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1 Introducción

Este documento presenta, con ejemplos, varios algoritmos ampliamente cono-
cidos para la factorización de Cholesky incluyendo la adaptación para matri-
ces semidefinidas positivas.

La factorización usual de Cholesky se puede usar únicamente para matrices
definidas positivas. En optimización o en economı́a, se necesita saber fre-
cuentemente si una matriz es semidefinida positiva, para aplicar condiciones
de segundo orden o para averiguar si una función es convexa. Teóricamente
esto se puede hacer mediante el cálculo de los valores propios, pero, numérica-
mente, este proceso es mucho más demorado que la factorización de Cholesky.

2 Definiciones y notación

Existen muchos art́ıculos y textos que tratan la factorización de Cholesky,
en este documento se usaron [AlK02], [Dem97], [GoV96], [Hig90], [Hig08],
[Mor01], [Ste98], [TrB97].
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Sea A ∈ Rn×n una matriz simétrica. Se dice que A es definida positiva si

xTAx > 0 para todo x no nulo en Rn×1. (1)

Se dice que A es semidefinida positiva si

xTAx ≥ 0 para todo x en Rn×1. (2)

Son usuales las notaciones A � 0 y A < 0 para las matrices definidas positivas
y semidefinidas postivas, respectivamente. Obviamente toda matriz definida
positiva es semidefinida positiva. En este documento, mientras no se diga lo
contrario, todas las matrices son reales y cuadradas de tamaño n×n. Todos
los vectores son vectores columna y se pueden escribir como una n-upla o
expĺıcitamente como un vector columna:

x = (x1, x2, ..., xn) =


x1
x2
...
xn


xT =

[
x1 x2 ... xn

]
.

Uma matriz simétrica tiene factorización de Cholesky si existe U triangular
superior invertible tal que

A = UTU. (3)

Si los elementos diagonales de U son positivos, la factorización es única.
Por esto, se puede hablar de la factorización de Cholesky. Algunas veces
se presenta la factorización de Cholesky como A = LLT con L triangular
inferior. Otras veces se presenta la factorización de Cholesky

A = V TDV

con D matriz diagonal invertible y V triangular superior con unos en la
diagonal.

En este documento se utiliza algunas veces la siguiente notación de Matlab
y Scilab, mezclada con la notación usual de matemáticas. La i-ésima fila
de A se puede denotar por Ai· o por A(i, :). De manera análoga para las
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columnas: A·j o A(:, j) . A(i : j, k : l) es la submatriz de A obtenida con
las filas i, i + 1, ..., j y con las columnas k, k + 1, ..., l. Si p es un vector
con enteros entre 1 y n, entonces A(:, p) es la submatriz de A obtenida con
las columnas cuyo ı́ndice está en p. El elemento (entrada) de A en la fila i
y columna j se denotará indiferentemente por aij o por A(i, j). La función
triu(A) construye una matriz triangular superior con la parte triangular
superior de A.

Sean λ1, λ2, ..., λn los valores propios de A. Si A es simétrica, todos son
reales. Sea

δi = det(A(1 : i, 1 : i) ), i = 1, ..., n.

En particular, δ1 = a11, δn = det(A). Sea A simétrica. Una permutación
simétrica de A se obtiene permutando filas de A y permutatndo de la misma
manera las columnas. De manera matricial, B es una permutación simétrica
de A si existe P , matriz de permutación, tal que

B = PAP T. (4)

Aunque son conceptos completamente diferentes, aqúı, un conjunto numérico
finito es lo mismo que un vector cuyas entradas son justamente los elementos
del conjunto.

Una matriz A es de diagonal dominante por filas si para cada fila i

|aii| ≥
∑
j 6=i

|aij|. (5)

La matriz es de diagonal estrictamente dominante por filas si todas las desi-
gualdades son estrictas. Definiciones análogas se tienen por columnas. Para
matrices simétricas se habla simplemente de matrices de diagonal dominante
o de diagonal estrictamente dominante.

3 Algunos resultados

Existen varias caracterizaciones para las matrices definidas positivas y para
las semidefinidas positivas, por medio de condiciones necesarias y suficientes,
de condiciones necesarias y de condiciones suficientes. Algunas de las más
conocidas son:
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Proposicion 1. Sea A simétrica. Las siguientes afirmaciones son equiva-
lentes:

1. A � 0.

2. A tiene factorización de Cholesky.

3. λi > 0 para todo i.

4. δi > 0 para todo i

5. Existe B ∈ Rq×n, de rango n, tal que A = BTB.

Proposicion 2. Sea A simétrica. Las siguientes afirmaciones son equiva-
lentes:

1. A < 0.

2. Existe U triangular superior y P matriz de permutación tales que

UTU = PAP T.

3. λi ≥ 0 para todo i.

4. det(A(p, p) ) ≥ 0 para todo p ⊆ {1, 2, ..., n}.

5. Existe B ∈ Rq×n tal que A = BTB.

Proposicion 3. Si A � 0, entonces:

1. aii > 0 para todo i.

2. a2ij < aiiajj para todo i 6= j.

3. 2|aij| < aii + ajj para todo i 6= j.

4. max
i
aii = max

i,j
|aij|.

Proposicion 4. Si A < 0, entonces:

1. aii ≥ 0 para todo i.
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2. a2ij ≤ aiiajj para todo i 6= j.

3. 2|aij| ≤ aii + ajj para todo i 6= j.

4. max
i
aii = max

i,j
|aij|.

5. Si aii = 0, entonces A(i, :) = 0 y A(:, i) = 0.

6. Si max
i
aii = 0, entonces A = 0.

Proposicion 5. Si A es simétrica y de diagonal positiva y estrictamente
dominante, entonces A � 0.

4 Primera factorización

Si la factorización de Cholesky existe, entonces

u11 0 0 0
u12 u22 0

u1i u2i uii 0

u1n u2n unn





u11 u12 u1i u1j u1n
0 u22 u2i u2j u2n

0 0 uii uij

0 0 unn


=



a11 a12 a1j
a22 a2j

aii aij

ann


Al hacer el producto de la primera fila de UT por la primera columna de U
se obtiene:

u211 = a11

u11 =
√
a11
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Al hacer el producto de la primera fila de UT por la j-ésima columna de U
se obtiene:

u11uij = a1j

u1j = a1j/u11

Aśı se han calculado todos los elementos de la primera fila de U . Al hacer el
producto de la segunda fila de UT por la segunda columna de U se obtiene:

u212 + u222 = a22

u22 =
√
a22 − u212

Segunda fila de UT por columna j de A:

u12u1j + u22u2j = a2j

u2j = (a2j − u12u1j)/u22

De manera general:

t = aii −
i−1∑
k=1

u2ki , i = 1, ..., n

uii =
√
t

uij =
(
aij −

i−1∑
k=1

ukiukj
)
/uii , i = 1, ..., n, j = i+ 1, ..., n

Para ahorrar espacio, se puede reescribir sobre la matriz A lo que se vaya
obteniendo de U . Aśı, en el arreglo A, al principio estará la matriz A y, al
final del proceso, estará la matriz U .

t = aii −
i−1∑
k=1

a2ki , i = 1, ..., n (6)

aii =
√
t (7)

aij =
(
aij −

i−1∑
k=1

akiakj
)
/aii , j = i+ 1, ..., n (8)
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Tanto el cálculo de t como de aij se pueden expresar por medio del producto
de partes de columnas:

t← A(i, i)− A(1 : i− 1, i)TA(1 : i− 1, i) (9)

A(i, j)←
(
A(i, j)− A(1 : i− 1, i)TA(1 : i− 1, j)

)
/A(i, i) (10)

Primera factorización de Cholesky

datos: A
A← triu(A)
para i = 1, ..., n

t← A(i, i)− A(1 : i− 1, i)TA(1 : i− 1, i)
si t ≤ 0

info← 0
parar

fin-si

A(i, i)←
√
t

para j = i+ 1, ..., n
A(i, j)←

(
A(i, j)− A(1 : i− 1, i)TA(1 : i− 1, j)

)
/A(i, i)

fin-para
fin-para
info← 1

Si al final info vale 1, entonces la matriz inicial A es definida positiva y, al
final, en A estará la matriz U . Si al final info vale 0, entonces A no era
definida positiva.

El número de operaciones de punto flotante de la factorización de Cholesky, la
anterior o cualquiera otra realizada eficientemente, es n3/3 más una cantidad
proporcional a n2.

Ejemplo 1.

4 -4 6 -6

-4 20 -22 26

6 -22 61 -59

-6 26 -59 108

i= 1 --------------------
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t= 4

2 -2 3 -3

0 20 -22 26

0 0 61 -59

0 0 0 108

i= 2 --------------------

t= 16

2 -2 3 -3

0 4 -4 5

0 0 61 -59

0 0 0 108

i= 3 --------------------

t= 36

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 108

i= 4 --------------------

t= 49

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 7

5 Factorización por columnas

El cálculo de la matriz U también se puede hacer por columnas, ver [Hig08].
Supongamos calculadas las columnas 1, 2, ... j − 1 de U . Se desea calcular
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la columna j de U . Sea 1 ≤ i ≤ j.

UT

i· U·j = aij
i∑

k=1

ukiukj = aij

i−1∑
k=1

ukiukj + uiiuij = aij

uij =
(
aij −

i−1∑
k=1

ukiukj

)
/uii , si i < j

u2jj = ajj −
j−1∑
k=1

u2kj , si i = j

Aqúı también se puede reescribir la matriz U sobre la matriz A a medida
que se calcula U . Las anteriores sumas se pueden expresar como productos
de partes de columnas.

Factorización de Cholesky por columnas

datos: A
A← triu(A)
para j = 1, ..., n

para i = 1, ..., j − 1
A(i, j)←

(
A(i, j)− A(1 : i− 1, i)TA(1 : i− 1, j)

)
/A(i, i)

fin-para
t← A(j, j)− A(1 : j − 1, j)TA(1 : j − 1, j)
si t ≤ 0

info← 0
parar

fin-si

A(j, j)←
√
t

fin-para
info← 1

Ejemplo 2.
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A

4 -4 6 -6

-4 20 -22 26

6 -22 61 -59

-6 26 -59 108

triu

4 -4 6 -6

0 20 -22 26

0 0 61 -59

0 0 0 108

j= 1 --------------------

despues de calcular A(1:j-1,j)

4 -4 6 -6

0 20 -22 26

0 0 61 -59

0 0 0 108

t= 4

2 -4 6 -6

0 20 -22 26

0 0 61 -59

0 0 0 108

j= 2 --------------------

despues de calcular A(1:j-1,j)

2 -2 6 -6

0 20 -22 26

0 0 61 -59

0 0 0 108

t= 16

2 -2 6 -6

0 4 -22 26

0 0 61 -59

0 0 0 108

j= 3 --------------------

despues de calcular A(1:j-1,j)

2 -2 3 -6

0 4 -4 26

0 0 61 -59

0 0 0 108
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t= 36

2 -2 3 -6

0 4 -4 26

0 0 6 -59

0 0 0 108

j= 4 --------------------

despues de calcular A(1:j-1,j)

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 108

t= 49

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 7

U

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 7

6 Factorización recurrente

Sea A simétrica y definida positiva y, A = UTU , su factorización de Cholesky.
La matriz A se puede descomponer en bloques, ver [GoV96], considerando la
primera fila, la primera columna y el resto de la matriz. De manera análoga
para U :


u11 0

v V T



u11 vT

0 V

 =


a11 wT

w Ā


Las matrices Ā y V están en R(n−1)×(n−1), Ā es simétrica y V es triangular
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superior invertible, los vectores w y v están en R(n−1)×1,

Ā =

a22 · · · a2n
...

. . .
...

an2 · · · ann


wT =

[
w2 · · · wn

]
=
[
a12 · · · a1n

]
vT =

[
v2 · · · vn

]
=
[
u12 · · · u1n

]
Al efectuar el producto se obtiene:

u211 = a11 (11)

u11v
T = wT (12)

v vT + V TV = Ā (13)

De las dos primeras igualdades se obtienen las conocidas fórmulas

u11 =
√
a11 (14)

u1j = a1j/u11, j = 2, ..., n. (15)

De (13) se obtiene

V TV = Ā− v vT.

Es decir, V se obtiene por medio de la factorización de Cholesky de la matriz
Ā′ = Ā−v vT. Como Ā′ también es simétrica, basta con calcular los elementos
de la parte triangular superior:

a′kj = akj − vkvj , k = 2, ..., n, j = k, ..., n

a′kj = akj − u1k u1j

Escribiendo esta última igualdad para toda la parte de la fila k se obtiene:

A′(k, k : n) = A(k, k : n)− U(1, k)U(1, k : n)

Teniendo en cuenta que se puede sobreescribir la matriz U donde estaba la
matriz A y aplicando las fórmulas anteriores, inicialmente para la primera
fila y después para la primera fila de la matriz restante se obtiene el siguiente
algoritmo:
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Factorización recurrente de Cholesky

datos: A
A← triu(A)
para i = 1, ..., n

si A(i, i) ≤ 0
info← 0
parar

fin-si

A(i, i)←
√
A(i, i)

A(i, i+ 1 : n)← A(i, i+ 1 : n)/A(i, i)
para k = i+ 1, ..., n

A(k, k : n)← A(k, k : n)− A(i, k)A(i, k : n)
fin-para

fin-para
info← 1

Ejemplo 3.

A

4 -4 6 -6

-4 20 -22 26

6 -22 61 -59

-6 26 -59 108

triu

4 -4 6 -6

0 20 -22 26

0 0 61 -59

0 0 0 108

i= 1 --------------------

2 -2 3 -3

0 16 -16 20

0 0 52 -50

0 0 0 99

i= 2 --------------------

2 -2 3 -3

0 4 -4 5

0 0 36 -30
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0 0 0 74

i= 3 --------------------

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 49

i= 4 --------------------

2 -2 3 -3

0 4 -4 5

0 0 6 -5

0 0 0 7

7 Factorización de Cholesky con pivoteo

Está basada en la factorización recurrente, ver [GoV96]. Cuando se calcula
el elemento uii, éste va a ser utilizado como divisor. Entre más grande sea,
menor será el error de redondeo. Aśı, se busca el elemento diagonal más
grande, entre la posición (i, i) y la posición (n, n). Sea aqq el más grande.
Entonces se permutan las filas i y q y las columnas i y q, para guardar
la simetŕıa. Este intercambio simétrico no requiere operaciones de punto
flotante, pero se hace basado en información que está en el arreglo A. Hay
valores que no están de manera expĺıcita en A.

Consideremos el siguiente ejemplo. La matriz muestra el resultado después
del cálculo de la primera fila de U :

2 −1 1 −2 3
0 9 6 −12 15
0 0 5 −9 14
0 0 0 117 −104
0 0 0 0 109


En la primera fila del arreglo anterior está la primera fila de U . En las otras
filas, está la parte triangular superior de la modificación de la submatriz 4×4
de A. La información completa de la submatriz 4× 4 es:
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
2 −1 1 −2 3
0 9 6 −12 15
0 6 5 −9 14
0 −12 −9 117 −104
0 15 14 −104 109


Supongamos que se desea intercambiar de manera simétrica filas y columnas
2 y 4. Primero se intercambian las filas 2 y 4. Se obtiene:

2 −1 1 −2 3
0 −12 −9 117 −104
0 6 5 −9 14
0 9 6 −12 15
0 15 14 −104 109


La submatriz 4× 4 no es simétrica. Ahora se intercambian columnas 2 y 4.
El intercambio de columnas también se hace sobre la parte de U ya calculada
(en este ejemplo, en la primera fila). Se obtiene:

2 −2 1 −1 3
0 117 −9 −12 −104
0 −9 5 6 14
0 −12 6 9 15
0 −104 14 15 109


Como se trabaja con la parte triangular superior, se tendŕıa:

2 −2 1 −1 3
0 117 −9 −12 −104
0 0 5 6 14
0 0 0 9 15
0 0 0 0 109


En resumen:


2 −1 1 −2 3
0 9 6 −12 15
0 0 5 −9 14
0 0 0 117 −104
0 0 0 0 109

 intercSim(A,2,4)−−−−−−−−−→


2 −2 1 −1 3
0 117 −9 −12 −104
0 0 5 6 14
0 0 0 9 15
0 0 0 0 109


15



En la descripción de este ejemplo y en el algoritmo completo se utiliza la
función intercSim(A, i, q). En el arreglo A se han calculado la filas 1, 2, ...,
i − 1 de U y se hace intercambio simétrico con las filas y columnas i < q.
Este intercambio debe hacerse de manera eficiente sin los pasos explicativos
mostrados anteriormente.

La matriz U que se obtiene al final no cumple con A = UTU , pero en cambio

UTU = P AP T (16)

donde P es un matriz de permutación y U es una matriz tringular superior
invertible. Para reconstruir P , es necesario tener memoria de los intercambios
realizados. Para esto se utiliza un vector de n enteros, que incialmente será
(1, 2, ..., n).

Factorización de Cholesky con pivoteo

datos: A
A← triu(A)
p = [1, 2, ..., n]
para i = 1 : n

obtener q tal que A(q, q) = max{A(i, i), ..., A(n, n)}
si A(q, q) ≤ 0

info← 0
parar

fin-si
si i < q

intercSim(A, i, q)
p(i)←→ p(q)

fin-si

A(i, i)←
√
A(i, i)

A(i, i+ 1 : n)← A(i, i+ 1 : n)/A(i, i)
para k = i+ 1, ..., n

A(k, k : n)← A(k, k : n)− A(i, k)A(i, k : n)
fin-para

fin-para
info← 1

Ejemplo 4.
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A =

400 40 -60 80

40 104 -56 68

-60 -56 178 54

80 68 54 165

triu:

400 40 -60 80

0 104 -56 68

0 0 178 54

0 0 0 165

i = 1 --------------------

q = 1

a(q,q) = 400

despues de operaciones:

20 2 -3 4

0 100 -50 60

0 0 169 66

0 0 0 149

i = 2 --------------------

q = 3

a(q,q) = 169

despues de intercSim :

20 -3 2 4

0 169 -50 66

0 0 100 60

0 0 0 149

p : 1 3 2 4

despues de operaciones:

20 -3 2 4

0 13 -3.846154 5.076923

0 0 85.207101 79.526627

0 0 0 123.224852
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i = 3 --------------------

q = 4

a(q,q) = 123.224852

despues de intercSim :

20 -3 4 2

0 13 5.076923 -3.846154

0 0 123.224852 79.526627

0 0 0 85.207101

p : 1 3 4 2

despues de operaciones:

20 -3 4 2

0 13 5.076923 -3.846154

0 0 11.100669 7.164129

0 0 0 33.882353

i = 4 --------------------

q = 4

a(q,q) = 33.882353

despues de operaciones:

20 -3 4 2

0 13 5.076923 -3.846154

0 0 11.100669 7.164129

0 0 0 5.820855

U =

20 -3 4 2

0 13 5.076923 -3.846154

0 0 11.100669 7.164129

0 0 0 5.820855

UT U =

400 -60 80 40

-60 178 54 -56

80 54 165 68

40 -56 68 104
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p : 1 3 4 2

P =

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

P A PT =

400 -60 80 40

-60 178 54 -56

80 54 165 68

40 -56 68 104

8 Factorización de Cholesky para matrices

semidefinidas positivas

Las factorizaciones anteriores sirven únicamente para matrices definidas posi-
tivas. Sin embargo, la factorización de Cholesky con pivoteo se puede adaptar
para obtener la factorización de Cholesky normal cuando A es definida posi-
tiva o la siguiente factorización cuando A es semidefinida positiva pero no es
definida positiva:

UTU = PAP T , (17)

P es matriz de permutación,

U es triangular superior no necesariamente invertible.

En el siguiente algoritmo si al final info vale 1, A es definida positiva y se
obtiene la factorización usual de Cholesky. Si info vale 0, A no es definida
positiva pero es semidefinida positiva y se obtiene la factorización (17). En
este caso el vector p permite reconstruir la matriz P . Si info vale −1, A no
es semidefinida positiva.
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Factorización de Cholesky para matrices semidefinidas pos.

datos: A
A← triu(A)
p = [1, 2, ..., n]
info← 1
para i = 1 : n

si A(i, i) > 0
“paso usual de Cholesky”

sino
si A(i, i) < 0

info← −1
parar

sino
“A(i, i) es nulo”
info← 0
buscar q tal que A(q, q) = max{A(i, i), ..., A(n, n)}
si A(q, q) = 0

si A(i : n, i : n) 6= 0
info← −1

fin-si
parar

sino
“A(q, q) es positivo”
intercSim(A, i, q)
p(i)←→ p(q)

fin-si
fin-si

fin-si

A(i, i)←
√
A(i, i)

A(i, i+ 1 : n)← A(i, i+ 1 : n)/A(i, i)
para k = i+ 1, ..., n

A(k, k : n)← A(k, k : n)− A(i, k)A(i, k : n)
fin-para

fin-para

Durante el algoritmo info puede tomar tres valores 1, 0 ó −1. Si info
vale 1, entonces A puede ser definida positiva. Si info vale 0, entonces A no
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es definida positiva pero puede ser semidefinida positiva. Si info vale −1,
entonces A no es semidefinida positiva.

Este algoritmo se puede modificar para hacer pivoteo siempre, es decir, aún
si aii > 0. Si la matriz es definida positiva de todas maneras se pivotea y se
obtiene (16).

Ejemplo 5.

A =

0 2 0 0

2 0 0 0

0 0 4 -6

0 0 -6 25

triu

0 2 0 0

0 0 0 0

0 0 4 -6

0 0 0 25

i = 1 ------------------------

A(i,i) = 0

q = 4

A(q,q) = 25

A(q,q) > 0.

despues de intercSim:

A =

25 0 -6 0

0 0 0 2

0 0 4 0

0 0 0 0

p : 4 2 3 1

despues de operaciones:

5 0 -1.200000 0

0 0 0 2

0 0 2.560000 0
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0 0 0 0

i = 2 ------------------------

A(i,i) = 0

q = 3

A(q,q) = 2.560000

A(q,q) > 0.

despues de intercSim:

A =

5 -1.200000 0 0

0 2.560000 0 0

0 0 0 2

0 0 0 0

p : 4 3 2 1

despues de operaciones:

5 -1.200000 0 0

0 1.600000 0 0

0 0 0 2

0 0 0 0

i = 3 ------------------------

A(i,i) = 0

q = 3

A(q,q) = 0

A(i:n,i:n) no nula.

La matriz NO es semidef. positiva.

Ejemplo 6.

A =

0 0 0 0

0 0 0 0

0 0 4 -6

0 0 -6 25
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triu

0 0 0 0

0 0 0 0

0 0 4 -6

0 0 0 25

i = 1 ------------------------

A(i,i) = 0

q = 4

A(q,q) = 25

A(q,q) > 0.

despues de intercSim:

A =

25 0 -6 0

0 0 0 0

0 0 4 0

0 0 0 0

p : 4 2 3 1

despues de operaciones:

5 0 -1.200000 0

0 0 0 0

0 0 2.560000 0

0 0 0 0

i = 2 ------------------------

A(i,i) = 0

q = 3

A(q,q) = 2.560000

A(q,q) > 0.

despues de intercSim:

A =

5 -1.200000 0 0

0 2.560000 0 0

0 0 0 0

0 0 0 0
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p : 4 3 2 1

despues de operaciones:

5 -1.200000 0 0

0 1.600000 0 0

0 0 0 0

0 0 0 0

i = 3 ------------------------

A(i,i) = 0

q = 3

A(q,q) = 0

A(i:n,i:n) = 0

info = 0

Matriz semidefinida positiva

U =

5 -1.200000 0 0

0 1.600000 0 0

0 0 0 0

0 0 0 0

UT U =

25 -6 0 0

-6 4 0 0

0 0 0 0

0 0 0 0

p : 4 3 2 1

P =

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
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P A PT =

25 -6 0 0

-6 4 0 0

0 0 0 0

0 0 0 0
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