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1 Introduccion

Este documento presenta, con ejemplos, varios algoritmos ampliamente cono-
cidos para la factorizacion de Cholesky incluyendo la adaptacién para matri-
ces semidefinidas positivas.

La factorizacion usual de Cholesky se puede usar inicamente para matrices
definidas positivas. En optimizacién o en economia, se necesita saber fre-
cuentemente si una matriz es semidefinida positiva, para aplicar condiciones
de segundo orden o para averiguar si una funcién es convexa. Tedricamente
esto se puede hacer mediante el calculo de los valores propios, pero, numérica-
mente, este proceso es mucho mas demorado que la factorizacién de Cholesky.

2 Definiciones y notacién

Existen muchos articulos y textos que tratan la factorizacién de Cholesky,
en este documento se usaron [AIK02], [Dem97], [GoV96], [Hig90], [Hig08],
[Mor01], [Ste98], [TrB9I7].



Sea A € R™"™ una matriz simétrica. Se dice que A es definida positiva si

"Ax >0 para todo x no nulo en R™**, (1)

Se dice que A es semidefinida positiva si

z"Ax >0 para todo x en R, (2)

Son usuales las notaciones A > 0y A = 0 para las matrices definidas positivas
y semidefinidas postivas, respectivamente. Obviamente toda matriz definida
positiva es semidefinida positiva. En este documento, mientras no se diga lo
contrario, todas las matrices son reales y cuadradas de tamano n x n. Todos
los vectores son vectores columna y se pueden escribir como una n-upla o
explicitamente como un vector columna:

x1

X2
T = (21, %9, ..y Ty) =

Tn
't = [xl Ty ... xn} .
Uma matriz simétrica tiene factorizacion de Cholesky si existe U triangular
superior invertible tal que

A=U'. (3)

Si los elementos diagonales de U son positivos, la factorizacion es unica.
Por esto, se puede hablar de la factorizacion de Cholesky. Algunas veces
se presenta la factorizacion de Cholesky como A = L L™ con L triangular
inferior. Otras veces se presenta la factorizacion de Cholesky

A=V'DV
con D matriz diagonal invertible y V' triangular superior con unos en la

diagonal.

En este documento se utiliza algunas veces la siguiente notacion de Matlab
y Scilab, mezclada con la notacién usual de matematicas. La i-ésima fila
de A se puede denotar por A;. o por A(7,:). De manera andloga para las



columnas: A.; o A(:,j). A(i: j,k : 1) es la submatriz de A obtenida con
las filas ¢, ¢ + 1, ..., 7 y con las columnas k, kK + 1, ..., [. Si p es un vector
con enteros entre 1 y n, entonces A(:,p) es la submatriz de A obtenida con
las columnas cuyo indice estd en p. El elemento (entrada) de A en la fila i
y columna j se denotard indiferentemente por a;; o por A(7, j). La funcién
triu(A) construye una matriz triangular superior con la parte triangular
superior de A.

Sean A1, Ao, ..., A\, los valores propios de A. Si A es simétrica, todos son
reales. Sea
g =det(A(1:4,1:4)), i=1,...,n.

En particular, §; = a1, 0, = det(A). Sea A simétrica. Una permutacion
simétrica de A se obtiene permutando filas de A y permutatndo de la misma
manera las columnas. De manera matricial, B es una permutacion simétrica
de A si existe P, matriz de permutacion, tal que

B = PAP". (4)

Aunque son conceptos completamente diferentes, aqui, un conjunto numérico
finito es lo mismo que un vector cuyas entradas son justamente los elementos
del conjunto.

Una matriz A es de diagonal dominante por filas si para cada fila ¢

il =) lass|- ()

J#i

La matriz es de diagonal estrictamente dominante por filas si todas las desi-
gualdades son estrictas. Definiciones analogas se tienen por columnas. Para
matrices simétricas se habla simplemente de matrices de diagonal dominante
o de diagonal estrictamente dominante.

3 Algunos resultados

Existen varias caracterizaciones para las matrices definidas positivas y para
las semidefinidas positivas, por medio de condiciones necesarias y suficientes,
de condiciones necesarias y de condiciones suficientes. Algunas de las mas
conocidas son:



Proposicion 1. Sea A simétrica. Las siguientes afirmaciones son equiva-
lentes:

1. A= 0.

2. A tiene factorizacion de Cholesky.
3. N; > 0 para todo 1.

4. 6; > 0 para todo i

5. Existe B € R™" de rango n, tal que A = B"B.

Proposicion 2. Sea A simétrica. Las siguientes afirmaciones son equiva-
lentes:

1. A=0.

2. BExiste U triangular superior y P matriz de permutacion tales que
U'™U = PAP".

3. N; > 0 para todo i.

4. det( A(p,p)) > 0 para todo p C {1,2,...,n}.

5. Fxiste B € R™" tal que A = B"B.
Proposicion 3. Si A = 0, entonces:

1. ay; > 0 para todo .
a3; < agag; para todo i # j.

2|aij| < ai; + aj; para todo i # j.

> Lo e

max a;; = max |a;;|.
i 2
Proposicion 4. Si A = 0, entonces:

1. a; > 0 para todo 1.



2. a?j < aja;; para todo i # j.
3. 2|a;;| < a; + ajj para todo i # j.
4. maxa; = max |a;|.
i 1,
5. Sia; =0, entonces A(1,:) =0 y A(:,i) = 0.

6. Simaxa; =0, entonces A = 0.

Proposicion 5. Si A es simétrica y de diagonal positiva y estrictamente
dominante, entonces A = 0.

4 Primera factorizacion

Si la factorizacion de Cholesky existe, entonces

uip 0 0 0 Uil Uiz Uiy Uiy Uin
Uig Uz 0O 0 ug Ug;  Ugj U2n,
0 0 Uz Uy =
Ury U2 Ui 0
| Uin  U2n Unn | [ 0 0 Upn |
a11 Qa2 Q1;
22 Q25
Q5 aij
L ann -

Al hacer el producto de la primera fila de U™ por la primera columna de U
se obtiene:

2
Uy = a1

Il
§
S
o
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Al hacer el producto de la primera fila de U™ por la j-ésima columna de U
se obtiene:

Up1U5; = A1y

U5 = (l1j/U11

Asi se han calculado todos los elementos de la primera fila de U. Al hacer el
producto de la segunda fila de U™ por la segunda columna de U se obtiene:

Ugz = y/ Q22 — U%z
Segunda fila de U™ por columna j de A:

U12U15 + UgoUoj = Aoy

Ugj = (a2j - U12U1j)/U22

De manera general:

i—1
t=ua; — g u? =1 n
— W ki ey
k=1
Uiy = \/¥
i—1
Ujj = (&ij — E Ukiukj)/uiia i=1..,n, j=1i+1,..,n
k=1
Para ahorrar espacio, se puede reescribir sobre la matriz A lo que se vaya

obteniendo de U. Asi, en el arreglo A, al principio estara la matriz A y, al
final del proceso, estara la matriz U.

i—1
t:Gn’—Zazi, 1=1,....n (6)
k=1
Qi = Vi (7)
i1
aij = (aij - Zakiakj)/aiia j=1i+1,...,n (8)
k=1



Tanto el célculo de ¢ como de a;; se pueden expresar por medio del producto
de partes de columnas:

t A(iyi) — A1 i —1,9)" A(1 i — 1,4) (9)
A, §) « (A(i,J) —A(L:i—1,0)" AL i —1,5) ) JA(4,4) (10)

PRIMERA FACTORIZACION DE CHOLESKY

datos: A
A« triu(A)
para i=1,...n
t+ A(i,i) — A1 i —1,9)" A(1: 0 — 1,4)

sit<0
info <+ 0
parar
fin-si

A, i) V't
para j=1+1,...n
A(i,g) < (A(,J) — AL i —1,9)T A1 : 1 — 1,5) ) JA(i, 0)
fin-para
fin-para
info <« 1

Si al final info vale 1, entonces la matriz inicial A es definida positiva y, al
final, en A estara la matriz U. Si al final info vale 0, entonces A no era
definida positiva.

El niimero de operaciones de punto flotante de la factorizacion de Cholesky, la
anterior o cualquiera otra realizada eficientemente, es n®/3 méas una cantidad
proporcional a n?.

Ejemplo 1.



0 0 108
i= 2 —————
t= 16

2 -2 3 -3
0 4 -4 5
0 0 61 -59
0 0 0 108
i= 3 ————
t= 36
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 108
i= 4 ———————————————
t= 49
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 7

5 Factorizacion por columnas

El calculo de la matriz U también se puede hacer por columnas, ver [Hig08].
Supongamos calculadas las columnas 1, 2, ... j — 1 de U. Se desea calcular



la columna j de U. Sea 1 <1 < 5.
UZTUJ :Clz'j

i
E UpiUk; = Ay
k=1

i—1

§ UpiUkj + Uiili; = Qij
k=1
i—1

Ui = (aij — E ukiukj> /Uii, sit < j

k=1

7—1
2 _ ) s
ujj—aﬂ E ukj, S11 =7
k=1

Aqui también se puede reescribir la matriz U sobre la matriz A a medida
que se calcula U. Las anteriores sumas se pueden expresar como productos
de partes de columnas.

FACTORIZACION DE CHOLESKY POR COLUMNAS

datos: A
A+ triu(A)
para j=1,...n
para i =1,....,7 —1
A(i,§) « (A(i,5) — AL i —1,9)" A(L i — 1,5) ) JA(i,0)
fin-para
sit<0
info <+ 0
parar
fin-si
A(j,J) V't
fin-para
info <1

Ejemplo 2.



-4 20 -22 26
6 -22 61 -59
-6 26 -59 108

4

0 20 -22 26
0 0 61 -59
0

0 0 108
j= ____________________
despues de calcular A(1:j-1,j)
4 -4 6 -6
0 20 -22 26
0 0 61 -59
0 0 0 108
t= 4
2 -4 6 -6
0 20 -22 26
0 0 61 -59
0 0 0 108
1= 2 ____________________
despues de calcular A(1:j-1,j)
2 -2 6 -6
0 20 -22 26
0 0 61 -59
0 0 0 108
t= 16
2 -2 6 -6
0 4 -22 26
0 0 61 -59
0 0 0 108
1= 3 ____________________
despues de calcular A(1:j-1,j)
2 -2 3 -6

0 4 -4 26
0 0 61 -59
0 0 0 108



2 -2 3 -6
0 4 -4 26
0 0 6 -59
0 0 0 108
1= 4 ____________________
despues de calcular A(1:j-1,3j)
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 108
t= 49
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 7
U
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 7

6 Factorizacion recurrente

Sea A simétrica y definida positivay, A = U"U, su factorizacién de Cholesky.
La matriz A se puede descomponer en bloques, ver [GoV96], considerando la
primera fila, la primera columna y el resto de la matriz. De manera andloga
para U:

Las matrices A y V estan en R®D*("=1 " 4 es simétrica y V es triangular

11



(n—1)x1

superior invertible, los vectores w y v estdn en R ,

22 Q2n
A= :
Qn2 Qpn
T __ —
w = [UJQ wn} = [am aln}
T
Vo= [712 Un] = [Um Um}

Al efectuar el producto se obtiene:

U%l = a1 (11)
up vt =w" (12)
vt + VTV = A (13)

De las dos primeras igualdades se obtienen las conocidas férmulas

Uil = \/E (14>

Uy = alj/un, j = 2, . n. (15)

De (13) se obtiene

VWV =A—0vo".

Es decir, V' se obtiene por medio de la factorizacién de Cholesky de la matriz
A" = A—vv". Como A’ también es simétrica, basta con calcular los elementos
de la parte triangular superior:

aj,

;= Qij — Ugvy, k=2..n, j=k, ...,n

/ f— Pp— -
akj = Qk; Uik Uty

Escribiendo esta tltima igualdad para toda la parte de la fila k se obtiene:
Ak, k:n)= Ak, k:n)— U, k)U(,k:n)

Teniendo en cuenta que se puede sobreescribir la matriz U donde estaba la
matriz A y aplicando las férmulas anteriores, inicialmente para la primera
fila y después para la primera fila de la matriz restante se obtiene el siguiente
algoritmo:

12



FACTORIZACION RECURRENTE DE CHOLESKY

datos: A
A+ triu(A)
para i=1,...n
si A(i,1) <0
info < 0
parar
fin-si
A(i, 1) < /A4, 1)
A(i,i+1:n)« A(i,i+1:n)/A(,1)
para k=1+1,...,n
Ak, k:n) < Ak, k:n) — A(i, k) A(i, k = n)

fin-para
fin-para
info + 1
Ejemplo 3.
A
4 -4 6 -6

-4 20 -22 26
6 -22 61 -59
-6 26 -59 108

0 0 108
i=1 —————————————————
2 -2 3 -3
0 16 -16 20
0 0 52 -50
0 0 0 99
i= 2 —————————————
2 -2 3 -3
0 4 -4 5
0 0 36 -30
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i= 3 —————————
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 49

i= 4 ————
2 -2 3 -3
0 4 -4 5
0 0 6 -5
0 0 0 7

7 Factorizacion de Cholesky con pivoteo

Estd basada en la factorizacién recurrente, ver [GoV96]. Cuando se calcula
el elemento u;;, éste va a ser utilizado como divisor. Entre més grande sea,
menor serd el error de redondeo. Asi, se busca el elemento diagonal més
grande, entre la posicién (,7) y la posicién (n,n). Sea ayy el mas grande.
Entonces se permutan las filas ¢ y ¢ y las columnas ¢ y ¢, para guardar
la simetria. Este intercambio simétrico no requiere operaciones de punto
flotante, pero se hace basado en informacién que estd en el arreglo A. Hay
valores que no estdn de manera explicita en A.

Consideremos el siguiente ejemplo. La matriz muestra el resultado después
del calculo de la primera fila de U:

2 -1 1 =2 3
0 9 6 —12 15
0 05 -9 14
0 0 0 117 —-104
0 00 0 109

En la primera fila del arreglo anterior esta la primera fila de U. En las otras
filas, estd la parte triangular superior de la modificacion de la submatriz 4 x 4
de A. La informacién completa de la submatriz 4 x 4 es:

14



-1 1 —2 3
9 6 —12 15

6 5 -9 14
-12 -9 117 —-104
0 15 14 —-104 109

Supongamos que se desea intercambiar de manera simétrica filas y columnas
2 y 4. Primero se intercambian las filas 2 y 4. Se obtiene:

2 -1 1 —2 3
0 -12 -9 117 —-104
0 6 5 -9 14
0
0

S O O NN

9 6 —12 15
15 14 —-104 109

La submatriz 4 x 4 no es simétrica. Ahora se intercambian columnas 2 y 4.
El intercambio de columnas también se hace sobre la parte de U ya calculada
(en este ejemplo, en la primera fila). Se obtiene:

2 -2 1 -1 3
0 117 -9 —-12 -104
0 -9 5 6 14
0 —-12 6 9 15
0 —-104 14 15 109

Como se trabaja con la parte triangular superior, se tendria:
2 -2 1 -1 3
0 117 -9 —-12 —-104
0 0 5 6 14
0 0 O 9 15
0 0 O 0 109

En resumen:

2 -1 1 -2 3 2 2 1 -1 3
0 96 —12 15| 0 117 —9 —12 —104
0 05 -9 14| 2R g g 5 6 14
0 00 117 —104 0 0 0 9 I
0 00 0 109 0 0 0 0 109

15



En la descripcion de este ejemplo y en el algoritmo completo se utiliza la
funcién intercSim(A,i,q). En el arreglo A se han calculado la filas 1, 2, ...,
1 — 1 de U y se hace intercambio simétrico con las filas y columnas ¢ < gq.
Este intercambio debe hacerse de manera eficiente sin los pasos explicativos
mostrados anteriormente.

La matriz U que se obtiene al final no cumple con A = UTU, pero en cambio
U'U=PAP" (16)

donde P es un matriz de permutacién y U es una matriz tringular superior
invertible. Para reconstruir P, es necesario tener memoria de los intercambios
realizados. Para esto se utiliza un vector de n enteros, que incialmente serd
(1,2, ..., n).

FACTORIZACION DE CHOLESKY CON PIVOTEO

datos: A
A <+ triu(A)
p=1[1,2,...,n]

para i=1:n
obtener ¢ tal que A(q,q) = max{A(i,i),..., A(n,n)}
si A(q,q) <0
info <0
parar
fin-si
sii<q
intercSim(A,1,q)
p(i) «— p(q)
fin-si
A(i, 1) < /A(3,17)
A(i,i+1:n) <« A(i,i+1:n)/A(4,1)
para k=1+1,...n
Ak, k:n) < Ak, k:n) — A(i, k) A(i, k = n)
fin-para
fin-para
info «+ 1

Ejemplo 4.

16



400 40 -60 80
40 104 -56 68
-60 -56 178 54
80 68 54 165

triu:
400 40 -60 80

0O 104 -56 68

0 0 178 54

0 0 0 165
i=1 -
q=1
a(q,q) = 400
despues de operaciones:

20 2 -3 4

0 100 -50 60

0 0 169 66

0 0 0 149
i=2 -
q=3
a(q,q) = 169
despues de intercSim

20 -3 2 4

0 169 -50 66

0 0 100 60

0 0 0 149
p: 1 3 2

despues de operaciones:

20 -3 2
0 13 -3.846154
0 0 85.207101
0 0 0

4
5.076923
79.526627
123.224852

17



{ =83 —mmmmmmmme

q=4
alq,q) = 123.224852
despues de intercSim
20 -3 4 2
0 13 5.076923 -3.846154
0 0  123.224852 79.526627
0 0 0 85.207101
P : 1 3 4 2

despues de operaciones:

20 -3 4 2
0 13 5.076923 -3.846154
0 0 11.100669 7.164129
0 0 0 33.882353
i=4 -
q=4
alq,q) = 33.882353
despues de operaciones:
20 -3 4 2
0 13 5.076923 -3.846154
0 0 11.100669 7.164129
0 0 0 5.820855
U =
20 -3 4 2
0 13 5.076923 -3.846154
0 0 11.100669 7.164129
0 0 0 5.820855
UT U =

400 -60 80 40
-60 178 54  -56
80 54 165 68
40  -b6 68 104

18



O O O -
= O O O
SO O = O
O = O O

P APT =
400 -60 80 40
-60 178 54 -56
80 54 165 68
40 -56 68 104

8 Factorizacion de Cholesky para matrices
semidefinidas positivas

Las factorizaciones anteriores sirven inicamente para matrices definidas posi-
tivas. Sin embargo, la factorizacién de Cholesky con pivoteo se puede adaptar
para obtener la factorizacion de Cholesky normal cuando A es definida posi-
tiva o la siguiente factorizacién cuando A es semidefinida positiva pero no es
definida positiva:

U'U = PAP", (17)
P es matriz de permutacion,

U es triangular superior no necesariamente invertible.

En el siguiente algoritmo si al final info vale 1, A es definida positiva y se
obtiene la factorizacion usual de Cholesky. Si info vale 0, A no es definida
positiva pero es semidefinida positiva y se obtiene la factorizacién (17). En
este caso el vector p permite reconstruir la matriz P. Si info vale —1, A no
es semidefinida positiva.
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FACTORIZACION DE CHOLESKY PARA MATRICES SEMIDEFINIDAS POS.

datos: A
A <+ triu(A)
p=1[1,2,..,n]
info <+ 1
para i =1:n
si A(i,i) >0
“paso usual de Cholesky”
sino
si A(i,7) <0
info < —1
parar
sino
“A(i,17) es nulo”
info <+ 0
buscar ¢ tal que A(q,q) = max{A(i,i),..., A(n,n)}
si A(q,q) =0
si A(i:n,i:n)#0
info ¢+ —1
fin-si
parar
sino
“A(q, q) es positivo”
intercSim(A,7,q)
p(i) +— p(q)
fin-si
fin-si
fin-si

A(i, 1) < /A(3,17)
A(i,i+1:n) « A(i,i +1:n)/A(3,1)
para k=:1+1,...n
A(k,k:n) < A(k,k:n) — A(i, k) A(i, k = n)
fin-para
fin-para

Durante el algoritmo info puede tomar tres valores 1, 0 6 —1. Si info
vale 1, entonces A puede ser definida positiva. Si info vale 0, entonces A no

20



es definida positiva pero puede ser semidefinida positiva. Si info vale —1,
entonces A no es semidefinida positiva.

Este algoritmo se puede modificar para hacer pivoteo siempre, es decir, ain
si a; > 0. Si la matriz es definida positiva de todas maneras se pivotea y se
obtiene (16).

Ejemplo 5.
A=
0 2 0 0
2 0 0 0
0 0 4 -6
0 0 -6 25
triu
0 2 0 0
0 0 0 0
0 0 4 -6
0 0 0 25
i=1 ————
A(i,1) = 0
q=4
A(q,q) = 25
A(q,q) > 0.
despues de intercSim:
A=
25 0 -6 0
0 0 0 2
0 0 4 0
0 0 0 0
p: 4 2 3 1
despues de operaciones:
5 0 -1.200000 0
0 0 0 2
0 0 2.560000 0
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i=2 -
A(i,i) = 0

q=3

A(q,q) = 2.560000
A(q,q) > O.

despues de intercSim:
A =

5 -1.200000 0
0 2.560000 0
0 0 0
0 0 0
P : 4 3 2
despues de operaciones:
5 -1.200000 0
0 1.600000 0
0 0 0
0 0 0
i=3 -
A(i,i) = 0
q=23
A(q,q) = 0

A(i:n,i:n) no nula.

La matriz NO es semidef.

Ejemplo 6.

A =
0 0 0 0
0 0 0 0
0 0 4 -6
0 0 -6 25

O N O O

O N O O

positiva.
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triu

0

0

O O O O

0 0 0 0
0 0 0 0
0 0 4 -6
0 0 0 25
i=1 -
A(i,i) = 0
q=4
Alq,q) = 25
A(q,q) > 0.
despues de intercSim:
A=
25 0 -6 0
0 0 0 0
0 0 4 0
0 0 0 0
P : 4 2 3
despues de operaciones:
5 0 -1.20000
0 0 0
0 0 2.56000
0 0 0
i=2 -
A(i,i) = 0
q=3
A(q,q) = 2.560000
A(q,q) > 0.
despues de intercSim:
A=
5 -1.200000
0 2.560000
0 0
0 0

o O O O

O O O O
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p : 4 3 2 1

despues de operaciones:

5 -1.200000 0 0
0 1.600000 0 0
0 0 0 0
0 0 0 0
i=3 ———————————————————
A(i,i) = 0
q=3
A(q,q) = 0

Il
o

A(i:n,i:n)

info = 0
Matriz semidefinida positiva

U =
5  -1.200000 0 0
0 1.600000 0 0
0 0 0 0
0 0 0 0
UT U =
25 -6 0 0
-6 4 0 0
0 0 0 0
0 0 0 0
p 4 3 2 1
P =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
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P APT =

25 -6 0 0
-6 4 0 0
0 0 0 0
0 0 0 0
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