 3, x2 + x3 − 2x4 ≥ 8, 2x1 + x3 + x4 ≥ 10, x ≥ 0.

14.5. Minimizar z = x1 + 2x2 − 4x3 + 8x4 con las restricciones x1 + 2x2 +
x3 + 3x4 = 3, x2 + x3 − 2x4 = 8, 2x1 + x3 + x4 = 10, x ≥ 0.

14.6. Maximizar z = 3x1 + 8x2 + 10x3 con las restricciones x1 + +2x3 ≤ 1,
2x1 + x2 ≤ 2, x1 + x2 + x3 ≤ −4, 3x1 − 2x2 + x3 ≤ 8, x ≥ 0.

En los ejercicios 14.7 a 14.9, resuelva el problema propuesto, a partir
de la solución de su dual. Utilice dos caminos, el teorema de holgura
complementaria débil (proposición 14.8) y la proposición 14.9.

14.7. Minimizar z = 25x1 + 15x2 con las restricciones x1 + x2 ≥ 10, 4x1 +
3x2 ≥ 34, 2x1 + x2 ≥ 12, x2 ≥ 3, x ≥ 0.

14.8. Minimizar z = 16x1 + 15x2 con las restricciones x1 + 2x2 ≥ 16, 2x1 +
x2 ≥ 14, 3x1 + x2 ≥ 17, x ≥ 0.

14.9. Minimizar z = 7x1+8x2 con las restricciones x1+4x2 ≥ 1, 2x1+5x2 ≥
2, 3x1 + x2 ≤ −3, 3x1 + 6x2 ≥ 2, x ≥ 0.

14.10. Considere ahora un problema de PL en la forma estándar como el
problema primal, PP. Sea PD su dual. Trate de encontrar y justificar
resultados análogos a los de las proposiciones 14.3 a 14.7.
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Caṕıtulo 15

MÉTODO SIMPLEX DUAL

15.1. Generalidades

El método simplex dual, MSD, tiene muchas semejanzas con el méto-
do simplex (primal), estas analoǵıas son concordantes con lo visto sobre
dualidad.

Para resolver un problema de programación lineal por el MSD se requie-
ren las siguientes condiciones:

problema de minimización en la forma estándar:

min z = cTx

Ax = b

x ≥ 0.

los costos reducidos de la primera tabla son no negativos,

m columnas de A forman la matriz identidad.

En el MSD también hay variables básicas, variables libres, soluciones
básicas, variable que sale de la base, variable que entra a la base, pivoteo.

La diferencia consiste en que en el MSD es posible tener términos inde-
pendientes bi negativos; aśı una solución básica siempre cumple las condicio-
nes de optimalidad, pero no siempre es factible. Precisamente el MSD busca
obtener una solución básica que sea factible (y que también siga cumpliendo
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las condiciones de optimalidad) y cuando esto se logra se detiene el proceso
iterativo.

Recordemos que en el método simplex siempre se tiene factibilidad y lo
que se busca es obtener la optimalidad.

No todos los problemas se pueden resolver por el MSD. Hay otro método,
el simplex primal dual, que permite empezar con costos reducidos negativos
y con términos independientes negativos.

De manera esquemática el algoritmo del MSD se puede presentar aśı:

verificar que se cumplen condiciones para el MSD.
mientras la solución no sea factible

escoger la varible que sale
si la fila de la variable que sale es no negativa ent

el problema no tiene soluciones factibles
parar

fin-si
escoger la variable libre que entra
pivotear

fin-mientras

El MSD acaba, bien sea porque se sabe que el problema no tiene solu-
ciones factibles, o, bien porque se obtuvo una solución factible (y óptima).
Veamos ahora con más detalle algunos pasos del MSD.

Una solución básica es factible si todos los términos independientes son
no negativos:

bi ≥ 0 ∀i.

La escogencia de la variable básica que sale se hace mediante la búsqueda
del bi más negativo, es decir, el más pequeño.

xs = xβσ ,

bσ = min
i
{bi},

σ = argmin
1≤i≤m

{bi}.

Para escoger la variable libre que entra, xe, se busca, en la fila de la va-
riable que sale, un coeficiente negativo correspondiente a una variable libre
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de tal manera, que al ser tomado como pivote vuelva positivo el término
independiente bσ y, además, conserve no negativos los costos reducidos.

c̃e
aσe

= max { c̃j
aσj

: aσj < 0, xj es variable libre},

e = argmax
1≤j≤n

{ c̃j
aσj

: aσj < 0, xj es variable libre},

e = argmin
1≤j≤n

{ c̃j
−aσj

: aσj < 0, xj es variable libre}.

Precisamente este coeficiente aσe se usa como pivote. Las fórmulas para el
pivoteo son exactamente las mismas del método simplex.

ak+1
σj =

akσj
akσe

, j = 1, ..., n+ 1,

ak+1
ij = akij −

akiea
k
σj

akσe
, i = 1, ...,m+ 1, i 6= σ, j = 1, ..., n+ 1

Ejemplo 15.1. Resolver por el método simplex dual el siguiente problema:

min z = 3x1 + 4x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Al introducir las variables de holgura se tiene:

min z = 3x1 − 4x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12

x ≥ 0.

Aqúı no se tiene la matriz identidad, pero si se multiplican la primera y la
segunda igualdad por −1, entonces śı se logra la matriz identidad con la
tercera y la cuarta columna.

Â0 =
x3
x4

 −1 −2 1 0 −4

−5 −2 0 1 −12

3 4 0 0 0

 .
Ahora hay que calcular los costos reducidos. En este caso los costos son
iguales a los costos reducidos ya que su valor es nulo para las variables
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básicas. Cómo en esta tabla no hay ningún costo reducido negativo, entonces
śı se puede utilizar el MSD.

Cómo hay términos independientes negativos, entonces la solución básica
actual no es factible. Al buscar el término independiente más pequeño se
observa que éste es −12. Entonces:

xβσ = xβ2 ,

xs = x4.

La fila de la variable que sale tiene coeficientes negativos, entonces no se
puede decir, por el momento, que el problema no tenga solución.

Para averiguar cuál variable entra a la base es necesario efectuar los
cocientes entre los costos reducidos y los coeficientes negativos de la fila de
la variable que sale, para las variables libres.

3

−5
= −0.6,

4

−2
= −2.

El cociente mayor (el más pequeño en valor absoluto) es −0.6, entonces:

xe = x1.

Ahora hay que modificar la tabla usando como pivote a21 = −5.

Â2 =
x3
x1
−z

 0 −1.6 1 −0.2 −1.6

1 0.4 0 −0.2 2.4
0 2.8 0 0.6 −7.2

 .

xβσ = xβ1 ,

xs = x3,

2.8

−1.6
= −1.75,

0.6

−0.2
= −3,

xe = x2.

Ahora hay que modificar la tabla usando como pivote a12 = −1.6.

Â3 =
x2
x1
−z

 0 1 −0.625 0.125 1
1 0 0.25 −0.25 2
0 0 1.75 0.25 −10

 .
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Esta solución es factible y también óptima.

x∗ = (2, 1, 0, 0),

z∗ = 10. 3

Ejemplo 15.2. Resolver por el método simplex dual el siguiente problema:

min z = 5x1 − 6x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12

x ≥ 0.

Las restricciones son exactamente las mismas del ejemplo anterior. Entonces
se introducen las variables de holgura y se cambia el signo a la primera y la
segunda restricción para obtener la matriz identidad.

Â0 =
x3
x4

 −1 −2 1 0 −4
−5 −2 0 1 −12

5 −6 0 0 0

 .
Ahora hay que calcular los costos reducidos. En este caso los costos son
exactamente los costos reducidos ya que su valor es nulo para las variables
básicas. En esta tabla hay un costo reducido negativo, entonces no se puede
utilizar el MSD. 3

15.2. Conjunto no factible

Ejemplo 15.3. Resolver por el método simplex dual el siguiente problema:

min z = 2x1 + x2

x1 + 2x2 ≥ 4
5x1 + 2x2 ≥ 12
x1 + x2 ≤ 1

x ≥ 0.

Al introducir las variables de holgura se tiene:

min z = 2x1 + x2

x1 + 2x2 − x3 = 4
5x1 + 2x2 − x4 = 12
x1 + x2 + x5 = 1

x ≥ 0.
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Aqúı no se tiene la matriz identidad, pero si se multiplican la primera y la
segunda igualdad por −1, entonces śı se logra la matriz identidad con la
tercera, la cuarta y la quinta columna.

Â0 =

x3
x4
x5


−1 −2 1 0 0 −4

−5 −2 0 1 0 −12

1 1 0 0 1 1
2 1 0 0 0 0

 .
La última fila ya tiene los costos reducidos, y es claro que se puede utilizar
el MSD.

xβσ = xβ2 ,

xs = x4.

2

−5
= −0.4,

1

−2
= −0.5,

xe = x1.

Ahora hay que modificar la tabla usando como pivote a21 = −5.

Â2 =

x3
x1
x5
−z


0 −1.6 1 −0.2 0 −1.6

1 0.4 0 −0.2 0 2.4
0 0.6 0 0.2 1 −1.4
0 0.2 0 0.4 0 −4.8

 .

xβσ = xβ1 ,

xs = x3,

xe = x2.

Ahora hay que modificar la tabla usando como pivote a12 = −1.6.

Â3 =

x2
x1
x5
−z


0 1 −0.625 0.125 0 1
1 0 0.25 −0.25 0 2
0 0 0.375 0.125 1 −2
0 0 0.125 0.375 0 −5

 .

xβσ = xβ3 ,

xs = x5.

En la fila de la variable que sale no hay coeficientes negativos (para variables
libres), esto quiere decir que el problema no tiene solución. 3
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EJERCICIOS

En los ejercicios 15.1 a 15.6, convierta el problema propuesto a la forma
estándar. Si es posible, utilice el MSD para su solución.

15.1. Minimizar z = 7x1−8x2 con las restricciones x1+4x2 ≥ 1, 2x1+5x2 ≥
2, 3x1 + x2 ≤ −3, 3x1 + 6x2 ≥ 2, x ≥ 0.

15.2. Minimizar z = x1+1.4x2 con las restricciones x1+x2 ≤ 400, x1+2x2 ≤
580, x1 ≤ 300, 2x1 + x2 ≥ 350, x ≥ 0.

15.3. Minimizar z = 25x1 + 15x2 con las restricciones x1 + x2 ≥ 10, 4x1 +
3x2 ≥ 34, 2x1 + x2 ≥ 12, x2 ≥ 3, x ≥ 0.

15.4. Minimizar z = 16x1 + 15x2 con las restricciones x1 + 2x2 ≥ 16, 2x1 +
x2 ≥ 14, 3x1 + x2 ≥ 17, x ≥ 0.

15.5. Minimizar z = 7x1+8x2 con las restricciones x1+4x2 ≥ 1, 2x1+5x2 ≥
2, 3x1 + x2 ≤ −3, 3x1 + 6x2 ≥ 2, x ≥ 0.

15.6. Minimizar z = x1+1.4x2 con las restricciones x1+x2 ≤ 400, x1+2x2 ≤
580, x1 ≤ 300, 2x1 + x2 ≥ 750, x ≥ 0.
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Caṕıtulo 16

EL PROBLEMA DEL
TRANSPORTE

16.1. Planteamiento

Dados m oŕıgenes o fábricas F1, F2, ..., Fm y n destinos o centros de dis-
tribución D1, D2, ..., Dn, se requiere satisfacer las demandas en los destinos,
respetando las disponibilidades en los oŕıgenes de tal forma que el costo de
transporte sea mı́nimo. El problema del transporte se puede plantear de la
siguiente manera:

min z =

m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij ≤ fi, i = 1, ...,m

m∑
i=1

xij = dj , j = 1, ..., n

xij ≥ 0, para todo i, j,

donde
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178 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

xij = número de unidades que hay que llevar desde Fi hasta Dj ,

cij = costo de llevar una unidad desde Fi hasta Dj ,

fi = oferta o capacidad de la fábrica Fi,

dj = demanda del destino Dj .

Este problema es claramente de optimización lineal y, por lo tanto, se pue-
de resolver por el método simplex o por cualquier otro método general de
optimización lineal. Sin embargo, este problema tiene caracteŕısticas muy
especiales, que hacen conveniente adecuar el método simplex a estas carac-
teŕısticas especiales, para hacerlo más rápido y eficiente.

Supondremos, además, que el problema del transporte está planteado de
una manera ligeramente diferente, y con una condición adicional: la suma de
ofertas debe ser igual a la suma de demandas. Esto hace que las restricciones
de oferta se conviertan en igualdades:

min z =
m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = fi, i = 1, ...,m

m∑
i=1

xij = dj , j = 1, ..., n

xij ≥ 0, para todo i, j,

bajo la condición
m∑
i=1

fi =
n∑
j=1

dj .

Se puede demostrar que, planteado de esta forma, cualquier problema de
transporte tiene solución.

Como se verá más adelante, la restricción no es fuerte pues, cuando
la oferta es mayor que la demanda, basta con crear un destino adicional
ficticio que reciba la oferta adicional. Cuando la oferta total es menor que
la demanda, entonces el problema no tiene solución. Sin embargo, en este
caso, se puede pensar en buscar una seudosolución que tenga costo mı́nimo.

En un ejemplo veamos algunas de las caracteŕısticas especiales del pro-
blema del transporte.
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16.1. PLANTEAMIENTO 179

Ejemplo 16.1. 3 oŕıgenes; 4 destinos; ofertas fi: 10, 20, 30; demandas dj :
13, 14, 15, 18; tabla de costos unitarios:

F1

F2

F3

D1

5

3

4

D2

9

5

2

D3

4

0

6

D4

1

8

7

Utilizando el orden x11, x12, x13, x14, x21, x22, ..., la matriz de restricciones
de este problema (con una columna adicional para los términos independien-
tes) es: 

1 1 1 1 0 0 0 0 0 0 0 0 10
0 0 0 0 1 1 1 1 0 0 0 0 20
0 0 0 0 0 0 0 0 1 1 1 1 30
1 0 0 0 1 0 0 0 1 0 0 0 13
0 1 0 0 0 1 0 0 0 1 0 0 14
0 0 1 0 0 0 1 0 0 0 1 0 15
0 0 0 1 0 0 0 1 0 0 0 1 18


Las caracteŕısticas especiales son las siguientes:

La matriz de coeficientes está compuesta únicamente de ceros y de
unos.

Cada columna de la matriz tiene exactamente dos unos (los demás
coeficientes valen cero).

Hay m× n = 3× 4 = 12 variables.

Hay m+ n = 3 + 4 = 7 restricciones.

Hay únicamente m + n − 1 = 3 + 4 − 1 = 6 restricciones linealmente
independientes. Al sumar las tres restricciones de oferta (incluyendo
los términos independientes) y restar las tres primeras restricciones de
demanda, se obtiene exactamente la última restricción de demanda.
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180 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

Esto quiere decir que, por ejemplo, la última restricción de demanda
se podŕıa suprimir. 3

Definición 16.1. Un conjunto de valores xij se llama una solución facti-
ble si cumple todas las restricciones. Una solución factible se llama básica
si tiene a lo más m+ n− 1 variables positivas. Una solución factible básica
se llama no degenerada si tiene exactamente m + n − 1 variables positi-
vas. Una solución factible básica se llama degenerada si tiene menos de
m+ n− 1 variables positivas.

Para la solución del problema del transporte se acostumbra a usar una
tabla compuesta por m × n casillas, distribuidas en m filas y n columnas.
Cada origen tiene una fila, cada destino tiene una columna. En la casilla
(i, j), situada en la fila i y en la columna j, se escribe el valor de la variable
xij y además, ocupando un espacio pequeño, el costo cij .

Ejemplo 16.2. Consideremos los mismos datos del ejemplo anterior.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

0

5

0

0

12

8

8

4

13

2

14

6

3

7

0

13 14 15 18

10

20

30

La anterior solución es una solución factible básica no degenerada, ya que
cumple todas las restricciones y tiene exactamente 3 + 4 − 1 = 6 variables
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no nulas.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

1

1

9

3

0

5

0

0

11

8

9

4

13

2

14

6

3

7

0

13 14 15 18

10

20

30

La anterior solución factible tiene 7 variables positivas, luego no es básica.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

2

1

9

3

0

5

0

0

11

8

9

4

13

2

14

6

3

7

0

13 14 15 18

10

20

30
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182 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

−1

1

11

3

0

5

0

0

13

8

7

4

13

2

14

6

3

7

0

13 14 15 18

10

20

30

Las dos soluciones anteriores no son realizables. 3

Ejemplo 16.3. Consideremos los mismos datos del ejemplo 16.1 , salvo que
las demandas son: 10, 10, 10, 30 .

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

0

5

10

0

10

8

0

4

0

2

0

6

0

7

30

10 10 10 30

10

20

30

La anterior solución es factible y, además, es básica ya que tiene 4 variables
positivas, pero es degenerada. 3
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16.2. ALGORITMO DEL TRANSPORTE 183

16.2. Algoritmo del transporte

El esquema general del algoritmo del transporte es exactamente el mismo
del método simplex, al fin y al cabo es sencillamente el método simplex
adaptado al problema del transporte; las diferencias están en algunos de los
pasos.

· verificar que la oferta total es igual a la demanda total

· hallar una solución básica factible

· calcular los costos reducidos

mientras la solución no es óptima

· escoger la variable que entra

· buscar la variable que sale

· modificar la tabla

· calcular los costos reducidos

fin-mientras

Más adelante se verá como tratar el caso de las soluciones básicas de-
generadas, por el momento se supondrá que no se presentan soluciones
básicas degeneradas.

El algoritmo del transporte es uno solo, sin embargo, hallar la solución
básica inicial y calcular los costos reducidos se puede hacer de varias formas.
Inicialmente veremos métodos muy sencillos, aunque no necesariamente los
más eficientes. Estos métodos son: el de la esquina noroccidental para
obtener una solución básica inicial, y el método ”stepping-stone”(método
paso a paso o método del circuito), para calcular los costos reducidos.

16.3. Método de la esquina noroccidental

Este método permite hallar una solución factible básica. Como su nom-
bre lo indica, escoge siempre la casilla disponible que esté más arriba y más
a la izquierda. El esquema del algoritmo es el siguiente:
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184 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

· todas las casillas están disponibles (no tienen asignado valor)

· las ofertas y demandas disponibles son las iniciales

mientras haya casillas disponibles

· buscar la casilla noroccidental disponible

· asignarle la mayor cantidad posible

· en la ĺınea saturada, para las demás casillas disponibles: xij = 0

· actualizar la oferta disponible en la fila de la casilla N.O.

· actualizar la demanda disponible en la columna de la casilla N.O.

fin-mientras

En este contexto del problema del transporte, ĺınea significa fila o colum-
na. Actualizar la oferta quiere decir: restar de la oferta disponible el valor
asignado a la última casilla noroccidental. De manera análoga se actualiza
la demanda disponible. Cuando se asigna la mayor cantidad posible a la
casilla noroccidental, se satura una ĺınea, es decir, una fila o una columna.
En algunos casos, cuando hay degeneramiento, en una casilla anterior a la
última, se saturan al tiempo la fila y la columna. Este caso se estudiará en
el caṕıtulo siguiente.

Ejemplo 16.4. Consideremos los mismos datos del ejemplo 16.1

F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

10

20

30

En este momento la casilla noroccidental es la casilla (1, 1). La máxima
cantidad que se puede asignar es 10. Esto hace que se sature la primera
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16.3. MÉTODO DE LA ESQUINA NOROCCIDENTAL 185

fila, la cual queda sin oferta disponible. La primera columna queda con una
demanda disponible de 3 unidades.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3 5 0 8

4 2 6 7

3 14 15 18

0

20

30

Ahora la casilla noroccidental es la casilla (2, 1). La máxima cantidad que se
puede asignar es 3. Esto hace que se sature la primera columna. La primera
columna queda sin demanda disponible y la segunda fila tendrá una oferta
disponible de 17 unidades.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5 0 8

4

0

2 6 7

0 14 15 18

0

17

30

En este momento la casilla noroccidental es la casilla (2, 2). La máxima
cantidad que se puede asignar es 14. Esto hace que se sature la segunda
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186 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

columna.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

14

0 8

4

0

2

0

6 7

0 0 15 18

0

3

30

Ahora la casilla noroccidental es la casilla (2, 3). La máxima cantidad que
se puede asignar es 3. Esto hace que se sature la segunda fila.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

14

0

3

8

0

4

0

2

0

6 7

0 0 12 18

0

0

30

En este momento la casilla noroccidental es la casilla (3, 3). La máxima
cantidad que se puede asignar es 12. Esto hace que se sature la tercera
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columna.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

14

0

3

8

0

4

0

2

0

6

12

7

0 0 0 18

0

0

18

Ahora la casilla noroccidental es la casilla (3, 4). La máxima cantidad que
se puede asignar es 18. Esto hace que se sature la tercera fila y la cuarta
columna.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

14

0

3

8

0

4

0

2

0

6

12

7

18

0 0 0 0

0

0

0

Finalizado el proceso se obtiene una solución factible, y en este caso, además
no degenerada.

z = (5× 10) + (9× 0) + ...+ (3× 3) + ...+ (7× 18) = 327. 3
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188 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

Definición 16.2. En una solución factible básica no degenerada las va-
riables positivas se llaman variables básicas y las variables nulas se llaman
variables libres. En una solución factible básica degenerada las variables
positivas se llaman variables básicas, algunas variables nulas, escogidas de
manera adecuada, también se llaman básicas. Las demás variables nulas se
llaman variables libres.

16.4. Método del circuito (stepping-stone)

Este método sirve para calcular los costos reducidos de las variables
libres. Si xij es una variable libre, entonces su costo reducido c̃ij indica la
modificación que tendrá la función objetivo por cada unidad que aumente
esta variable libre. Como en el método simplex, en cada iteración, una y
solamente una variable libre entra a la base, y también, exactamente una
variable básica sale de la base.

Si la variable libre xij con valor nulo, se incrementara en una unidad,
entonces seŕıa necesario reequilibrar la tabla, aumentando y disminuyendo el
valor de algunas variables, para que se siga teniendo una solución realizable.
Estas modificaciones únicamente son posibles en las variables básicas, ya
que una sola variable libre puede aumentar para volverse básica y, además,
las variables libres no pueden disminuir pues se volveŕıan negativas.

Entonces dada la variable libre xij , que aumentaŕıa en una unidad, es
necesario buscar casillas correspondientes a variables básicas, en algunas de
ellas se necesita aumentar una unidad, en otras se necesita disminuir una
unidad, de tal manera que:

en cada ĺınea, fila o columna:
o bien, no hay ninguna modificación,
o bien, hay dos modificaciones,

una de aumento y otra de disminución.

Las modificaciones se pueden simbolizar por un signo más (+) para los
aumentos, y un signo menos (−) para las disminuciones.

Se puede demostrar que en una solución factible básica no degenerada,
para cada variable libre xij , hay exactamente un camino o circuito, formado
por la casilla de xij y las casillas de algunas variables básicas, de tal manera
que este circuito rebalancea la tabla.
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16.4. MÉTODO DEL CIRCUITO (STEPPING-STONE) 189

Una vez conseguido este circuito, el costo reducido c̃ij se calcula natu-
ralmente como la suma de los costos de las casillas del circuito, donde se
tiene en cuenta el signo de cada casilla. Es decir se suman los costos de las
casillas con signo más (+), y se restan los costos de las casillas con signo
menos (−).

Ejemplo 16.5. Tomemos los mismos datos del ejemplo 16.1 y la solución
básica inicial obtenida en el ejemplo 16.4 .

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

14

0

3

8

0

4

0

2

0

6

12

7

18

13 14 15 18

10

20

30

Cálculo del costo reducido c̃12: Si la variable libre x12 aumenta, y como la
única variable básica en la primera fila es x11, necesariamente x11 debe dis-
minuir. Como x11 está en la primera columna, entonces otra variable básica
de la primera columna debe aumentar. Para este ejemplo necesariamente
x21 debe aumentar. Ahora, considerando la segunda fila, como x21 aumenta,
otra variable básica debe disminuir. La única posibilidad corresponde a x22.
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190 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

Aśı ya se ha completado el circuito con las casillas (1,2), (1,1), (2,1), (2,2).

F1

F2

F3

D1 D2 D3 D4

5 −
10

9 +

0

4

0

1

0

3 +

3

5 −
14

0

3

8

0

4

0

2

0

6

12

7

18

13 14 15 18

10

20

30

El cálculo del costo reducido c̃12 es ahora inmediato:

c̃12 = 9− 5 + 3− 5 = 2.

Cálculo del costo reducido c̃13: Si la variable libre x13 aumenta, debe dis-
minuir x11, entonces debe aumentar x21. Aqúı hay dos posibilidades: puede
disminuir x22 o puede disminuir x23. Si disminuye x22 debe aumentar otra
variable básica en la misma segunda columna, pero no hay más variables
básicas. Luego es necesario desechar esta posibilidad. Si disminuye x23 ya
se completa el circuito (1,3), (1,1), (2,1), (2,3).

c̃13 = 4− 5 + 3− 0 = 2.

Es conveniente anotar que no siempre los circuitos se obtienen fácilmente,
ni tampoco tienen siempre cuatro casillas.
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Circuito para c̃14: (1,4), (1,1), (2,1), (2,3), (3,3), (3,4).

F1

F2

F3

D1 D2 D3 D4

5 −
10

9

0

4

0

1 +

0

3 +

3

5

14

0 −
3

8

0

4

0

2

0

6 +

12

7 −
18

13 14 15 18

10

20

30

c̃14 = 1− 5 + 3− 0 + 6− 7 = −2

De manera semejante:

x24 : (2, 4), (2, 3), (3, 3), (3, 4);c̃24 = 8− 0 + 6− 7 = 7,

x31 : (3, 1), (3, 3), (2, 3), (2, 1);c̃31 = 4− 6 + 0− 3 = −5,

x32 : (3, 2), (3, 3), (2, 3), (2, 2);c̃32 = 2− 6 + 0− 5 = −9. 3

Los circuitos pueden ser descritos mediante las siguientes caracteŕısticas:

la primera casilla corresponde a una variable libre, las demás corres-
ponden a variables básicas.

todo circuito tiene un número par de casillas.

toda casilla en posición impar, está en la misma fila de la siguiente
casilla (tienen el mismo primer ı́ndice).

toda casilla en posición par, está en la misma columna de la siguiente
casilla (tienen el mismo segundo ı́ndice).

la última casilla está en la misma columna de la casilla inicial.

las casillas “de aumento”son las de posición impar y las casillas “de
disminución”son las de posición par.
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192 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

Estas caracteŕısticas están basadas en la búsqueda inicial de una variable
básica en la misma fila de la variable libre. Unas caracteŕısticas análogas
se pueden obtener, al buscar inicialmente una variable básica en la misma
columna de la variable libre.

16.5. Condiciones de optimalidad y modificación
de la tabla

16.5.1. Condiciones de optimalidad

Son exactamente las mismas del método simplex: si todos los costos
reducidos de las variables libres de una solución factible básica son
no negativos, entonces ésta es óptima.

16.5.2. Escogencia de la variable que entra

La variable libre que entra, se escoge exactamente como en el méto-
do simplex: la variable libre que entra es aquella de menor costo
reducido (el más negativo).

16.5.3. Escogencia de la variable que sale

Una vez escogida la variable libre que entra, se busca en su circuito, el
menor valor xij en las casillas con signo menos (casillas donde se
disminuye). Esta casilla corresponde a la variable básica que sale. Además,
ese mı́nimo valor corresponde al incremento que va a tener la variable que
entra.

16.5.4. Modificación de la tabla

Una vez escogida la variable que entra y obtenido el valor de su incre-
mento, se modifican únicamente las casillas de su circuito aśı: En las casillas
con signo +, se efectúa dicho incremento y en las casillas con signo −, se
disminuye tal cantidad. De esta manera la nueva tabla queda equilibrada y
representa una solución factible básica mejor; esta mejoŕıa está dada por el
producto del costo reducido de la variable que entra y su incremento. En la
nueva tabla la variable básica que salió, tiene el valor cero.
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Ejemplo 16.6. Consideremos los mismos datos del ejemplo 16.1, la solución
básica inicial obtenida en el ejemplo 16.4 y los costos reducidos calculados
en el ejemplo 16.5.

Como hay costos reducidos negativos la tabla no es óptima.

Hay una sola variable libre con costo reducido mı́nimo: x32. Ésta es la
variable que entra. Si hubiera empate habŕıa que resolverlo de cualquier
forma, por ejemplo, tomando como variable que entra la primera encontrada
entre las empatadas.

El circuito de esta variable es: (3,2), (3,3), (2,3), (2,2). En las casillas
de disminución (las de posición par), el menor valor xij es 12 y está en la
casilla (3, 3). Entonces la variable x33 sale de la base. La variable libre
y las variables de su circuito son modificadas en 12 unidades. Las demás
casillas no alteran su valor. El valor de la función objetivo debe modificarse
(disminuir) en −9× 12 = −108 unidades.

Para obtener la nueva tabla, basta aumentar 12 unidades en las casillas
(3, 2), (2, 3) y disminuir 12 unidades en las casillas (3, 3), (2, 2).

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

2

0

15

8

0

4

0

2

12

6

0

7

18

13 14 15 18

10

20

30

Obviamente, esta solución también es factible, es básica y en este caso tam-
bién es no degenerada. El valor de la función objetivo es z = 5 × 10 + 3 ×
3 + ...+ 7× 18 = 219 = 327− 108.

Para obtener una solución óptima del problema hay que calcular de nuevo
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los costos reducidos, averiguar por las condiciones de optimalidad,..., etc.

c̃12 = 2, c̃13 = 2, c̃14 = −11, c̃24 = −2, c̃31 = 4, c̃33 = 9.

La solución factible básica actual no es óptima.

costo reducido mı́nimo : c̃14 = −11,

variable que entra : x14,

circuito de x14 : (1,4), (1,1), (2,1), (2,2),(3,2), (3,4),

valor máximo para x14 : 2,

variable que sale : x22.
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z = 197,

c̃12 = 13, c̃13 = 2, c̃22 = 11, c̃24 = 9, c̃31 = −7, c̃33 = −2.

La solución factible básica actual no es óptima.

Costo reducido mı́nimo : c̃31 = −7,

variable que entra : x31,

circuito de x31 : (3,1), (3,4), (1,4), (1,1) ,

valor máximo para x31 : 8,

variable que sale : x11.
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z = 141,

c̃11 = 7, c̃12 = 13, c̃13 = 9, c̃22 = 4, c̃24 = 2, c̃33 = 5.

Como no hay costos reducidos negativos, la tabla es óptima. Como todos
los costos reducidos son positivos la solución es única. 3

Ejemplo 16.7. Consideremos el siguiente problema de transporte con las
mismas ofertas y demandas del ejemplo anterior, pero con costos ligeramente
diferentes. Como el método de la esquina noroccidental no tiene en cuenta
los costos (he ah́ı su desventaja), entonces la solución básica factible inicial
es la misma. Obviamente, el valor de z es diferente.
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z = 330.

Después de iteraciones semejantes a las del ejemplo anterior, se llega a la
tabla óptima.
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z = 138,

c̃11 = 8, c̃12 = 13, c̃13 = 11, c̃22 = 2, c̃24 = 0, c̃33 = 7.

Como no hay costos reducidos negativos, la tabla es óptima.
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Aqúı hay una diferencia importante. En el óptimo hay una variable libre
con costo reducido nulo: x24 (podŕıa haber más de una). Como la solución
factible básica no es degenerada se puede afirmar que hay muchas soluciones.
Para obtener otra solución factible básica, de manera semejante al método
simplex, se entra a la base la variable libre con costo reducido nulo, y se
construye otra tabla.

Variable que entra : x24,

circuito de x24 : (2,4), (2,1), (3,1), (3,4) ,

valor máximo para x24 : 5,

variable que sale : x21.
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z = 138

c̃11 = 8, c̃12 = 13, c̃13 = 11, c̃21 = 0, c̃22 = 2, c̃33 = 7.

Como era de esperarse, no hay costos reducidos negativos y la tabla es
óptima.

Aqúı de nuevo, hay una variable libre con costo reducido nulo: x21. Para
obtener otra solución factible básica, se entra a la base x21 y se construye
otra tabla.

variable que entra : x21,

circuito de x21 : (2,1), (2,4), (3,4), (3,1) ,

valor máximo para x21 : 5,

variable que sale : x24.

197



198 CAṔITULO 16. EL PROBLEMA DEL TRANSPORTE

Vuelve a resultar la primera tabla óptima. En este ejemplo muy sencillo,
en la primera tabla óptima, hubo únicamente una sola variable libre con
costo reducido nulo, luego no hab́ıa otras posibilidades para escoger. En
este problema hay solamente dos soluciones básicas realizables óptimas, y
aśı toda solución realizable óptima es combinación convexa de ellas. 3

Cuando en el óptimo hay varias variables libres con costo reducido nulo,
no es sencillo encontrar todas las soluciones básicas realizables óptimas. En
la práctica, bastaŕıa con encontrar dos soluciones básicas realizables óptimas,
escogiendo una de las variables libres con costo reducido nulo para entrarla
a la base construyendo una nueva tabla.

EJERCICIOS

16.1. Resuelva el problema de transporte dado por los siguientes datos: 3
oŕıgenes; 4 destinos; ofertas 10, 11, 12; demandas 7, 8, 9, 9; matriz de
costos unitarios  10 7 8 9

7 8 4 2
6 5 3 1

 .
16.2. Resuelva el problema de transporte dado por los siguientes datos: 5

oŕıgenes; 5 destinos; ofertas 10, 11, 12, 13, 14; demandas 9, 9, 9, 9, 24;
matriz de costos unitarios

6 8 9 6 5
7 10 7 7 6

10 8 8 7 6
9 9 7 5 2

10 9 4 3 1

 .

16.3. Resuelva el problema de transporte dado por los siguientes datos: 5
oŕıgenes; 5 destinos; ofertas 10, 50, 20, 40, 30; demandas 27, 35, 31,
28, 29; matriz de costos unitarios

6 8 9 5 1
5 10 6 2 9
8 8 4 8 6
9 2 6 5 2
1 6 4 3 1

 .
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Caṕıtulo 17

OTROS MÉTODOS PARA
EL PROBLEMA DEL
TRANSPORTE

17.1. Método de las variables duales

Este método sirve para calcular los costos reducidos sin tener que calcular
el circuito de cada variable. Como su nombre lo indica utiliza las variables
de su problema dual. En realidad se utilizan las variables del dual de un
problema equivalente. El problema planteado inicialmente es el mismo:

min z =
m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = fi, i = 1, ...,m

m∑
i=1

xij = dj , j = 1, ..., n

xij ≥ 0, para todo i, j,

bajo la condición
m∑
i=1

fi =
n∑
j=1

dj .
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200 CAṔITULO 17. OTROS MÉTODOS PARA EL TRANSPORTE

Se puede mostrar que la solución óptima del problema anterior es la misma
del siguiente problema:

min z =
m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij ≥ fi, i = 1, ...,m

m∑
i=1

xij ≥ dj , j = 1, ..., n

xij ≥ 0, para todo i, j.

Este problema está en la forma canónica de minimización y su dual se
obtiene fácilmente. Sea ui la variable del problema dual correspondiente
a la i-ésima restricción de oferta. Sea vj la variable del problema dual
correspondiente a la j-ésima restricción de demanda. Entonces el problema
dual, en la forma canónica de maximización es:

max w =
m∑
i=1

fiui +
n∑
j=1

djvj

ui + vj ≤ cij , i = 1, ...m, j = 1, ...n

ui, vj ≥ 0, para todo i, j.

Resultados de dualidad, análogos a los de la proposición 14.10, dicen que el
costo reducido de una variable del primal es igual al valor de la variable de
holgura correspondiente en el dual. La restricción del dual correspondiente
a la variable xij es:ui + vj ≤ cij . Entonces:

c̃ij = holgura = cij − ui − vj .

Obviamente, para las variables básicas, el costo reducido es nulo. Plantear
este resultado da lugar a m+ n− 1 igualdades con m+ n incógnitas. Si se
obtiene una solución de este sistema se puede calcular fácilmente el valor de
los costos reducidos de las variables libres. Entonces el esquema del proceso
para el cálculo de los costos reducidos de las variables libres es el siguiente.

Para las variables básicas plantear las m+n− 1 igualdades con m+n
variables:

ui + vj = cij .
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17.1. MÉTODO DE LAS VARIABLES DUALES 201

Dar a una variable (cualquiera) un valor arbitrario y resolver el sistema
resultante:

m+ n− 1 igualdades con m+ n− 1 variables.

Calcular los costos reducidos de las variables libres mediante la fórmula

c̃ij = cij − ui− vj .

Se puede demostrar que no importa cual variable se escoja para darle
un valor, ni tampoco que valor se le dé. De todas formas el valor de los
costos reducidos para las variables libres será el mismo. Obviamente, el
valor de ui, vj śı depende de tal escogencia. Además, el sistema de m+n−1
igualdades y variables siempre se puede resolver de manera única cuando
se trata de una solución factible básica no degenerada o de una solución
factible básica degenerada tratada adecuadamente.

Si los costos reducidos de las variables libres se calculan por el método
de las variables duales, una vez que se escoge la variable que entra a la base,
hay que buscarle de todas maneras su circuito.

Este método, para calcular los costos reducidos de las variables libres, es
más rápido y fácil que el método stepping-stone, salvo para problemas muy
pequeños.

Ejemplo 17.1. Consideremos la solución factible básica inicial obtenida en
el ejemplo 16.4

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

3

5

14

0

3

8

0

4

0

2

0

6

12

7

18

13 14 15 18

10

20

30

201



202 CAṔITULO 17. OTROS MÉTODOS PARA EL TRANSPORTE

z = 327.

Las m+ n− 1 igualdades con m+ n variables son:

u1 + v1 = 5,

u2 + v1 = 3,

u2 + v2 = 5,

u2 + v3 = 0,

u3 + v3 = 6,

u3 + v4 = 7.

Por ejemplo, demos a la variable u2 el valor cero. Entonces

v1 = 3, v2 = 5, v3 = 0,

luego

u1 = 2, u3 = 6, v4 = 1.

En resumen

u1 = 2, v1 = 3,

u2 = 0, v2 = 5,

u3 = 6, v3 = 0,

v4 = 1.

Ahora śı se tienen de manera inmediata los costos reducidos:

c̃12 = 9− 2− 5 = 2,
c̃13 = 4− 2− 0 = 2,
c̃14 = 1− 2− 1 = −2,
c̃24 = 8− 0− 1 = 7,
c̃31 = 4− 6− 3 = −5,
c̃32 = 2− 6− 5 = −9.

Se escoge como variable que entra a la base a x32, hay que obtener su circuito
y proseguir el método del transporte.

A manera de simple comprobación, se puede escoger otra variable y
otro valor, por ejemplo, v3 = −3. Al resolver el sistema se tienen valores
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17.2. MÉTODO DEL COSTO MÍNIMO POR FILAS 203

diferentes:

u1 = 5, v1 = 0,

u2 = 3, v2 = 2,

u3 = 9, v3 = −3,

v4 = −2.

Sin embargo, como era de esperarse, los valores de los costos reducidos son
exactamente los mismos.

c̃12 = 9− 5− 2 = 2,
c̃13 = 4− 5−−3 = 2,
c̃14 = 1− 5−−2 = −2,
c̃24 = 8− 3−−2 = 7,
c̃31 = 4− 9− 0 = −5,
c̃32 = 2− 9− 2 = −9. 3

En el método de la esquina noroccidental, para hallar la solución factible
básica inicial no se tienen en cuenta de ninguna manera los costos unitarios.
En los métodos presentados a continuación, al construir la solución factible
básica inicial se utilizan los costos unitarios para tratar de que la solución
obtenida sea más próxima al óptimo, es decir, se desea disminuir el número
de iteraciones. Aunque el cálculo de la solución factible básica inicial es más
dispendioso, el tiempo total para la solución del problema es, en promedio,
menor que el tiempo requerido para la obtención de una solución óptima,
partiendo de una solución inicial por el método de la esquina noroccidental.

17.2. Método del costo mı́nimo por filas

Con mucha frecuencia, los métodos trabajan indistintamente sobre filas
o sobre columnas. En lo que sigue de este libro se usará la palabra ĺınea
para hacer referencia a una fila o a una columna.

El método del costo mı́nimo por filas sirve para hallar una solución fac-
tible básica inicial. Su algoritmo es el siguiente:
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204 CAṔITULO 17. OTROS MÉTODOS PARA EL TRANSPORTE

·todas las casillas están disponibles

·las ofertas y demandas disponibles son las iniciales

·todas las ĺıneas están no saturadas

mientras haya casillas disponibles

·en la primera fila no saturada buscar

la casilla disponible de costo mı́nimo

·asignar a esta casilla la mayor cantidad posible:

- saturar una ĺınea: una fila o una columna

- en esta ĺınea, para las otras casillas disponibles: xij = 0

- actualizar la oferta y la demanda disponibles

fin-mientras

Ejemplo 17.2. Consideremos los mismos datos del ejemplo 16.1

F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

10

20

30

La primera fila no saturada es la correspondiente a F1 . Alĺı la casilla de
costo mı́nimo es la casilla (1,4). La mayor cantidad que se puede asignar es:
10. Aśı se satura la fila 1.
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F1
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La primera fila no saturada es la segunda fila. Alĺı la casilla disponible de
costo mı́nimo es la casilla (2,3). La mayor cantidad que se puede asignar es
15 y aśı se satura la tercera columna.
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La primera fila no saturada sigue siendo la segunda. Alĺı la casilla disponible
de costo mı́nimo es la casilla (2,1). La mayor cantidad que se puede asignar
es 5 y aśı se satura la segunda fila.

205
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La primera fila no saturada es la tercera. Alĺı la casilla disponible de costo
mı́nimo es la casilla (3,2). La mayor cantidad que se puede asignar es 14 y
aśı se satura la segunda columna.
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La primera fila no saturada sigue siendo la tercera. Alĺı la casilla disponible
de costo mı́nimo es la casilla (3,1). La mayor cantidad que se puede asignar
es 8 y aśı se satura la primera columna.

206
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La primera fila no saturada sigue siendo la tercera. Alĺı la casilla disponible
de costo mı́nimo (la última) es la casilla (3,4). La mayor cantidad que se
puede asignar es 8 y aśı se saturan la tercera fila y la cuarta columna.
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Aqúı ya no hay casillas disponibles y se ha obtenido una solución factible
básica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
si se compara con la solución óptima obtenida en el ejemplo 16.6) se puede
afirmar que la solución obtenida es óptima.
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El hecho de encontrar por este método una solución básica factible y, al
mismo tiempo, óptima, es simplemente casual. Los métodos conocidos para
hallar soluciones básicas factibles iniciales, no garantizan la obtención de una
solución óptima. Simplemente algunos métodos aumentan la posibilidad de
que la tabla obtenida esté más cerca de la tabla óptima. 3

Si la solución factible básica obtenida no es óptima, se continúa el proceso
con la escogencia de la variable que entra, escogencia de la variable que sale,
modificación de la tabla...

17.3. Método del costo mı́nimo por columnas

Este método sirve para hallar una solución factible básica inicial. Es
muy semejante al método del costo mı́nimo por filas. La única diferencia
consiste en que siempre se busca la casilla disponible de costo mı́nimo en la
primera columna no saturada.

Ejemplo 17.3. Consideremos los mismos datos del ejemplo 16.1.

F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

10
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30

La primera columna no saturada es la primera. Alĺı la casilla disponible de
costo mı́nimo es la casilla (2,1). La máxima cantidad que se puede asignar
es 13. Aśı se satura la primera columna.
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F1
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La primera columna no saturada es la segunda. Alĺı la casilla disponible de
costo mı́nimo es la casilla (3,2). La máxima cantidad que se puede asignar
es 14. Aśı se satura la segunda columna.
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La primera columna no saturada es la tercera. Alĺı la casilla disponible de
costo mı́nimo es la casilla (2,3). La máxima cantidad que se puede asignar
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es 7. Aśı se satura la segunda fila.
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La primera columna no saturada es nuevamente la tercera. Alĺı la casilla
disponible de costo mı́nimo es la casilla (1,3). La máxima cantidad que se
puede asignar es 8. Aśı se satura la tercera columna.
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La primera columna no saturada es la cuarta. Alĺı la casilla disponible de
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costo mı́nimo es la casilla (1,4). La máxima cantidad que se puede asignar
es 2. Aśı se satura la primera fila.
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La primera columna no saturada es nuevamente la cuarta. Alĺı la casilla
disponible de costo mı́nimo (la última casilla) es la casilla (3,4). La máxima
cantidad que se puede asignar es 16. Aśı se saturan la tercera fila y la cuarta
columna.
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Aqúı ya no hay casillas disponibles y se ha obtenido una solución factible
básica inicial. Su costo es z = 213. Si se calculan los costos reducidos
se puede ver que la solución obtenida no es óptima (c̃11 = −2, c̃31 = −9,
c̃33 = −4), entonces se continúa el proceso con la escogencia de la variable
que entra, escogencia de la variable que sale, modificación de la tabla... 3

17.4. Método del costo mı́nimo de la matriz

Este método sirve para hallar una solución factible básica inicial y es
semejante a los dos métodos anteriores. La diferencia consiste en que acá se
busca la casilla disponible de costo mı́nimo en toda la matriz. Su algoritmo
es el siguiente:

·todas las casillas están disponibles

·las ofertas y demandas disponibles son las iniciales

·todas las ĺıneas están no saturadas

mientras haya casillas disponibles

·buscar, en toda la tabla, la casilla disponible de costo mı́nimo

·asignar a esta casilla la mayor cantidad posible:

- saturar una ĺınea: una fila o una columna

- en esta ĺınea, para las otras casillas disponibles: xij = 0

- actualizar la oferta y demanda disponibles

fin-mientras

Ejemplo 17.4. Consideremos los mismos datos del ejemplo 16.1
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F1
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F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

10

20
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La casilla disponible de costo mı́nimo, en la matriz, es la casilla (2,3). La
máxima cantidad que se puede asignar es 15. Aśı se satura la tercera co-
lumna.

F1

F2

F3

D1 D2 D3 D4

5 9 4

0

1

3 5 0

15

8

4 2 6

0

7

13 14 18

10

5

30

La casilla disponible de costo mı́nimo, en la matriz, es la casilla (1,4). La
máxima cantidad que se puede asignar es 10. Aśı se satura la primera fila.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 5 0

15

8

4 2 6

0

7

13 14 8

5

30

La casilla disponible de costo mı́nimo, en la matriz, es la casilla (3,2). La
máxima cantidad que se puede asignar es 14. Aśı se satura la segunda
columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 5

0

0

15

8

4 2

14

6

0

7

13 8

5

16

La casilla disponible de costo mı́nimo, en la matriz, es la casilla (2,1). La
máxima cantidad que se puede asignar es 5. Aśı se satura la segunda fila.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4 2

14

6

0

7

8 8

16

La casilla disponible de costo mı́nimo, en la matriz, es la casilla (3,1). La
máxima cantidad que se puede asignar es 8. Aśı se satura la primera colum-
na.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4

8

2

14

6

0

7

8

8

La casilla disponible de costo mı́nimo (la última), en la matriz, es la
casilla (3,4). La máxima cantidad que se puede asignar es 8. Aśı se saturan
la tercera fila y cuarta columna.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4

8

2

14

6

0

7

8

13 14 15 18

10

20

30

Aqúı ya no hay casillas disponibles y se ha obtenido una solución factible
básica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
si se compara con la solución óptima obtenida en el ejemplo 16.6) se puede
afirmar que la solución obtenida es óptima. 3

En la mayoŕıa de los casos el método del costo mı́nimo de la matriz da
una solución inicial mejor o semejante a la del método del costo mı́nimo por
columnas o por filas.

17.5. Método de Vogel

Este método también sirve para hallar una solución factible básica inicial.
Su algoritmo es el siguiente:
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17.5. MÉTODO DE VOGEL 217

·todas las casillas están disponibles

·las ofertas y demandas disponibles son las iniciales

·todas las ĺıneas están no saturadas

mientras haya casillas disponibles

·en cada ĺınea no saturada buscar la diferencia no negativa

entre los dos costos más pequeños de casillas disponibles

·asignar a esta casilla la mayor cantidad posible:

- saturar una ĺınea: una fila o una columna

- en esta ĺınea, para las otras casillas disponibles: xij = 0

- actualizar la oferta y demanda disponibles

fin-mientras

Observación: Si en una ĺınea hay una sola casilla disponible, se supone
que el segundo valor más pequeño es muy grande, aśı la diferencia es muy
grande.

Ejemplo 17.5. Consideremos los mismos datos del ejemplo 16.1

F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

10

20

30

Para la primera fila la diferencia es 4 − 1 = 3. Para la segunda fila la
diferencia es 3− 0 = 3. Para la tercera fila la diferencia vale 4− 2 = 2. Para
la primera columna la diferencia es 4− 3 = 1, y aśı sucesivamente.
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F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

1 3 4 6

10

20

30

3

3

2

La cuarta columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo mı́nimo es la casilla (1,4). Alĺı se puede asignar 10 y se
satura la primera fila.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 5 0 8

4 2 6 7

13 14 15 8

1 3 6 1

20

30

3

2

La tercera columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo mı́nimo es la casilla (2,3). Alĺı se puede asignar 15 y se
satura la tercera columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 5 0

15

8

4 2 6

0

7

13 14 8

1 3 1

5

30

2

2
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220 CAṔITULO 17. OTROS MÉTODOS PARA EL TRANSPORTE

La segunda columna tiene mayor diferencia: 3. En esta columna la casilla
disponible de costo mı́nimo es la casilla (3,2). Alĺı se puede asignar 14 y se
satura la segunda columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 5

0

0

15

8

4 2

14

6

0

7

13 8

1 1

5

16

5

3

La segunda fila tiene mayor diferencia: 5. En esta fila la casilla disponible
de costo mı́nimo es la casilla (2,1). Alĺı se puede asignar 5 y se satura la
segunda fila.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4 2

14

6

0

7

8 8

∞ ∞

16 3

Hay empate en el mayor valor (∞), entre la primera columna y la cuarta.
Se puede escoger cualquiera de las dos. Supongamos que se toma la primera
encontrada (según un cierto orden), es decir, la primera columna. En esta
columna la casilla disponible de costo mı́nimo (la única) es la casilla (3,1).
Alĺı se puede asignar 8 y se satura la primera columna.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4

8

2

14

6

0

7

8

∞

8 ∞

No queda sino una casilla disponible, la (3,4). Alĺı se puede asignar 8 y se
saturan al tiempo la tercera fila y la cuarta columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4

8

2

14

6

0

7

8

13 14 15 18

10

20

30

Aqúı ya no hay casillas disponibles y se ha obtenido una solución factible
básica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
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si se compara con la solución óptima obtenida en el ejemplo 16.6) se puede
afirmar que la solución obtenida es óptima. 3

17.6. Método de Russel

Este método también sirve para hallar una solución factible básica inicial.
Su algoritmo es el siguiente:

·todas las casillas están disponibles

·las ofertas y demandas disponibles son las iniciales

·todas las ĺıneas están no saturadas

mientras haya casillas disponibles

·en cada fila no saturada calcular u′i
·en cada columna no saturada calcular v′j
·en cada casilla disponible calcular c′ij = cij − u′i − v′j
·buscar la casilla disponible de c′ij mı́nimo

·asignar a esta casilla la mayor cantidad posible

- saturar una ĺınea: una fila o una columna

- en esta ĺınea, para las otras casillas disponibles: xij = 0

- actualizar la oferta y demanda disponibles

fin-mientras

El valor u′i es el mayor costo de las casillas disponibles de la fila i. El
valor v′j es el mayor costo de las casillas disponibles de la columna j.

Ejemplo 17.6. Consideremos los mismos datos del ejemplo 16.1
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F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

13 14 15 18

10

20

30

En la primera fila, el costo máximo de las casillas disponibles es 9, entonces
u′1 = 9. De manera semejante u′2 = 8, u′3 = 7, v′1 = 5, v′2 = 9, v′3 = 6, v′4 = 8.
Aśı c′11 = 5− 9− 5 = −9, c′12 = 9− 9− 9 = −9, ...

F1

F2

F3

D1 D2 D3 D4

5 −9 9 −9 4 −11 1 −16

3 −10 5 −12 0 −14 8 −8

4 −8 2 −14 6 −7 7 −8

13 14 15 18

5 9 6 8

10

20

30

9

8

7
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El mı́nimo de los valores c′ij es −16 y está en la casilla (1,4). Alĺı se puede
asignar 10 y se satura la primera fila.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 −9 5 −8 0 −14 8 −8

4 −7 2 −10 6 −7 7 −8

13 14 15 8

4 5 6 8

20

30

8

7

El mı́nimo de los valores c′ij es −14 y está en la casilla (2,3). Alĺı se puede
asignar 15 y se satura la tercera columna.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 −9 5 −8 0

15

8 −8

4 −7 2 −10 6

0

7 −8

13 14 8

4 5 8

5

30

8

7

El mı́nimo de los valores c′ij es −10 y está en la casilla (3,2). Alĺı se puede
asignar 14 y se satura la segunda columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 −9 5

0

0

15

8 −8

4 −7 2

14

6

0

7 −8

13 8

4 8

5

16

8

7
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El mı́nimo de los valores c′ij es −9 y está en la casilla (2,1). Alĺı se puede
asignar 5 y se satura la segunda fila.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4 −7 2

14

6

0

7 −7

8 8

4 7

16 7

El mı́nimo de los valores c′ij es −7 y está en la casilla (3,1) o en la casilla
(3,4). En la casilla (3,1) se puede asignar 8 y se satura la primera columna.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4

8

2

14

6

0

7 −7

8

7

8 7

El mı́nimo de los valores c′ij es −7 y está en la casilla (3,4), que es la última
casilla disponible. Alĺı se puede asignar 8 y se saturan la tercera fila y cuarta
columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

5

5

0

0

15

8

0

4

8

2

14

6

0

7

8

13 14 15 18

10

20

30

Aqúı ya no hay casillas disponibles y se ha obtenido una solución factible
básica inicial. Su costo es z = 141. Si se calculan los costos reducidos (o
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17.7. SOLUCIONES BÁSICAS DEGENERADAS 229

si se compara con la solución óptima obtenida en el ejemplo 16.6) se puede
afirmar que la solución obtenida es óptima. 3

De los métodos anteriormente expuestos el más usado para problemas
grandes es el de Vogel. Ninguno de estos métodos garantiza obtener una
solución factible básica inicial óptima. Sin embargo, los métodos de Vogel
y Russel son los que, en general, dan una solución inicial más cercana al
óptimo.

Como en estos métodos hay que efectuar muchas búsquedas, en proble-
mas grandes no es conveniente hacerlo sobre toda la matriz. De ah́ı que se
utilice más el método de Vogel que el de Russel y que se prefiera el método
del costo mı́nimo por filas (o por columnas) al método del costo mı́nimo de
la matriz.

17.7. Soluciones básicas degeneradas

Las soluciones básicas degeneradas se pueden presentar por tres causas:

a) por modificación de otra solución básica degenerada,

b) en la obtención de una solución básica inicial, cuando al asignar la
mayor cantidad posible a una casilla diferente de la última (la m+n−
1), se copa al mismo tiempo el valor disponible en la fila (oferta) y el
valor disponible en la columna (demanda),

c) en la modificación de una tabla, al escoger la variable que sale, el valor
mı́nimo de las casillas de disminución se obtiene en dos o más casillas.

En cualquiera de estos casos, alguna (o algunas) variable nula debe ser
considerada como variable básica de tal forma que haya m + n − 1 varia-
bles básicas. La escogencia de esta (o estas) variable tiene cierto grado de
flexibilidad, pero tampoco es totalmente flexible. Es decir, hay pautas para
escoger adecuadamente si una variable nula debe ser básica. Por facilidad
visual las variables nulas básicas se indicarán por medio de la letra griega ε
(épsilon).

Ejemplo 17.7. Consideremos la siguiente solución factible básica.
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F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

0

5

10

0

0

8

0

4

0

2

0

6

10

7

10

10 10 10 10

10

10

20

Dos de las variables nulas deben considerarse como básicas, sin embargo, la
siguiente escogencia no es adecuada.

F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

0

5

10

0

ε

8

0

4

0

2

ε

6

10

7

10

10 10 10 10

10

10

20

Al tratar de calcular el costo reducido de la variable libre x12 obteniendo
su circuito, se observa que es imposible: Si aumenta x12, entonces necesaria-
mente tiene que disminuir x11 y otra variable básica de la primera columna
debe aumentar, pero esto es imposible. Al tratar de calcular los costos
reducidos por el método de las variables duales tampoco se puede. 3
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17.7. SOLUCIONES BÁSICAS DEGENERADAS 231

Para la adecuada obtención de una solución básica factible es necesario
tener en cuenta las siguientes indicaciones:

Las variables básicas son aquellas cuyo valor es positivo o las nulas
indicadas por el śımbolo ε.

Puede haber ĺıneas con disponibilidad nula y no estar saturadas, es
decir, disponibilidad nula y saturación no son equivalentes.

Cuando se asigna la mayor cantidad posible a una casilla y ésta no es
la m + n − 1, únicamente se satura una ĺınea. Esto quiere decir que
si la cantidad disponible en la fila es la misma de la columna de la
casilla escogida, entonces se satura, por ejemplo, únicamente la fila y
la columna continúa no saturada con disponibilidad nula.

Si se presenta un empate en la escogencia de la ĺınea (o la fila o la
columna) que se satura, como el descrito en la indicación anterior, y si
queda únicamente una fila no saturada y varias columnas no satura-
das, entonces se debe saturar necesariamente la columna de la casilla
escogida. De manera semejante, si hay una sola columna no saturada
y varias filas no saturadas se debe saturar la fila de la casilla escogida.

Cuando la mayor cantidad posible que se puede asignar a una casilla
es cero, entonces esto se indica con ε.

Al modificar un circuito únicamente una variable básica se vuelve libre,
es decir, si al modificar el circuito dos o más variables quedan con valor
nulo, solamente una de ellas se vuelve libre, las demás tienen valor cero,
pero son básicas, y se denotan con el śımbolo ε.

Si al modificar un circuito, la máxima cantidad que puede tomar la va-
riable que entra es ε, entonces la “suma” y “resta” tienen las siguientes
propiedades:

x+ ε = x, si x > 0,

x− ε = x, si x > 0,

ε+ ε = ε,

ε− ε = 0.

Ejemplo 17.8. Hallar una solución básica factible por el método de Vogel:
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F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

10 10 10 10

10

10

20

Para la primera fila la diferencia es 4 − 1 = 3. Para la segunda fila la
diferencia es 3− 0 = 3. Para la tercera fila la diferencia vale 4− 2 = 2. Para
la primera columna la diferencia es 4− 3 = 1, y aśı sucesivamente.

F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

4 2 6 7

10 10 10 10

1 3 4 6

10

10

20

3

3

2
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La cuarta columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo mı́nimo es la casilla (1,4). Alĺı se puede asignar 10 y se
satura, por ejemplo, la primera fila. La cuarta columna no se satura, pero
queda con disponibilidad nula.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3 5 0 8

4 2 6 7

10 10 10 0

1 3 6 1

10

20

3

2

La tercera columna tiene mayor diferencia: 6. En esta columna la casilla
disponible de costo mı́nimo es la casilla (2,3). Alĺı se puede asignar 10 y se
satura, por ejemplo, la segunda fila. La tercera columna no se satura, pero
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queda con disponibilidad nula.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

0

5

0

0

10

8

0

4 2 6 7

10 10 0 0

∞ ∞ ∞ ∞

20 2

Por ejemplo, la primera columna tiene mayor diferencia∞. En esta columna
la casilla disponible de costo mı́nimo (la única) es la casilla (3,1). Alĺı se
puede asignar 10 y se satura la primera columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

0

5

0

0

10

8

0

4

10

2 6 7

10 0 0

∞ ∞ ∞

10 4
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Por ejemplo, la segunda columna tiene mayor diferencia: ∞. En esta colum-
na la casilla disponible de costo mı́nimo (la única) es la casilla (3,2). Alĺı
se puede asignar 10. Esto hace que las disponibilidades de la tercera fila y
la segunda columna se anulen. Como solamente queda una fila no saturada
(la tercera) y varias columnas sin saturar, se debe saturar necesariamente
la segunda columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

0

5

0

0

10

8

0

4

10

2

10

6 7

0 0

∞ ∞

0 1

Escogiendo la tercera columna como la ĺınea de mayor diferencia, la casilla
disponible de costo mı́nimo (la única) es la casilla (3,3). Alĺı se puede asignar
0, denotado por ε. Aparentemente habŕıa posibilidad de saturar la tercera
fila o la tercera columna, pero como sólo queda una fila no saturada (la
tercera) y varias columnas sin saturar, se debe saturar necesariamente la
tercera columna.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

0

5

0

0

10

8

0

4

10

2

10

6

ε

7

0

∞

0 ∞

No queda sino una casilla disponible, la (3,4). Alĺı se puede asignar 0 (de-
notado por ε) y se saturan al tiempo la tercera fila y la cuarta columna.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

0

5

0

0

10

8

0

4

10

2

10

6

ε

7

ε

10 10 10 10

10

10

20

Aqúı ya no hay casillas disponibles y se ha obtenido una solución factible
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básica inicial. Su costo es z = 70. Al calcular los costos reducidos se tiene:

u1 + v4 = 1,

u2 + v3 = 0,

u3 + v1 = 4,

u3 + v2 = 2,

u3 + v3 = 6,

u3 + v4 = 7.

Démosle a la variable u3 el valor cero. Entonces:

u1 = −6, v1 = 4,

u2 = −6, v2 = 2,

u3 = 0, v3 = 6,

v4 = 7.

De manera inmediata se tienen los costos reducidos:

c̃11 = 5−−6− 4 = 7,
c̃12 = 9−−6− 2 = 13,
c̃13 = 4−−6− 6 = 4,
c̃21 = 3−−6− 4 = 5,
c̃22 = 5−−6− 2 = 9,
c̃24 = 8−−6− 7 = 7.

La solución obtenida es óptima. 3

Ejemplo 17.9. Considérese la siguiente solución factible básica, no dege-
nerada:
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F1

F2

F3

D1 D2 D3 D4

5

10

9

0

4

0

1

0

3

10

5

10

0

0

8

0

4

0

2

10

6

10

7

10

20 20 10 10

10

20

30

z = 280.

Esta solución básica fue obtenida por el método de la esquina noroccidental.
El costo reducido mı́nimo es c̃14 = −11, luego la solución no es óptima. El
circuito de x14 es: (1,4), (1,1), (2,1), (2,2), (3,2), (3,4).

El valor máximo que se puede asignar es 10 . Al actualizar el circui-
to, se anulaŕıan tres variables: x11, x22, x34, pero solamente una variable
puede volverse libre, las otras deben seguir siendo básicas, aunque nulas.
Supongamos que sale de la base x11, entonces x22, x34 se denotarán con ε.
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

20

5

ε

0

0

8

0

4

0

2

20

6

10

7

ε

20 20 10 10

10

20

30

Esta tabla tampoco es óptima, es necesario efectuar más iteraciones hasta
obtener el óptimo con la siguiente tabla.

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

10

3

10

5

0

0

10

8

0

4

10

2

20

6

0

7

ε

20 20 10 10

10

20

30

z = 120. 3
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17.8. Oferta total diferente de demanda total

Cuando la oferta total es diferente de la demanda total puede haber dos
casos: la oferta total es mayor que la demanda total o la oferta total es
menor que la demanda total.

En el primer caso se debe crear un destino adicional ficticio, una colum-
na adicional, con una demanda igual al exceso de oferta. Las cantidades
enviadas hacia este destino pueden indicar la capacidad de oferta no utili-
zada, o bien las unidades almacenadas en cada origen y no enviadas. Los
costos unitarios hacia este nuevo destino son pequeños y pueden ser nulos o
pueden indicar un costo de almacenamiento para las unidades no enviadas
o también pueden indicar el costo por no utilizar algunas máquinas a su
capacidad máxima óptima.

En el segundo caso definitivamente el problema no tiene solución. Sin
embargo, se puede pensar en tratar de hallar una seudosolución que, in-
cumpliendo de todas maneras las restricciones de demanda, busca un costo
mı́nimo. Para esto se crea un origen ficticio adicional, una nueva fila, cuya
oferta está dada por el exceso de demanda. Las cantidades enviadas desde
este origen indican la demanda no satisfecha o también pueden indicar el
número de unidades que es necesario conseguir por fuera de la empresa para
poder satisfacer la demanda. Los costos unitarios desde el origen ficticio
son muy altos y pueden indicar el costo de transporte más el sobreprecio
por comprar el producto a otros proveedores, o también pueden significar
las pérdidas ocasionadas por una demanda no satisfecha.

Ejemplo 17.10. Considere los siguientes datos:
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F1

F2

F3

D1 D2 D3

5 9 4

3 5 4

4 2 6

11 12 13

10

20

30

La oferta total es igual a 60 y la demanda total es 36, luego es necesario
crear un destino adicional con una demanda de 24 unidades. Por falta de
información adicional, supongamos que los costos para este destino ficticio
son nulos.

F1

F2

F3

D1 D2 D3 D4

5 9 4 0

3 5 4 0

4 2 6 0

11 12 13 24

10

20

30

La tabla óptima para este problema es la siguiente:

241
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F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

4

0

6

3

11

5

0

4

9

0

0

4

0

2

12

6

0

0

18

11 12 13 24

10

20

30

z = 109. 3

Ejemplo 17.11. Considere los siguientes datos:

F1

F2

D1 D2 D3 D4

5 9 4 1

3 5 0 8

11 12 13 24

11

22

La oferta total es igual a 33 y la demanda total es 60. Realmente el pro-
blema no tiene solución, pero se va a buscar una seudosolución con costo
de transporte mı́nimo. Es necesario crear un origen (o fábrica) adicional
ficticio, con una oferta de 27 unidades. Por falta de información adicional,
supongamos que los costos para este destino ficticio son grandes y valen 99.
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F1

F2

F3

D1 D2 D3 D4

5 9 4 1

3 5 0 8

99 99 99 99

11 12 13 24

11

22

27

La tabla óptima para este problema es la siguiente:

F1

F2

F3

D1 D2 D3 D4

5

0

9

0

4

0

1

11

3

9

5

0

0

13

8

0

99

2

99

12

99

0

99

13

11 12 13 24

11

22

27

z = 2711.

En realidad el costo mı́nimo de transporte de esta seudosolución es z = 38,
a lo cual habŕıa que agregar el verdadero costo, correspondiente al incumpli-

243



244 CAṔITULO 17. OTROS MÉTODOS PARA EL TRANSPORTE

miento de la demanda, o el precio adicional de los sobreesfuerzos necesarios
para satisfacer la demanda.

Según esta seudosolución, únicamente se satisface la demanda del destino
D3, los otros destinos tienen demanda insatisfecha de 2, 12 y 13 unidades. 3

EJERCICIOS

En los ejercicios 17.1 a 17.8, resuelva el problema de transporte plan-
teado. Utilice varios métodos para hallar la solución básica inicial.
Calcule los costos reducidos de varias maneras. Si hay más de un pun-
to óptimo, encuentre por lo menos dos. Si es necesario, haga modifica-
ciones o adaptaciones del problema planteado, para poder resolverlo.

17.1. Ofertas 10, 11, 12; demandas 7, 8, 9, 9; matriz de costos unitarios: 10 7 8 9
7 8 4 2
6 5 3 1

 .
17.2. Ofertas 10, 11, 12, 13, 14; demandas 9, 9, 9, 9, 24; matriz de costos

unitarios: 
6 8 9 6 5
7 10 7 7 6

10 8 8 7 6
9 9 7 5 2

10 9 4 3 1

 .
17.3. Ofertas 10, 50, 20, 40, 30; demandas 27, 35, 31, 28, 29; matriz de

costos unitarios: 
6 8 9 5 1
5 10 6 2 9
8 8 4 8 6
9 2 6 5 2
1 6 4 3 1

 .
17.4. Ofertas 40, 30, 30; demandas 10, 20, 30, 40; matriz de costos unitarios: 11 9 8 7

10 5 6 1
4 3 1 0

 .
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17.5. Ofertas 1, 1, 1, 1; demandas 1, 1, 1, 1; matriz de costos unitarios:
16 15 3 4
4 13 10 9

12 8 2 7
3 1 6 5

 .
17.6. Ofertas 20, 15, 10, 15; demandas 18, 19, 23; matriz de costos unitarios:

11 10 4
9 5 3
8 6 1
7 1 0

 .
17.7. Ofertas 10, 16, 20; demandas 10, 15, 15; matriz de costos unitarios: 11 10 4

9 5 3
8 6 1

 .
17.8. Ofertas 10, 16, 10; demandas 10, 15, 15; matriz de costos unitarios: 11 10 4

9 5 3
8 6 1

 .
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246 CAṔITULO 17. OTROS MÉTODOS PARA EL TRANSPORTE

246



Caṕıtulo 18

ANÁLISIS DE
SENSIBILIDAD

c̃′L

Antes de introducir los conceptos del análisis de sensibilidad, se presenta
un problema pequeño, con el cual es posible comprender mejor las nociones
correspondientes.

Ejemplo 18.1. Este problema es en realidad una modificación del problema
de asignación de recursos planteado en el primer caṕıtulo. Una fábrica ela-
bora tres productos diferentes P1, P2 y P3 y utiliza tres máquinas diferentes
M1, M2, M3. Los tres productos requieren el uso, sin importar el orden, de
las tres máquinas. Cada unidad del producto P1 requiere una hora en cada
una de las tres máquinas. Cada unidad del producto P2 requiere una hora
en la máquina M1 y dos horas en la máquina M2. Cada unidad del tercer
producto requiere dos horas en la primera máquina, una hora en la segunda
máquina y dos horas en la tercera máquina. Las disponibilidades mensuales
de las máquinas M1, M2, M3 son 400, 580 y 300 horas respectivamente.

La materia prima necesaria para la fabricación de los productos es muy
fácil de obtener y se puede conseguir en cantidades tan grandes que se pueden
suponer ilimitadas. Después de hacer el cálculo de todos los gastos necesarios
para la fabricación, publicidad, distribución, comercialización, y teniendo en
cuenta el precio de venta, se obtiene que el beneficio por cada unidad del
producto P1 es $ 1. Para el producto P2 el beneficio unitario es $ 1.4. Para
el producto P3 el beneficio unitario es $ 1.5. Estudiando la demanda actual
para los dos productos, el gerente de ventas cree que se puede vender toda
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248 CAṔITULO 18. ANÁLISIS DE SENSIBILIDAD

la producción. La compañ́ıa desea organizar su producción para que ésta
sea óptima.

max x1 + 1.4x2 + 1.5x3

x1 + x2 + 2x3 ≤ 400
x1 + 2x2 + x3 ≤ 580
x1 + 2x3 ≤ 300

x ≥ 0.

Introduciendo variables de holgura y convirtiendo el problema en uno de
minimización se obtiene:

min z = −x1 − 1.4x2 − 1.5x3

x1 + x2 + 2x3 + x4 = 400
x1 + 2x2 + x3 + x5 = 580
x1 + 2x3 + x6 = 300

x ≥ 0.

Su tabla óptima es:

x2
x6
x1
−z


0 1 −1 −1 1 0 180
0 0 −1 −2 1 1 80
1 0 3 2 −1 0 220
0 0 0.1 0.6 0.4 0 472


x∗ = (220, 180, 0, 0, 0, 80),

z∗ = −472.

Si se utiliza el MSR, la tabla final es

x2
x6
x1
−z


−1 1 0 0 180
−2 1 1 0 80

2 −1 0 0 220
0.6 0.4 0 1 472


c̃TL =

[
0.1 0.6 0.4

]
3

Una de las hipótesis de la programación lineal considera que el modelo
es determinista, es decir, se supone que los diferentes datos del problema
(coeficientes cj , bi, aij) son conocidos de manera exacta y precisa. Esta
suposición es muy fuerte ya que en realidad, generalmente, sólo se conoce
una aproximación de cada dato. Más aún, suponiendo que en realidad un

248



18.1. MODIFICACIONES EN LOS COSTOS 249

dato se conoce de manera precisa, su valor puede haber cambiado con el
tiempo, o se puede prever su cambio dentro de cierto tiempo. O también
existe la posibilidad de modificar voluntariamente un dato, por ejemplo, se
conoce la disponibilidad de cierta materia prima en el mercado nacional,
pero si fuera conveniente, se podŕıa importar.

Para fijar más las ideas, supóngase que se conoce la solución óptima de
minimizar z = cTx, Ax = b, x ≥ 0. Si ahora se quiere resolver z = c′Tx,
Ax = b, x ≥ 0 (donde c′ es un vector de costos diferente, pero parecido a c),
habŕıa dos caminos, el primero consiste en resolver completamente (desde el
principio) el nuevo problema, es el camino de la “fuerza bruta”, la segunda
opción consiste en estudiar, a partir de los resultados finales del problema
no modificado (tabla óptima, x∗, ...), los cambios que se produciŕıan al
cambiar c por c′, este segundo camino corresponde exactamente al análisis
de sensibilidad.

Las modificaciones más usuales que se estudian en el análisis de sensibi-
lidad son las siguientes:

en los costos (coeficientes cj),

en los términos independientes ( valores bi),

en una columna libre (no básica) de la matriz A,

una restricción adicional,

una columna adicional.

18.1. Modificaciones en los costos

El estudio de los cambios en los costos, se puede subdividir en tres clases,
la primera corresponde a un cambio puntual o discreto, por ejemplo, si el
vector de costos es

c = (−1,−1.4,−1.5, 0, 0, 0),

y pasa a ser

c′ = (−1.2,−1.6,−1.4, 0, 0, 0).
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La segunda clase de modificaciones corresponde a un cambio parametrizado
en un solo coeficiente, por ejemplo, si el vector de costos es

c = (−1,−1.4,−1.5, 0, 0, 0),

y pasa a ser

c′ = (−1, α,−1.5, 0, 0, 0).

La tercera clase de modificaciones corresponde a un cambio global parame-
trizado (por un solo parámetro), por ejemplo, si el vector de costos es

c = (−1,−1.4,−1.5, 0, 0, 0),

y pasa a ser

c′ = (−1,−1.4,−1.5, 0, 0, 0) + θ(1, 2,−1, 0, 0, 0).

Al hacer cambios en los coeficientes iniciales de la función objetivo, única-
mente aparecen modificaciones en z y en los costos reducidos de la última
tabla, la cual puede seguir siendo óptima o no. Más aún, solamente se
modificaŕıan los costos reducidos de las variables libres ya que los costos
reducidos de las variables básicas siguen siendo nulos. Recuérdese que

−zk = −cTBkB
k−1b0

= −cTBbk,

donde cB = cBk = ckB es el vector formado por los costos iniciales correspon-

dientes a las variables básicas en la iteración k; B−1 = Bk−1 es la inversa de
la matriz formada por las columnas de la matriz inicial A, correspondientes
a las variables básicas en la iteración k; b0 es el vector inicial de términos
independientes; bk es el vector de términos independientes en la iteración k.
Claro está, cuando hay una modificación en c, entonces

−z′k = −c′B
T
bk.

Los costos reducidos se pueden calcular mediante la fórmula siguiente:

c̃kL = ckL − (L0,k)TB−1
T
ckB,

donde ckL son los costos iniciales correspondientes a las variables libres en la
iteración k; L0,k es la matriz formada por las columnas de la matriz inicial
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A, correspondientes a las variables libres en la iteración k. La anterior
igualdad se puede presentar de manera adecuada para la utilización a partir
de la última tabla del simplex, o bien, para ser utilizada fácilmente a partir
de la última tabla del MSR.

Si se utiliza la tabla del simplex

c̃TLk = cTLk − c
k
B

T
Lk,k

c̃TL = cTL − cTBLk

c̃j = cj − cTBAk·j , xj es variable libre ,

donde Lk,k = Lk = L es la matriz obtenida al tomar de Ak las columnas
correspondientes a las variables libres en esa iteración. Obviamente, si en
lugar de tener el vector c se tiene otro vector c′, entonces

c̃′L
T = c′

T

L − c′
T

BL
k

c̃′j = c′j − c′
T

BA
k
·j , xj es variable libre .

Si se utiliza la tabla del MSR los costos reducidos se pueden expresar

c̃TL = cTL −
(
cTBB

−1)L0,k

=
[
−cTBB−1 1

] [ L0,k

cTL

]
=
[
−cTBB−1 1

]
L̂0,k

c̃j = cj −
(
cTBB

−1)A0
·j , xj variable libre ,

donde L̂0,k es la matriz obtenida al tomar de Â0 las columnas correspon-
dientes a las variables libres en la iteración k. Obviamente, si en lugar de
tener el vector c se tiene otro vector c′, entonces

c̃′L
T = c′

T

L −
(
c′

T

BB
−1)L0,k

=
[
−c′TBB−1 1

]
L̂0,k

c̃′j = c′j −
(
c′

T

BB
−1)A0

·j , xj variable libre .

18.1.1. Modificación puntual de c

Al pasar de un vector de costos c, a un vector de costos c′, las conse-
cuencias son de dos clases: los costos reducidos de las variables libres siguen
siendo no negativos, en este caso el último punto obtenido sigue siendo ópti-
mo y no hay nada más que hacer. En la segunda clase de consecuencias,
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por lo menos uno de los costos reducidos modificados de variables libres es
negativo, y lo que se debe hacer es continuar con el método simplex (o el
MSR).

Las modificaciones puntuales en el vector de costos son de tres tipos:

a) modificación de un solo costo correspondiente a una variable libre,

b) modificación de un solo costo correspondiente a una variable básica,

c) modificación de varios costos.

El análisis de una modificación de un solo costo de una variable libre es muy
simple: al observar la fórmula, es claro que solamente se modifica el costo
reducido correspondiente,

c̃′j = c′j − c′
T

BA
k
·j

= c′j − cTBAk·j
= cj − cTBAk·j + c′j − cj
= c̃j + c′j − cj ,

es decir, el incremento que sufre el costo reducido es simplemente el incre-
mento que tuvo el costo. El valor de z no se modifica.

Ejemplo 18.2. Considerar los datos del ejemplo 18.1 , cambiando el coefi-
ciente c3 = −1.5, por c′3 = −1.45.

En la tabla óptima x3 es una variable libre, luego c̃3 tendrá un incremento
de −1.45−(−1.5) = 0.05, o sea, c̃′3 = 0.1+0.05 = 0.15, luego el punto óptimo
sigue siendo óptimo. 3

Ejemplo 18.3. Considerar los datos del ejemplo 18.1, cambiando el coefi-
ciente c3 = −1.5 por c′3 = −1.8.

El costo reducido c̃3 tendrá un incremento de −1.8 − (−1.5) = −0.3, o
sea, c̃′3 = 0.1 +−0.3 = −0.2, luego el último punto obtenido no seŕıa óptimo
y es necesario continuar el método a partir de la siguiente tabla:

x2
x6
x1
−z


0 1 −1 −1 1 0 180
0 0 −1 −2 1 1 80
1 0 3 2 −1 0 220
0 0 −0.2 0.6 0.4 0 472

 3
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La modificación de un solo costo, correspondiente a una variable básica,
implica la modificación de todos los costos reducidos de las variables libres
y del valor de z. Si la variable básica cuyo costo se modifica es la i-ésima,
entre las básicas

c̃′L
T = c′L

T − c′TBLk

= cTL − [cβ1 . . . c
′
βi
. . . cβm ]Lk

= cTL − [cβ1 . . . cβi + c′βi − cβi . . . cβm ]Lk

= cTL − cTBLk − c′βi − cβiL
k
i·

= c̃TL − (c′βi − cβi)L
k
i·.

De manera análoga
−z′ = −z − (c′βi − cβi)b

k
i .

Ejemplo 18.4. Considerar los datos del ejemplo 18.1, cambiando el coefi-
ciente c1 = −1 por c′1 = −1.2.

La variable x1 es la tercera variable básica,

c̃′L
T = c̃TL − (c′βi − cβi)L

k
i·

c̃′L
T = c̃TL − (c′β3 − cβ3)Lk3·

=
[

0.1 0.6 0.4
]
− (−1.2−−1)

[
3 2 −1

]
=
[

0.7 1.0 0.2
]
.

Luego x = (220, 180, 0, 0, 0, 80) sigue siendo óptimo, y el nuevo valor de −z
será:

−z′ = 472− (−1.2−−1)220 = 516. 3

Ejemplo 18.5. Considerar los datos del ejemplo 18.1, cambiando el coefi-
ciente c2 = −1.4, por c′2 = −1.6.

La variable x2 es la primera variable básica,

c̃′L
T = c̃TL − (c′βi − cβi)Li·

k

= c̃TL − (c′β1 − cβ1)Lk1·

=
[

0.1 0.6 0.4
]
− (−1.6−−1.4)

[
−1 −1 1

]
=
[
−0.1 0.4 0.6

]
.
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Luego x = (220, 180, 0, 0, 0, 80) ya no es óptimo. El nuevo valor de −z
será:

−z′ = 472− (−1.6−−1.4)180 = 508.

Es necesario continuar el método simplex a partir de la tabla

x2
x6
x1
−z


0 1 −1 −1 1 0 180
0 0 −1 −2 1 1 80
1 0 3 2 −1 0 220
0 0 −0.1 0.4 0.6 0 508

 3

18.1.2. Modificación parametrizada de un costo

En este caso, un solo coeficiente se modifica y se desea saber en qué
intervalo puede variar de tal forma que el último punto obtenido siga siendo
óptimo. Si, por ejemplo, el vector de costos c = (−1,−1.4,−1.5, 0, 0, 0) pasa
a ser (−1, α,−1.5, 0, 0, 0) existe un intervalo en el que puede variar α de
tal forma que el puntox = (220, 180, 0, 0, 0, 80) es óptimo. Obviamente ese
intervalo contiene el valor −1.4.

Las modificaciones pueden ser de dos tipos:

a) modificación de un solo costo correspondiente a una variable libre

b) modificación de un solo costo correspondiente a una variable básica.

El estudio del caso a) es muy sencillo:

c̃′j = c̃j + c′j − cj
= c̃j + α− cj ≥ 0,

luego

α ≥ cj − c̃j
α ∈ [cj − c̃j ,∞[.

Obviamente, si α vaŕıa en este intervalo, el valor de z no se modifica.

Para el estudio del caso b), un poco menos sencillo, supóngase que el
coeficiente modificado corresponde a una variable básica, la i-ésima entre
las básicas

c̃′L
T = c̃TL − (c′βi − cβi)L

k
i· ≥ 0.
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Esto da lugar a n−m desigualdades

c̃′j = c̃j − (α− cβi)a
k
ij ≥ 0,

cuando xj es variable libre. O sea,

c̃j + cβia
k
ij ≥ αakij .

Entonces
α ∈ [αmin, αmax],

donde

αmin =


−∞ si akij ≥ 0 para toda variable libre xj ,

cβi −min

{
c̃j

−akij
: akij < 0, xj es variable libre

}
,

αmax =


∞ si akij ≤ 0 para toda variable libre xj ,

cβi + min

{
c̃j

akij
: akij > 0, xj es variable libre

}
.

Cuando se modifica un costo correspondiente a una variable básica, el valor
de −z śı se modifica.

−z′ = −zk − (c′βi − cβi)b
k
i

−z′ = −zk + cβib
k
i − αbki

z′ = zk − cβib
k
i + αbki .

Ejemplo 18.6. Averiguar, en el ejemplo 18.1, en qué intervalo puede variar
el coeficiente c3, para que el punto x = (220, 180, 0, 0, 0, 80) siga siendo
óptimo.

Como en la tabla óptima x3 es variable libre

c3 = α ∈ [−1.5− 0.1,∞[= [−1.6,∞[. 3

Ejemplo 18.7. Averiguar, en el ejemplo 18.1, en qué intervalo puede variar
el coeficiente c1, para que el punto x = (220, 180, 0, 0, 0, 80) siga siendo
óptimo.

En la tabla óptima x1 es la tercera variable básica. Hallar el interva-
lo de variación de c1 pude hacerse de dos maneras, la primera consiste en
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reemplazar directamente en las fórmulas generales de c̃′L
T y sacar las conclu-

siones sobre las restricciones de α. La segunda manera consiste en aplicar
sencillamente las fórmulas para αmin, αmax.

c̃′L
T = c′L

T − c′TBLk

=
[
−1.5 0 0

]
−
[
−1.4 0 α

]  −1 −1 1
−1 −2 1

3 2 −1


=
[
−3α− 2.9 −2α− 1.4 α+ 1.4

]
≥ 0,

entonces

α ≤ −2.9

3

α ≤ −1.4

2
α ≥ −1.4

α ∈ [−1.4,−0.9667],

−z′ = −c′B
T
bk

= −
[
−1.4 0 α

]  180
80

220


= 252− 220α

z′ = 220α− 252.

Al aplicar directamente las fórmulas finales

αmin = −1−min

{
0.4

−− 1

}
= −1.4,

αmax = −1 + min

{
0.1

3
,
0.6

2

}
= −0.9667.

z′ = −472− (−1)(220) + α220 = −252 + 220α. 3

18.1.3. Modificación parametrizada de varios costos

En este caso los costos modificados se pueden expresar como

c′ = c+ θc̄.
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Hay que encontrar un intervalo de variación de θ, de tal forma que el último
punto obtenido siga siendo óptimo.

c̃′L
T = c′L

T − c′TBLk,

entonces

c̃′L
T = cTL + θc̄TL,−(cTB + θc̄TB)Lk

= cTL − cTBLk + θ(c̄TL − c̄TBLk)
= c̃TL + θ˜̄cTL

c̃′j = c̃j + θ˜̄cj ≥ 0, xj variable libre,

donde
˜̄cj = c̄j − c̄TBAk·j .

θmin =

−∞ si ˜̄cL ≤ 0

−min

{
c̃j
˜̄cj

: ˜̄cj > 0, xj es variable libre

}
,

θmax =

∞ si ˜̄cL ≥ 0

min

{
c̃j
−˜̄cj

: ˜̄cj < 0, xj es variable libre

}
.

Obviamente, el intervalo de variación de θ siempre contiene el valor cero. Al
reemplazar el vector c, por su modificación c̄, se obtiene

−z′ = c̄′B
Tbk

= −cTBbk − θc̄TBbk

z′ = zk + θc̄TBb
k.

Ejemplo 18.8. Averiguar, en el ejemplo 18.1, en qué intervalo puede variar
θ para que el punto x = (220, 180, 0, 0, 0, 80) siga siendo óptimo, si el vec-
tor de costos cambia de (−1,−1.4,−1.5, 0, 0, 0) a (−1,−1.4,−1.5, 0, 0, 0) +
θ(−2, 1,−1, 0, 0, 0). Esta modificación puede corresponder al siguiente cam-
bio en el ejemplo 18.1 . El gerente de la fábrica cree que, teniendo en cuenta
los precios de productos semejantes de otras compañ́ıas, puede aumentar el
precio de venta de sus productos 1 y 3, pero debe disminuir el del producto
2. Además, estima conveniente aumentar el precio del producto 1 en una
cantidad igual al doble del aumento del producto 3.
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De nuevo hay dos formas para abordar el problema: partir de las fórmu-
las generales para c̃′L, o utilizar directamente las fórmulas para θmin y θmax.

c̃′L
T = c′L

T − c′TBLk

=
[
−1.5− θ 0 0

]
−
[
−1.4 + θ 0 −1− 2θ

]  −1 −1 1
−1 −2 1

3 2 −1


=
[

0.1 + 6θ 0.6 + 5θ 0.4− 3θ
]
≥ 0.

Entonces
θ ∈ [−0.1/6, 0.4/3].

Por otro lado

˜̄cTL = c̄TL − c̄TBLk

=
[
−1 0 0

]
−
[

1 0 −2
]  −1 −1 1
−1 −2 1

3 2 −1


=
[

6 5 −3
]
.

Entonces

θmin = −min

{
0.1

6
,
0.6

5

}
= −0.1

6
,

θmax = min

{
0.4

−− 3

}
=

0.4

3
,

z′ = −472 + θ
[

1 0 −2
]  180

80
220


= −472− 260θ.

Como el coeficiente de θ, en la expresión de z, es negativo, entonces el mejor
valor que puede tomar θ sin que cambie el punto óptimo es θmax = 0.4/3.
3

18.2. Modificaciones en los términos independien-
tes

El estudio de los cambios en los términos independientes también se
puede subdividir en tres clases; un cambio puntual, un cambio parametri-
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zado de un solo término independiente y un cambio parametrizado de varios
términos independientes.

18.2.1. Modificación puntual de b

Se trata, en este caso, de cambiar el vector b = bo inicial, por un vector
b0
′
. Para ver las consecuencias de este cambio en los términos independientes

de la última tabla es necesario conocer B−1 = Bk−1 ya que bk = B−1b0,
luego

bk
′
= B−1b0

′
.

Obviamente, z también se modifica:

z′ = cTBb
k ′.

Si se utiliza el MSR, siempre se tiene expĺıcitamente B−1. Si se utiliza la
tabla usual del método simplex es necesario, en general, calcular B−1. Con
bk
′

pueden pasar dos cosas, la primera y la más sencilla: bk
′ ≥ 0, entonces

las variables libres siguen siendo las mismas (y teniendo el mismo valor: 0)
y las variables básicas también siguen siendo las mismas, pero su valor se
ha modificado, o sea, se ha modificado el punto óptimo. El segundo caso
se da, cuando bk

′
tiene por lo menos un elemento negativo, en ese caso al

reemplazar los nuevos términos independientes en la última tabla, no se
tiene factibilidad, pero se siguen teniendo condiciones de optimalidad. Aśı,
el camino inmediato es aplicar el método simplex dual.

Ejemplo 18.9. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las máquinas por 410, 600, 280.

En la tabla óptima las variables básicas son x2, x6, x1. Luego

B =

 1 0 1
2 0 1
0 1 1

 , B−1 =

 −1 1 0
−2 1 1

2 −1 0

 .
En la mayoŕıa de los casos, la matriz B−1 se obtiene, bien sea a partir de
la última tabla del MSR, o bien por cálculo directo de la inversa de B. En
este ejemplo particular, como en la tabla inicial se teńıa la matriz identidad
(no se necesitó la primera fase) la matriz B−1 estará en el sitio que ocupaba
la matriz identidad, es decir, columnas tercera, cuarta y quinta.

bk
′
=

 −1 1 0
−2 1 1

2 −1 0

 410
600
280

 =

 190
60

220

 ,
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z′ =
[
−1.4 0 −1

]  190
60

220

 = −486.

Luego las variables básicas en el óptimo siguen siendo las mismas y su valor
cambia un poco; el nuevo punto óptimo es entonces

x∗′ = (220, 190, 0, 0, 0, 60). 3

Ejemplo 18.10. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las máquinas por 430, 600, 250.

bk
′
=

 −1 1 0
−2 1 1

2 −1 0

 430
600
250

 =

 170
−10
260

 ,

z′ =
[
−1.4 0 −1

]  170
−10
260

 = −498.

Luego las variables básicas en el óptimo no son las mismas. Para hallar la
solución óptima es necesario utilizar el simplex dual:

x2
x6
x1
−z


0 1 −1 −1 1 0 170

0 0 −1 −2 1 1 −10

1 0 3 2 −1 0 260
0 0 0.1 0.6 0.4 0 498



xβσ = xβ2 ,

xs = x6,

xe = x3.

x2
x3
x1
−z


0 1 0 1 0 −1 180
0 0 1 2 −1 −1 10
1 0 0 −4 2 3 230
0 0 0 0.4 0.5 0.1 497



x∗′ = (230, 180, 10, 0, 0, 0),

z∗′ = −497. 3
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18.2.2. Modificación parametrizada de un solo término in-
dependiente

Del vector inicial b0, se modifica un solo elemento, el j-ésimo. Se desea
saber en qué intervalo puede variar este término independiente, de manera
que las variables básicas sigan siendo las mismas.

b0
′
=



b01
...

b0j−1
α

b0j+1
...

b0m


=



b01
...

b0j−1
b0j

b0j+1
...

b0m


+ (α− b0j )



0
...
0
1
0
...
0


= b0 + (−b0j + α)ej .

bk
′
= B−1b0

′
= bk − b0j (B−1)·j + α(B−1)·j ≥ 0.

Sea S = [sij ] = B−1.

bki
′
= bki − b0jsij + αsij ≥ 0, i = 1, ...,m,

αmin =


−∞ si S·j ≤ 0,

b0j − min
1≤i≤m

{
bki
sij

: sij > 0

}
.

αmax =


∞ si S·j ≥ 0,

b0j + min
1≤i≤m

{
bki
−sij

: sij < 0

}
.

Como era de esperarse, el valor inicial b0j siempre está en el intervalo de
variación de α. Este intervalo se conoce con el nombre de intervalo de
factibilidad de la restricción.

z′ = cTBb
k ′

= cTB
(
bk + (α− b0j )S·j

)
= zk + (α− b0j )cTBS·j
= zk − b0jcTBS·j + αcTBS·j .
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El coeficiente de α indica la modificación que sufre z, por cada unidad que
aumente el j-ésimo término independiente. Este coeficiente es llamado el
precio sombra de la restricción. Está relacionado con el valor de la
variable dual correspondiente a esta restricción.

Ejemplo 18.11. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las máquinas, por α, 580, 300. Averiguar en qué intervalo
puede variar α sin que cambie el grupo de variables básicas.

bk
′
=

 180
80

220

− 400

 −1
−2

2

+ α

 −1
−2

2

 ≥ 0,

αmin = 290,

αmax = 440,

x∗′ = (−580 + 2α, 580− α, 0, 0, 0, 880− 2α).

Obsérvese que para los dos valores extremos de α, los puntos óptimos obte-
nidos son degenerados:

x = (0, 290, 0, 0, 0, 300),

x = (300, 140, 0, 0, 0, 0).

z∗′ = −472 + (α− 400)
[
−1.4 0 −1

]  −1
−2

2


= −232− 0.6α.

El valor −0.6 indica que, por cada unidad que aumente el primer término
independiente, el valor de z se incrementa en −0.6 unidades. Puesto que se
está tratando de minimizar z, lo más conveniente es que se incremente lo
más que se pueda la disponibilidad de la primera máquina. El valor de este
precio sombra es válido dentro del intervalo de factibilidad de la restricción.

Si para aumentar la disponibilidad de la primera máquina, la compañ́ıa
puede alquilar horas adicionales a un precio de $ 0.8 , no valdŕıa la pena
hacerlo. En cambio, si se consiguen horas adicionales de la máquina 1 a un
precio de $ 0.5, śı valdŕıa la pena hacerlo. 3
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Ejemplo 18.12. Considerar los datos del ejemplo 18.1, modificando las
disponibilidades de las máquinas, por 580, 400, α. Averiguar en qué intervalo
puede variar α sin que cambie el grupo de variables básicas.

bk
′
=

 180
80

220

− 300

 0
1
0

+ α

 0
1
0

 ≥ 0,

αmin = 220,

αmax =∞.

x∗′ = (220, 180, 0, 0, 0,−220 + α).

z∗′ = −472 + (α− 300)
[
−1.4 0 −1

]  0
1
0


= −472.

El precio sombra nulo indica que z no se modifica al variar el tercer término
independiente en su intervalo de factibilidad. Además, los valores de las
variables originales del problema tampoco cambian, únicamente cambia el
valor de la holgura. Este mismo resultado se hubiera podido obtener a partir
de los siguientes hechos: en el óptimo la tercera restricción es, originalmente,
una desigualdad y no está activa o saturada, es decir, se tiene la desigualdad
estricta. Dicho de otra forma, x6 la variable de holgura de esa restricción
no es nula, o sea, hubo horas sobrantes de la tercera máquina. El valor
220, ĺımite inferior del intervalo, corresponde exactamente al valor inicial
300 menos la holgura 80. 3

18.2.3. Modificación parametrizada de varios términos inde-
pendientes

Del vector inicial b0 se modifican varios elementos, en la forma

b0
′
= b0 + θb̄.

Se desea saber en qué intervalo puede variar θ, de manera que las variables
básicas sigan siendo las mismas.

bk
′
= B−1b0 + θB−1b̄

= bk + θb̄k ≥ 0.
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θmin =


−∞ si b̄k ≤ 0,

−min
i

{
bki
b̄ki

: b̄ki > 0

}
.

θmax =


∞ si b̄k ≥ 0,

min
i

{
bki
−b̄ki

: b̄ki < 0

}
.

z′ = cTBb
k ′

= zk + θcTB b̄
k.

Ejemplo 18.13. El gerente de la compañ́ıa del ejemplo 18.1, piensa que
lo más importante es conseguir horas adicionales para la segunda máquina.
Los ingenieros de producción creen que la máquina uno puede, mediante
algunas adaptaciones, hacer el mismo trabajo de la segunda, pero con un
rendimiento igual a la mitad, es decir, si se toma una hora de la máquina
uno para hacer el trabajo de la segunda máquina, alcanza a hacer lo que la
segunda haŕıa en media hora. Por otro lado el gerente, que conoce un poco
la terminoloǵıa de la PL, tiene sus razones para desear que las variables
básicas sean las mismas. ¿Qué aconsejaŕıa al gerente?

En este problema, por cada hora cedida por la máquina uno, se consigue
media hora real de la segunda máquina.

b0
′
=

 400
580
300

+ θ

 −1
0.5

0

 ,

bk
′
=

 180
80

220

+ θ

 1.5
2.5
−2.5



θmin = −32,

θmax = 88.

En realidad, tal como está planteado el problema, θ toma únicamente valores
positivos, ya que está previsto disminuir el número de horas de la primera
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máquina para aumentar la disponibilidad de la segunda.

z′ = −472 + θ
[
−1.4 0 −1

]  1.5
2.5
−2.5


= −472 + 0.4θ.

Luego no es adecuado perder horas de la primera máquina para ganar la
mitad en la segunda. Si, por el contrario, fuera posible que por cada media
hora que se disminuya la disponibilidad de la segunda máquina, se aumente
en una hora la disponibilidad de la primera (θ < 0 en el planteamiento
anterior), entonces si se podŕıa mejorar el valor de z, y θ debeŕıa tomar el
valor más negativo, es decir, −32. 3

18.3. Modificaciones en una columna libre de A

Cuando se modifica una columna de la matriz inicial A = A0, corres-
pondiente a una variable libre en la tabla óptima, es necesario observar el
cambio acarreado en el costo reducido respectivo, para ello se requiere cono-
cer el cambio en la columna de la última tabla, entonces hace falta conocer
la matriz B−1.

Los cambios en una columna, de una variable básica en el óptimo, re-
percuten en la matriz B−1 y, salvo en casos muy espećıficos y sencillos, es
bastante complicado estudiar estos cambios.

Sea xj una variable libre en la tabla óptima.

c̃j = cj − cTBAk·j
= cj − cTBB−1A0

·j ,

entonces

c̃′j = cj − cTBB−1A0′
·j .

Si para obtener la solución se ha utilizado el MSR, entonces

c̃′j = cj + (−cTBB−1)A0′
·j .

Recuérdese que −cTBB−1 está en las primeras m posiciones de la fila m+ 1
de la tabla del MSR.
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18.3.1. Modificación puntual de una columna libre

Al cambiar una columna inicial, el nuevo costo reducido en la última
tabla puede seguir siendo no negativo o volverse negativo. Si sigue siendo
no negativo, entonces el último punto obtenido sigue siendo óptimo. Si el
nuevo costo reducido es negativo, se puede continuar con el simplex, a partir
de la última tabla, cambiando la columna.

Ejemplo 18.14. El gerente de la compañ́ıa del ejemplo 18.1, cree que se
puede fabricar, en lugar del actual producto P3 (que en realidad no se fa-
brica), otro parecido, con el cual se ganaŕıan también $1.5 pesos por cada
unidad, pero cuyos requerimientos en cada una de las máquinas son 1.5, 2.5
y 1 horas. ¿Cuál es la solución del nuevo problema ?

c̃′3 = −1.5−
[
−14. 0 −1

]  −1 1 0
−2 1 1

2 −1 0

 1.5
2.5

1


= 0.4.

Si se hubiera usado el MSR, el cálculo de c̃′3 estaŕıa dado directamente por

c̃′3 = −1.5 +
[

0.6 0.4 0
]  1.5

2.5
1

 = 0.4

Como el costo reducido sigue siendo no negativo, entonces el último punto
obtenido también es punto óptimo para el problema modificado. 3

Ejemplo 18.15. El gerente de la compañ́ıa del ejemplo 18.1, cree que se
puede fabricar, en lugar del actual producto P3 (que en realidad no se fa-
brica), otro parecido, con el cual se ganaŕıan también $1.5 pesos por cada
unidad, pero cuyos requerimientos en cada una de las máquinas son 1.5, 1
y 1 horas. ¿Cual es la solución del nuevo problema?

c̃′3 = −1.5−
[
−14. 0 −1

]  −1 1 0
−2 1 1

2 −1 0

 1.5
1
1


= −1.5−

[
−14. 0 −1

]  −0.5
−1

1


= −0.2.
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Como el costo reducido se volvió negativo, entonces el último punto ya no
es óptimo.

x2
x6
x1
−z


0 1 −0.5 −1 1 0 180
0 0 −1 −2 1 1 80

1 0 2 2 −1 0 220
0 0 −0.2 0.6 0.4 0 472



xe = x3,

xβσ = xβ3 ,

xs = x1.

x2
x6
x3
−z


0.25 1 0 −0.5 0.75 0 235
0.5 0 0 −1 0.5 1 190
0.5 0 1 1 −0.5 0 110
0.1 0 0 0.8 0.3 0 494



x∗′ = (0, 235, 110, 0, 0, 190),

z∗′ = −494. 3

18.3.2. Modificación parametrizada de un solo elemento de
una columna libre

Cuando se cambia un solo elemento de una columna libre, se desea saber
en qué intervalo puede variar, de tal forma que el último punto obtenido siga
siendo óptimo. Supóngase que se modifica el elemento aij . Sea S = B−1.

c̃′j = cj − cTBB−1A0′
·j

= cj − cTBS



a1j
...

ai−1,j
α

ai+1,j
...

amj


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c̃′j = cj − cTBS



a1j
...

ai−1,j
aij

ai+1,j
...

amj


− cTBS(α− aij)



0
...
0
1
0
...
0


= c̃j + (aij − α)cTBS·i ≥ 0.

Ejemplo 18.16. ¿En qué intervalo puede variar el segundo elemento de la
tercera columna de A de tal forma que el punto x = (220, 180, 0, 0, 0, 80)
siga siendo óptimo?

c̃′3 = 0.1 + (1− α)
[
−1.4 0 −1

]  1
1
−1


= −0.3 + 0.4α.

Entonces α puede variar en el intervalo [0.75,∞[, sin que el punto óptimo
cambie.

En éste, como en otros casos, se puede hacer un análisis de más alcance
sobre la variación de α. Para valores de α menores que 0.75, entraŕıa a la
base la variable x3 y se puede prever qué pasaŕıa. La columna modificada
seŕıa

B−1

 2
α
2

 =

 α− 2
α− 2
−α+ 4

 .
El único elemento positivo es el tercero, luego saldŕıa la tercera variable
básica, es decir, x1. El valor de z en la nueva tabla estaŕıa dado por:

−z′ = 472− −0.3 + 0.4α

−α+ 4
220,

o sea,

z′ = −472 +
−0.3 + 0.4α

−α+ 4
220.

Por ejemplo, si α = 0.5 el nuevo valor de z seŕıa −478.2857. 3
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18.3.3. Modificación parametrizada de varios elementos de
una columna libre

Si una columna inicial A0
·j , libre en la tabla óptima, se cambia por A0′

·j =

A0
·j + θĀ0′

·j , se desea saber en qué intervalo puede variar θ de tal forma que
el último punto obtenido siga siendo óptimo.

c̃′j = cj − cTBB−1A0′
·j

= cj − cTBB−1
(
A0

·j + θĀ0′
·j
)

= c̃j − θcTBB−1Ā0′
·j ≥ 0.

Ejemplo 18.17. ¿En qué intervalo puede variar θ si los elementos de la
tercera columna son 2 − θ, 1 + θ 2 + 2θ, de tal forma que el punto x =
(220, 180, 0, 0, 0, 80) siga siendo óptimo?

c̃′3 = c̃3 − θ
[
−1.4 0 −1

]  −1 1 0
−2 1 1

2 −1 0

 −1
1
2


= 0.1− 0.2θ ≥ 0.

Luego
θ ∈]−∞, 0.5]. 3

18.4. Una restricción adicional

Sea x∗ el minimizador de la función z = cTx en un conjunto de puntos
admisibles A. Al colocar una nueva restricción, se está haciendo la inter-
sección de A con el conjunto definido por la nueva restricción. El nuevo
conjunto admisible A′ es un subconjunto de A (aunque no necesariamente
propio). Para que x∗ sea también minimizador de z = cTx en A′, sólo se
necesita que esté en A′. Para ello basta con que esté en el conjunto definido
por la nueva restricción. En resumen, x∗ sigue siendo óptimo si cumple la
restricción adicional. Si x∗ no cumple la nueva restricción, para resolver el
nuevo problema, se introduce una nueva fila, correspondiente a la restric-
ción adicional y se debe tratar de obtener la matriz identidad, pero ahora
de tamaño m+ 1.

Si la nueva restricción (no cumplida) es una desigualdad ≤, la nueva
variable de holgura va a hacer parte de la base. A la nueva fila hay que
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sumarle múltiplos adecuados de las otras filas para obtener completamente
la identidad de orden m+ 1. Esto hace que el término independiente de la
fila m + 1 sea negativo y lo obvio es utilizar el método simplex dual para
continuar.

Si la nueva restricción (no cumplida) es una desigualdad ≥, después de
introducir la variable de holgura, se multiplica toda la igualdad por menos
uno. La nueva variable de holgura va a hacer parte de la base. A la nueva
fila hay que sumarle múltiplos adecuados de las otras filas para obtener
completamente la identidad de orden m + 1. Esto hace que el término
independiente de la fila m+ 1 sea negativo y lo obvio es utilizar el método
simplex dual para continuar.

Si la nueva restricción (no cumplida) es una igualdad, se hace necesario
introducir una variable artificial y entonces hay que efectuar el método de
las dos fases o el de penalización. Es claro que una restricción de igualdad,
por ejemplo a − 2b + 3c = 4 se puede reemplazar por −a + 2b − 3c = −4.
La escogencia de una u otra igualdad repercute en lo siguiente: después
de entrar la variable artificial, que obviamente va a ser variable básica, es
necesario, como en los casos anteriores, obtener de nuevo la matriz identidad,
pero ahora de tamaño m + 1. Para ello a la nueva fila hay que sumarle
múltiplos adecuados de otras filas. Se necesita entonces que el término
independiente resulte no negativo.

Supongamos que las variables básicas son exactamente las m primeras
variables y que de éstas las q primeras son variables originales (no de hol-
gura), es decir,

xj = bkj j = 1, ...,m

xj = 0 j = m+ 1, ..., n.

Supongamos que la nueva restricción es

am+1,1x1 + am+1,2x2 + ...+ am+1,qxq = b0m+1,

con b0m+1 ≥ 0 (no hay que multiplicar la igualdad por −1).

Hay que introducir una variable artificial

am+1,1x1 + am+1,2x2 + ...+ am+1,qxq + xn+1 = b0m+1.

Para obtener, en las primeras q columnas de A, las columnas de la matriz
identidad de orden m + 1, es necesario sumar a la fila m + 1 la primera
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fila multiplicada por −am+1,1, ..., hasta la fila q multiplicada por −am+1,q.
Entonces

bk
′
m+1 = b0m+1 −

q∑
j=1

am+1,jb
k
j ≥ 0

= b0m+1 −
q∑
j=1

am+1,jx
k
j ≥ 0.

Luego
q∑
j=1

am+1,jx
k
j ≤ b0m+1,

lo cual dicho en otras palabras es: la parte izquierda de la igualdad (donde
están las variables xi) debe ser menor que el término independiente. Si no
es aśı, se debe multiplicar por menos uno (−1) toda la igualdad.

Ejemplo 18.18. El investigador de mercados de la fábrica del ejemplo 18.1,
informó al gerente que el número total de unidades vendidas (x1 + x2 + x3)
no podŕıa ser superior a cuatrocientos noventa unidades.

Como el punto x = (220, 180, 0, 0, 0, 80) cumple la nueva restricción

x1 + x2 + x3 ≤ 490,

entonces sigue siendo óptimo. 3

Ejemplo 18.19. Considere el ejemplo 18.1 con la restricción adicional

x1 + 0.5x2 + 3x3 ≥ 400.

El punto x = (220, 180, 0, 0, 0, 80) no cumple la nueva restricción, ya que

220 + 0.5× 180 + 3× 0 = 310.

Al introducir una variable de holgura

x1 + 0.5x2 + 3x3 − x7 = 400

y multiplicando por −1

−x1 − 0.5x2 − 3x3 + x7 = −400,
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se obtiene una igualdad que se puede agregar a la tabla para que x7 sea
variable básica:

x2
x6
x1
x7
−z


0 1 −1 −1 1 0 0 180
0 0 −1 −2 1 1 0 80
1 0 3 2 −1 0 0 220
−1 −0.5 −3 0 0 0 1 -400

0 0 0.1 0.6 0.4 0 0 472


En las columnas primera y segunda no están las columnas adecuadas de la
matriz identidad 4 × 4, pero esto se puede lograr sumando a la cuarta fila
una vez la tercera fila y 0.5 veces la primera:

x2
x6
x1
x7
−z


0 1 −1 −1 1 0 0 180
0 0 −1 −2 1 1 0 80
1 0 3 2 −1 0 0 220

0 0 −0.5 1.5 −0.5 0 1 -90

0 0 0.1 0.6 0.4 0 0 472


A partir de esta tabla se utiliza el método simplex dual y en dos tablas más
se obtiene el óptimo:

x∗ = (0, 200, 100, 0, 80, 100, 0)

z∗ = −430. 3

Ejemplo 18.20. Considere el ejemplo 18.1 con la restricción adicional

2x1 + 2x2 + 3x3 = 780.

El punto x = (220, 180, 0, 0, 0, 80) no cumple la nueva restricción:

2× 220 + 2× 180 + 3× 0 = 800.

Como el lado izquierdo de la restricción es mayor que el lado derecho, en-
tonces es necesario multiplicar por −1.

−2x1 − 2x2 − 3x3 = −780.

Ahora śı el lado izquierdo es menor que el derecho y se introduce la variable
artificial

−2x1 − 2x2 − 3x3 + x7 = −780.
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Esta igualdad se puede agregar a la tabla para que x7 sea variable básica.
Además, se cambia la fila de costos reducidos por los costos artificiales.

x2
x6
x1
x7


0 1 −1 −1 1 0 0 180
0 0 −1 −2 1 1 0 80
1 0 3 2 −1 0 0 220
−2 −2 −3 0 0 0 1 −780

0 0 0 0 0 0 1 0


Para conseguir la matriz identidad de orden 4, a la cuarta fila hay que
sumarle dos veces la tercera y dos veces la primera

x2
x6
x1
x7


0 1 −1 −1 1 0 0 180
0 0 −1 −2 1 1 0 80
1 0 3 2 −1 0 0 220
0 0 1 2 0 0 1 20
0 0 0 0 0 0 1 0


También es necesario calcular los costos reducidos

x2
x6
x1
x7
−za


0 1 −1 −1 1 0 0 180
0 0 −1 −2 1 1 0 80
1 0 3 2 −1 0 0 220
0 0 1 2 0 0 1 20
0 0 −1 −2 0 0 0 −20


Se continúa normalmente con la primera fase y después se efectúa la segunda
fase hasta llegar a

x∗ = (160, 200, 20, 0, 0, 100)

z∗ = −470. 3

18.5. Una columna adicional

Tener una columna adicional significa que hay una nueva variable, por
ejemplo xn+1 y, por lo tanto, se conocen los valores a01,n+1, a

0
2,n+1,..., a

0
m,n+1,

y también el costo cn+1. La variable xn+1 entra a la tabla como variable
libre con valor nulo. Obviamente, es necesario calcular su costo reducido
para saber si la tabla sigue siendo óptima. Para este cálculo, de nuevo, se
necesita conocer B−1.
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Ak·n+1 = B−1A0
·n+1,

c̃n+1 = cn+1 − cTBAk·n+1.

Ejemplo 18.21. Considere el ejemplo 18.1, y suponga que existe la posibi-
lidad de elaborar un cuarto producto que se vende a $ 0.40 y requiere media
hora en las dos primeras máquinas y una hora en la tercera.

Para no alterar la notación, sea x7 el número de unidades del cuarto
producto.

Ak·7 = B−1A0
·7

=

 −1 1 0
−2 1 1

2 −1 0

 0.5
0.5

1


=

 0
0.5
0.5

 .

c̃n+1 = cn+1 − cTBAk·n+1

= −0.4−
[
−1.4 0 −1

]  0
0.5
0.5


= 0.1.

Entonces, aunque existe la posibilidad de fabricar un cuarto producto, no es
conveniente hacerlo ya que la tabla con la nueva variable x7 (libre y nula)
es también óptima. 3

Ejemplo 18.22. Considere el ejemplo 18.1 y suponga que existe la posibi-
lidad de elaborar un cuarto producto que se vende a $0.70 y requiere media
hora en las dos primeras máquinas y una hora en la tercera.
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Sea x7 el número de unidades del cuarto producto.

Ak·7 = B−1A0
·7

Ak·7 =

 0
0.5
0.5

 ,
c̃7 = −0.7−

[
−1.4 0 −1

]  0
0.5
0.5


= −0.2.

Luego la tabla con la columna adicional no es óptima y se debe continuar el
simplex a partir de

x2
x6
x1
−z


0 1 −1 −1 1 0 0 180
0 0 −1 −2 1 1 0.5 80
1 0 3 2 −1 0 0.5 220
0 0 0.1 0.6 0.4 0 −0.2 472

 ,
hasta obtener

x∗
′

= (0, 215, 35, 0, 0, 0, 230)

z∗
′

= −514.5. 3

EJERCICIOS

Considere el siguiente problema: maximizar (el beneficio total) 6x1 +
5x2 + 4x3 con las restricciones 2x1 + x2 + x3 ≤ 26, x1 + x2 ≤ 16,
x1 + 3x2 + x3 ≤ 36, x ≥ 0.

18.0. Convierta el problema en la forma estándar de minimización. Halle la
solución utilizando el método simplex y el método simplex revisado.

Considere las modificaciones propuestas en los ejercicios 18.1 a 18.14.
Cada una de estas modificaciones se refiere al problema inicial, y no
se acumulan.

18.1. Averigüe si el optimizador (punto óptimo) cambia, al cambiar c =
(−6,−5,−4, 0, 0, 0) por c′ = (−7,−6,−5, 0, 0, 0). Si el optimizador
cambia, encuentre el nuevo optimizador.
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276 CAṔITULO 18. ANÁLISIS DE SENSIBILIDAD

18.2. Averigüe si el optimizador (punto óptimo) cambia, al cambiar c =
(−6,−5,−4, 0, 0, 0) por c′ = (−10,−6,−5, 0, 0, 0). Si el optimizador
cambia, encuentre el nuevo optimizador.

18.3. Averigüe en qué intervalo puede variar α, para que el optimizador no
cambie, si el vector de costos es (α,−5,−4, 0, 0, 0).

18.4. Averigüe en qué intervalo puede variar θ, para que el optimizador no
cambie, si el vector de costos es

(−6,−5,−4, 0, 0, 0) + θ(2,−1,−1, 0, 0, 0)

18.5. Encuentre el optimizador obtenido al cambiar el vector de términos
independientes b = (26, 16, 36) por b′ = (20, 10, 30).

18.6. Encuentre el optimizador obtenido al cambiar el vector de términos
independientes b = (26, 16, 36) por b′ = (20, 20, 20).

18.7. Averigüe en qué intervalo puede variar α, para que en el óptimo, las va-
riables básicas sean las mismas, si el vector de términos independientes
es (26, α, 36).

18.8. Averigüe en qué intervalo puede variar θ, para que en el óptimo, las va-
riables básicas sean las mismas, si el vector de términos independientes
es (26, 16, 36) + θ(1,−2,−1).

18.9. Suponga que existe la posibilidad de una cuarta variable (un nuevo
producto), con beneficio unitario 10. Este nuevo producto consume 3,
4 y 5 unidades de los tres recursos. Resuelva el nuevo problema.

18.10. Suponga que existe la posibilidad de una cuarta variable (un nuevo
producto), con beneficio unitario 3. Este nuevo producto consume 0.5,
1.5 y 0.5 unidades de los tres recursos. Resuelva el nuevo problema.

18.11. Suponga que existe una nueva restricción x2 + 2x3 ≤ 50. Resuelva el
nuevo problema.

18.12. Suponga que existe una nueva restricción x1 + x2 + x3 ≤ 25. Resuelva
el nuevo problema.

18.13. Suponga que existe una nueva restricción 4x1 + 4x2 = x3. Resuelva el
nuevo problema.

18.14. Suponga que existe una nueva restricción 0.5x1 + 0.5x2 + x3 ≥ 28.
Resuelva el nuevo problema.
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óptimo, 101, 160, 162

no negatividad, 1, 3
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primera fase, 93, 94
problema

dieta, 6
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primal, 153, 154
transporte, 4, 177, 199

punto
óptimo, 19, 50
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óptimo, 103

realizable, véase factible
región
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teorema, 47
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redundante, 109
saturada, 263

restricciones, 29

saturada
restricción, 263

segunda fase, 94

semiespacio, 28, 29

sensibilidad
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simplex

revisado, método, 125

casos especiales, 101

método, 57

tabla, 77
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degenerada, 229

factible, 38, 41, 93, 94, 180
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degenerada, 57, 61, 113

tabla del simplex, 77

tablas del simplex, 62

teorema

dualidad débil, 158

dualidad fuerte, 161

fundamental de dualidad, 163

holgura complementaria, 163

optimalidad, 50, 53

representación, 47

transporte

algoritmo, 183

problema del, 177, 199

valor óptimo acotado inferiormente,
48

variable

artificial, 93, 94

básica nula, 107

libre, 94

nula, 107
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entra, 170
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sale, 170
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