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Este caṕıtulo, pretende presentar la principal idea de la programación dinámica:
toda subpoĺıtica de una poĺıtica óptima también debe ser óptima. El anterior
principio se conoce como el principio de optimalidad de Richard Bellman.

El nombre de programación dinámica se debe a que inicialmente el método
se aplicó a la optimización de algunos sistemas dinámicos, es decir, sistemas
que evolucionan con el tiempo. Sin embargo, el tiempo no es indispensable,
se requiere simplemente que los sistemas se puedan expresar por etapas o por
fases.

Dicho de otra forma, la idea básica de la programación dinámica consiste en
convertir un problema de n variables en una sucesión de problemas más simples,
por ejemplo, de una variable, y para más sencillez, una variable discreta.

Desde un punto de vista recurrente1: un problema complejo se resuelve me-
diante el planteamiento de problemas más sencillos pero análogos al problema
general. Estos problemas más sencillos se resuelven mediante el planteamiento
de problemas aún más sencillos pero que siguen guardando la misma estructura.
Este proceso recurrente se aplica hasta encontrar problemas de solución inmedi-
ata. Una vez resueltos estos problemas supersencillos se pasa a la solución de
los problemas un poquito mas complejos y aśı sucesivamente hasta calcular la
solución del problema general.

Aunque el principio es muy sencillo y aplicable a muchos problemas, se aplica
de manera espećıfica a cada problema. Es decir, no existe un algoritmo (o un
programa de computador) único que se pueda aplicar a todos los problemas.

En lugar de presentar fórmulas, definiciones o conceptos generales pero abstrac-
tos, se presentan ejemplos t́ıpicos con sus soluciones. Todos los ejemplos presen-
tados son determińısticos, es decir, se supone que todos los datos del problema
son conocidos de manera precisa.

0.1 EL PROBLEMA DE LA RUTA MÁS CORTA

0.1.1 Enunciado del problema

El Ministerio de Obras desea construir una autopista entre la ciudad de Girar-
dot, que denotaremos simplemente por A y la ciudad de Barranquilla denotada
porZ. Globalmente, la autopista sigue la dirección del ŕıo Magdalena. El valle
del ŕıo y su zona de influencia directa se dividió en una sucesión de n regiones
adyacentes que, por facilidad, llamaremos R1, R2, ... Rn. La ciudad A está
en R1 y Z está en Rn. La autopista pasa por todas las n regiones, pero está
previsto que pase solamente por una ciudad de cada región. Sin embargo en
algunas regiones hay varias ciudades importantes y cada una de ellas podŕıa

1Con cierta frecuencia, en lugar de recurrente, se utiliza el término “recursivo”, anglicismo
usado para la traduccion de “recursive”.
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ser la ciudad de la región por donde pasa la autopista. Con este esquema, el
Ministerio está estudiando muchos tramos de autopista, cada tramo va de una
ciudad en una región, a otra ciudad en la región siguiente. Sin embargo, de cada
ciudad en una región no hay necesariamente tramos a todas las ciudades de la
siguiente región. Pero por otro lado, para cada ciudad de la regiones interme-
dias, de la 2 a la n− 1, hay por lo menos un tramo proveniente de una ciudad
de la región anterior y por lo menos un tramo que va hasta una ciudad de la
siguiente región.

Para cada uno de estos tramos posibles el Ministerio ha calculado un costo
total que tiene en cuenta, entre otros aspectos, la distancia, las dificultades
espećıficas de la construcción, el sobrecosto del transporte desde otras ciudades
de cada región hasta la ciudad por donde pasa la autopista.

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............
............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

............................................................................................................................................................................................................................................................................................................................................................. .............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

..............
..................................................................................................................................
.............A

..............
..................................................................................................................................
.............2

..............
..................................................................................................................................
.............3

..............
..................................................................................................................................
.............4

..............
..................................................................................................................................
.............5

..............
..................................................................................................................................
.............6

..............
..................................................................................................................................
.............7

..............
..................................................................................................................................
.............8

..............
..................................................................................................................................
.............Z

................
................
................
................
................
................
................
................
................
................
................
................
................
..

4

...............................................................................5

......................................................................................11
...........................................................................................................................................................................................................

10

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................

9

...................................
...................................

...................................
...................................

...............................

12
.......................................................................................................................................................................................................................

8

........................................................................................................................

1

....................
....................

....................
....................

....................
..................

2

........................................................................................................

3

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.........

6

................
................
................
................
................
................
................
................
................
....

4

...........................................................................................................................................

5

...........................
...........................

...........................
...........................

...........................
.........

8

R1 R2 R3 R4 R5

El objetivo del Ministerio es encontrar una sucesión de tramos concatenados,
que van desde A hasta Z, con costo mı́nimo.

Las condiciones del problema se pueden formalizar de la siguiente manera:

• N = {A, ..., Z} conjunto de ciudades o nodos. N es simplemente un con-
junto finito cualquiera (no necesariamente un subconjunto del abecedario),
en el cual están A y Z.

• R1, R2, ...., Rn forman una partición de N , es decir,

2



R1 ∪R2 ∪ ... ∪Rn = N,

Ri 6= ∅ , i = 1, ..., n,

Ri ∩Rj = ∅ si i 6= j.

• R1 = {A}.

• Rn = {Z}.

• Γ ⊆ N ×N conjunto de tramos posibles (“flechas” del grafo2 ).

• Si (i, j) ∈ Γ entonces existe 1 ≤ k ≤ n− 1 tal que i ∈ Rk y j ∈ Rk+1.

• Para 1 ≤ k ≤ n− 1, si i ∈ Rk entonces existe j ∈ Rk+1 tal que (i, j) ∈ Γ.

• Para 2 ≤ k ≤ n, si i ∈ Rk entonces existe j ∈ Rk−1 tal que (j, i) ∈ Γ.

• Si (i, j) ∈ Γ entonces se conoce c(i, j) = cij > 0.

En teoŕıa de grafos se habla de predecesor, sucesor, conjunto de predecesores,
conjunto de sucesores. La utilización de estos conceptos, con sus respectivas
notaciones, facilita y hace más compacto el planteamiento del problema. Si la
flecha (i, j) está en el grafo se dice que i es un predecesor de j, y que j es un
sucesor de i. Se denota por Γ−(i) el conjunto de predecesores de i y por Γ+(i)
el conjunto de sus sucesores. Entonces:

• Γ−(i) 6= ∅, ∀i 6= A.

• Γ+(i) 6= ∅, ∀i 6= Z.

• i ∈ Rk ⇒ Γ−(i) ⊆ Rk−1, k = 2, ..., n.

• i ∈ Rk ⇒ Γ+(i) ⊆ Rk+1, k = 1, ..., n− 1.

0.1.2 Planteamiento del problema de optimización

El problema se puede presentar de la siguiente manera: encontrar i1, i2, ..., in
para minimizar una función con ciertas restricciones:

min c(i1, i2) + c(i2, i3) + ...+ c(in−1, in) =

n−1∑
k=1

c(ik, ik+1)

(ik, ik+1) ∈ Γ, k = 1, ..., n− 1

ik ∈ Rk, k = 1, ..., n.

2Un grafo G es una pareja G = (N,Γ), donde N es el conjunto finito de vértices y Γ ⊆ N×N
es el conjunto de flechas
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En realidad el problema depende únicamente de n−2 variables: i2, i3, ..., in−1

ya que i1 = A, in = Z. Además la última condición se puede quitar puesto que
ya está impĺıcita en las propiedades de Γ.

A cada una de las ciudades de R2 llega por lo menos un tramo desde una
ciudad de R1, pero como en R1 solo hay una ciudad entonces: a cada una de
las ciudades de R2 llega por lo menos una ruta desde A. A su vez, a cada una
de las ciudades de R3 llega por lo menos un tramo desde una ciudad de R2 y
como a cada ciudad de R2 llega una ruta desde A entonces: a cada una de las
ciudades de R3 llega por lo menos una ruta desde A. Repitiendo este proceso
se puede deducir que a cada una de las ciudades llega por lo menos una ruta
desde A. En particular existe por lo menos una ruta desde A hasta Z.

Una manera de resolver este problema es utilizando la fuerza bruta: hacer
una lista de todas las rutas posibles desde A hasta Z, para cada ruta evaluar el
costo (sumando los costos de cada tramo), y buscar la ruta (o una de las rutas)
de menor costo.

De ahora en adelante, cuando se hable del mejor (camino, proced-
imiento, poĺıtica, ... ) se entenderá que es el mejor, en el sentido
estricto cuando hay uno solo, o uno de los mejores cuando hay varios.

0.1.3 Solución por programación dinámica

La forma recurrente de resolver este problema es muy sencilla. Para conocer
la mejor ruta de A hasta Z basta con conocer la mejor ruta a cada una de
las ciudades de Rn−1. Al costo de cada ruta óptima hasta una de ciudad de
Rn−1 se le agrega el costo del tramo entre esa ciudad de Rn−1 y Z en Rn y
finalmente se escoge la menor suma. Definir algunas funciones permite escribir
el razonamiento anterior de manera más corta y precisa.

Sean :

C∗n(Z) : costo mı́nimo de todas las rutas desde A hasta Z.
C∗n−1(i) : costo mı́nimo de todas las rutas desde A hasta la

ciudad i ∈ Rn−1.

Entonces la solución recurrente dice:

C∗n(Z) = min
i∈Rn−1

{Cn−1(i) + c(i, Z)}.

Obviamente esto presupone que se conocen todos los valores C∗n−1(i), y entonces
la pregunta inmediata es: ¿Cómo se calculan los valores C∗n−1(i)?

La respuesta es de nuevo recurrente: Utilizando los costos de las rutas mı́nimas
desde A hasta las ciudades de Rn−2.
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Sea :

C∗n−2(i) : costo mı́nimo de todas las rutas desde A hasta la
ciudad i ∈ Rn−2.

Entonces la solución recurrente dice:

C∗n−1(j) = min{Cn−2(i) + c(i, j) : i ∈ Γ−(j)}, j ∈ Rn−1.

Este proceso se repite hasta poder utilizar valores “inmediatos” o de muy fácil
obtención. Para este problema de la autopista, puede ser

C∗2 (j) = c(A, j), j ∈ R2.

donde C∗2 (j)indica costo mı́nimo de todas las rutas (hay una sola) desde A hasta
la ciudad j ∈ R2.

La deducción de la solución recurrente se hizo hacia atrás (desde n hasta 2) pero
el cálculo se hace hacia adelante (de 2 hasta n). En resumen,

• definir una función que permita la recurrencia,

• definir el objetivo final,

• definir las condiciones iniciales (fáciles de evaluar),

• definir una relación o fórmula recurrente,

• calcular los valores iniciales,

• hacer cálculos recurrentes hasta encontrar la solución

Para este problema :

C∗k(i) = costo mı́nimo de todas las rutas desde A hasta la

ciudad i ∈ Rk, k = 2, ..., n.

C∗n(Z) = ?

C∗2 (j) = c(A, j), j ∈ R2

C∗k+1(j) = min{C∗k(i) + c(i, j) : i ∈ Γ−(j)}, 2 ≤ k ≤ n− 1, j ∈ Rk+1

Un planteamiento ligeramente diferente podŕıa ser:
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C∗k(i) = costo mı́nimo de todas las rutas desde A hasta la

ciudad i ∈ Rk, k = 2, ..., n.

C∗n(Z) = ?

C∗1 (A) = 0

C∗k+1(j) = min{C∗k(i) + c(i, j) : i ∈ Γ−(j)}, 1 ≤ k ≤ n− 1, j ∈ Rk+1

La diferencia está simplemente en el “sitio inicial”.

0.1.4 Resultados numéricos

Los valores iniciales se obtienen inmediatamente:

C∗2 (2) = cA2 = 4,

C∗2 (3) = cA3 = 5.

El proceso recurrente empieza realmente a partir de las ciudades de R3:

C∗3 (4) = min
i∈Γ−(4)

{C∗2 (i) + ci4},

= min{C∗2 (2) + c24},
= min{4 + 11},

C∗3 (4) = 15.

C∗3 (5) = min
i∈Γ−(5)

{C∗2 (i) + ci5},

= min{C∗2 (2) + c25, C
∗
2 (3) + c35},

= min{4 + 10, 5 + 12},
C∗3 (5) = 14.

C∗3 (6) = min
i∈Γ−(6)

{C∗2 (i) + ci6},

= min{C∗2 (2) + c26, C
∗
2 (3) + c36},

= min{4 + 9, 5 + 8},
C∗3 (6) = 13.
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En resumen para la región R3:

C∗3 (4) = 15,

C∗3 (5) = 14,

C∗3 (6) = 13.

Para la región R4:

C∗4 (7) = min
i∈Γ−(7)

{C∗3 (i) + ci7},

= min{C∗3 (4) + c47, C
∗
3 (5) + c57, C

∗
3 (6) + c67},

= min{15 + 1, 14 + 2, 13 + 6},
C∗4 (7) = 16.

C∗4 (8) = min
i∈Γ−(8)

{C∗3 (i) + ci8, }

= min{C∗3 (5) + c58, C
∗
3 (6) + c68},

= min{14 + 3, 13 + 4},
C∗4 (8) = 17.

En resumen para la región R4:

C∗4 (7) = 16,

C∗4 (8) = 17.

Finalmente para Z en R5:

C∗5 (Z) = min
i∈Γ−(Z)

{C∗4 (i) + ciZ},

= min{C∗4 (7) + c7Z , C
∗
4 (8) + c8Z},

= min{16 + 5, 17 + 8},
C∗5 (Z) = 21.

Ya se obtuvo el costo mı́nimo, pero es necesario conocer también las ciudades
por donde debe pasar una autopista de costo mı́nimo. Con la información que
se tiene no se puede reconstruir la mejor ruta. Entonces es necesario volver a
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resolver el problema, pero esta vez es necesario, para cada ciudad intermedia
j, no solo conocer C∗k(j), sino también saber desde que ciudad i∗ de la región
Rk−1 se obtiene este costo mı́nimo.

Obviamente

C∗2 (2) = 4, i∗ = A,

C∗2 (3) = 5, i∗ = A.

C∗3 (4) se obtiene viniendo de la única ciudad predecesora: 2.

C∗3 (4) = 15, i∗ = 2.

C∗3 (5) = min{C∗2 (2) + c25, C
∗
2 (3) + c35},

= min{4 + 10, 5 + 12},
C∗3 (5) = 14, i∗ = 2.

Para C∗3 (7) hay empate ya que se obtiene el costo mı́nimo viniendo de 2 o
viniendo de 3, sin embargo basta con tener información sobre una de las mejores
ciudades precedentes, por ejemplo, la primera encontrada.

C∗3 (6) = min{C∗2 (2) + c26, C
∗
2 (3) + c36},

= min{4 + 9, 5 + 8},
C∗3 (6) = 13, i∗ = 2.

Toda la información necesaria para poder calcular el costo mı́nimo desde A
hasta Z y poder reconstruir una ruta mı́nima es:

j C∗2 (j) i∗ j C∗3 (j) i∗ j C∗4 (j) i∗ j C∗5 (j) i∗

2 4 A 4 15 2 7 16 4 Z 21 7
3 5 A 5 14 2 8 17 5

6 13 2

Luego según la tabla, el costo mı́nimo es 21. Además a Z se llega proveniente
de 7, a 7 se llega proveniente de 4, a 4 se llega proveniente de 2, y finalmente a
2 se llega proveniente de A. Entonces la autopista de costo mı́nimo (o una de
las autopistas de costo mı́nimo) es: (A, 2, 4, 7, Z)
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0.1.5 Solución hacia atrás

La solución presentada en los dos numerales anteriores se conoce como la solución
hacia adelante. También se tiene una solución análoga hacia atrás. Se busca
el costo mı́nimo desde cada ciudad hasta Z empezando con el costo desde las
ciudades en la región Rn−1.

C∗k(i) = costo mı́nimo de todas las rutas desde la ciudad i ∈ Rk

hasta Z, k = n− 1, n− 2, ..., 1.

Objetivo final:

C∗1 (A) = ?

Condiciones iniciales:

C∗n−1(j) = c(j, Z), j ∈ Rn−1.

Relación recurrente:

C∗k−1(i) = min
j∈Γ+(i)

{c(i, j) + C∗k(j)}, n− 1 ≥ k ≥ 2, i ∈ Rk−1.

Obviamente

C∗4 (7) = 5, j∗ = Z,

C∗4 (8) = 8, j∗ = Z.

C∗3 (4) = min
j∈Γ+(4)

{c(4, j) + C∗4 (j)},

= min{c(4, 7) + C∗4 (7)},
= min{1 + 5},

C∗3 (4) = 6, j∗ = 7.

C∗3 (5) = min
j∈Γ+(5)

{c(5, j) + C∗4 (j)},

= min{c(5, 7) + C∗4 (7), c(5, 8) + C∗4 (8)},
= min{2 + 5, 3 + 8},

C∗3 (5) = 7, j∗ = 7.
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y aśı sucesivamente.

i C∗4 (i) j∗ i C∗3 (i) j∗ i C∗2 (i) j∗ i C∗1 (i) j∗

7 5 Z 4 6 7 2 17 4 A 21 2
8 8 Z 5 7 7 3 19 5

6 11 7

Luego según la tabla, el costo mı́nimo es 21. Además se llega desde A pasando
por 2, se llega desde 2 pasando por 4, se llega desde 4 pasando por 7, y finalmente
se llega desde 7 pasando por Z. Entonces la autopista de costo mı́nimo (o una
de las autopistas de costo mı́nimo) es: (A, 2, 4, 7, Z)

0.2 EL PROBLEMA DE ASIGNACIÓN DE
MÉDICOS

0.2.1 Enunciado del problema

(Adaptación de un ejemplo de Hillier y Lieberman). La OMS (Organización
Mundial de la Salud) tiene un equipo de m médicos especialistas en salud pública
y los desea repartir en n paises P1, P2, ..., Pn para que desarrollen campañas
educativas tendientes a disminuir la mortalidad infantil. De acuerdo con las
condiciones espećıficas de cada páıs, de la tasa de natalidad, de la mortalidad
antes de los dos años, del número de habitantes, la OMS posee evaluaciones
bastante precisas de los valores b(i, j) ≡ bij , i = 0, ...,m, j = 1, ..., n que indican
el beneficio de asignar i médicos al páıs Pj . Este beneficio bij indica (en cientos
de mil) la disminución en el número de niños muertos antes de los dos años de
vida, durante los próximos 5 años. Aśı por ejemplo, b23 = 6 indica que si se
asignan 2 médicos al páıs P3 se espera que en los próximos 5 años haya una
disminución de 600000 en el número de niños muertos antes de los dos años de
vida.

Los beneficios no son directamente proporcionales al número de médicos, es
decir, si b23 = 6 no se cumple necesariamente que b43 = 12.

Se supone además que no es obligatorio asignar médicos en cada uno de los
paises y también se supone que es posible asignar todos los médicos a un solo
páıs.

También se supone que al aumentar el número de médicos asignados a un páıs el
beneficio no disminuye. Pensando en un problema más general se podŕıa pensar
que cuando hay demasiadas personas asignadas a una labor, se obstruye el
adecuado funcionamiento y el resultado global podŕıa disminuir. Sin embargo
se puede suponer que bij indica el mayor beneficio obtenido en el páıs Pj al
asignar a los más i médicos.
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La OMS desea saber cuantos médicos debe asignar a cada páıs para maximizar
el beneficio total, o sea, para maximizar la disminución total en la mortalidad
infantil en los n paises.

0.2.2 Planteamiento del problema de optimización

Se necesita conocer el número de médicos que se asigna a cada páıs para maxi-
mizar el beneficio total, sin sobrepasar el número de médicos disponibles. Si xj
indica el número de médicos que se asignan al pais Pj , entonces el problema de
optimización es:

max

n∑
j=1

b(xj , j)

n∑
j=1

xj ≤ m,

0 ≤ xj ≤ m, j = 1, ..., n,

xj ∈ Z, j = 1, ..., n.

Este problema se puede resolver por la fuerza bruta construyendo todas las
combinaciones, verificando si cada combinación es factible (

∑n
j=1 xj ≤ m) y

escogiendo la mejor entre las factibles. De esta forma cada variable puede tomar
m+1 valores: 0, 1, 2, ..., m, o sea, es necesario estudiar (m+1)n combinaciones.
Es claro que para valores grandes de m y n el número de combinaciones puede
ser inmanejable.

0.2.3 Solución recurrente

Para asignar optimamente m médicos a los n paises hay que asignar una parte
de los médicos a los paises P1, P2, ..., Pn−1 y el resto al páıs Pn. Supongamos
que sabemos asignar óptimamente 0, 1, 2, 3, ...., m médicos a los paises P1, P2,
..., Pn−1. Entonces para asignar óptimamente m médicos a los n paises hay que
considerar m+ 1 posibilidades:

• 0 médicos a los paises P1,..., Pn−1 y m médicos a Pn

• 1 médico a los paises P1,..., Pn−1 y m− 1 médicos a Pn

• 2 médicos a los paises P1,..., Pn−1 y m− 2 médicos a Pn

...

• m médicos a los paises P1,..., Pn−1 y 0 médicos a Pn
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Al escoger la mejor combinación se tiene la solución del problema. Obviamente
para conocer las soluciones óptimas en los primeros n − 1 paises se requiere
conocer las soluciones óptimas en los primeros n− 2 paises y aśı sucesivamente.
O sea, primero se resuelve el problema de asignar óptimamente médicos al primer
páıs, con estos resultados se puede obtener la asignación óptima de médicos a
los 2 primeros paises, y aśı sucesivamente hasta obtener la solución global.

B∗k(i) = beneficio máximo obtenido al asignar i médicos

a los paises P1, P2, ..., Pk, k = 1, ..., n, i = 0, ...,m.

Objetivo final:

B∗n(m) = ?

Condiciones iniciales:

B∗1(i) = bi1, i = 0, ...,m.

Relación recurrente:

B∗k+1(i) = max
0≤j≤i

{B∗k(i− j) + bj,k+1}, k = 1, ..., n− 1, i = 0, ...,m.

Esta relación recurrente dice que la mejor manera de asignar i médicos a los
paises P1, P2, ..., Pk+1 es estudiando todas las posibilidades consistentes en
asignar j médicos al páıs Pk+1 y el resto, i− j, a los paises P1, P2, ..., Pk.

0.2.4 Resultados numéricos

Consideremos los siguientes datos: m = 5, n = 4 y los siguientes beneficios:

i bi1 bi2 bi3 bi4

0 0 0 0 0
1 2 2 1 4
2 4 3 4 5
3 6 4 7 6
4 8 8 9 7
5 10 12 11 8

Condiciones iniciales:
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B∗1(0) = 0, j∗ = 0,

B∗1(1) = 2, j∗ = 1,

B∗1(2) = 4, j∗ = 2,

B∗1(3) = 6, j∗ = 3,

B∗1(4) = 8, j∗ = 4,

B∗1(5) = 10, j∗ = 5.

B∗2(0) = max
0≤j≤0

{B∗1(0− j) + bj2},

= max{B∗1(0) + b02},
= max{0 + 0},

B∗2(0) = 0, j∗ = 0.

B∗2(1) = max
0≤j≤1

{B∗1(1− j) + bj2},

= max{B∗1(1) + b02, B
∗
1(0) + b12},

= max{2 + 0, 0 + 2},
B∗2(1) = 2, j∗ = 0.

B∗2(2) = max
0≤j≤2

{B∗1(2− j) + bj2},

= max{B∗1(2) + b02, B
∗
1(1) + b12, B

∗
1(0) + b22},

= max{4 + 0, 2 + 2, 0 + 3},
B∗2(2) = 4, j∗ = 0.

Para los dos primeros paises se tiene:

B∗2(0) = 0, j∗ = 0,

B∗2(1) = 2, j∗ = 0,

B∗2(2) = 4, j∗ = 0,

B∗2(3) = 6, j∗ = 0,

B∗2(4) = 8, j∗ = 0,

B∗2(5) = 12, j∗ = 5.
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Un ejemplo de un cálculo para los tres primeros paises es:

B∗3(4) = max
0≤j≤4

{B∗2(4− j) + bj3},

= max{B∗2(4) + b03, B
∗
2(3) + b13, B

∗
2(2) + b23,

B∗2(1) + b33, B
∗
2(0) + b43},

= max{8 + 0, 6 + 1, 4 + 4, 2 + 7, 0 + 9},
B∗3(4) = 9, j∗ = 3.

En la siguiente tabla están los resultados importantes:

i B∗1(i) j∗ B∗2(i) j∗ B∗3(i) j∗ B∗4(i) j∗

0 0 0 0 0 0 0
1 2 1 2 0 2 0
2 4 2 4 0 4 0
3 6 3 6 0 7 3
4 8 4 8 0 9 3
5 10 5 12 5 12 0 13 1

Se observa que no es necesario calcular B∗4(0), B∗4(1), ..., B∗4(4), ya que no se
utilizan para calcular B∗4(5). El beneficio máximo es 13. Este beneficio máximo
se obtiene asignando 1 médico al cuarto páıs (j∗ = 1). Entonces quedan 4
médicos para los primeros 3 paises. El j∗ correspondiente a B∗3(4) es 3, esto
indica que hay que asignar 3 médicos al tercer páıs. Entonces queda 1 médico
para los primeros 2 paises. El j∗ correspondiente a B∗2(1) es 0, esto indica que
hay que asignar 0 médicos al segundo páıs. Entonces queda 1 médico para el
primer páıs.

x∗1 = 1,

x∗2 = 0,

x∗3 = 3,

x∗4 = 1,

B∗4(5) = 13.

0.2.5 Problema de asignación de médicos con cotas supe-
riores

El planteamiento de este problema es una generalización del anterior, la única
diferencia es que para cada páıs Pj hay una cota superior vj para el número
de médicos que se pueden asignar alĺı. Obviamente se debe cumplir que vj ≤
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m. Para garantizar lo anterior, basta con considerar una nueva cota v′j =
min{vj ,m}. Entonces los datos para este problema de médicos con cota superior
son:

• m número de médicos

• n número de paises

• v1, v2, ..., vn cotas superiores para el número de médicos en cada páıs

• para cada páıs Pj los valores de los beneficios bij ≡ b(i, j): b0j , b1j , ...,
bvjj

El planteamiento del problema de optimización es el siguiente: encontrar x1,
x2, ..., xn para maximizar el beneficio total con ciertas restricciones:

max

n∑
j=1

b(xj , j)

n∑
j=1

xj ≤ m

0 ≤ xj ≤ vj , j = 1, ..., n

xj ∈ Z, j = 1, ..., n

Antes de plantear la solución recurrente es necesario considerar lo siguiente: el
número de médicos que se asignan al conjunto de paises P1, P2, ..., Pk, no puede
ser superior a m y tampoco puede ser superior a la suma de sus cotas superiores.
Para esto se introducen unos nuevos valores

Vk = min{m,
k∑

j=1

vj}, k = 1, ..., n.

B∗k(i) = beneficio máximo obtenido al asignar i médicos

a los paises P1, P2, ..., Pk, k = 1, ..., n, i = 0, ..., Vk.

Objetivo final:

B∗n(m) = ?

Condiciones iniciales:
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B∗1(i) = bi1, i = 0, ..., V1.

Relación recurrente:

B∗k+1(i) = max{B∗k(i− j) + bj,k+1}, k = 1, ..., n− 1, i = 0, ..., Vk+1.

0≤ i−j≤Vk

i−j≤ i

0≤ j≤ vk+1

j≤ i

Los ĺımites para la variación de i− j y de j han sido presentados de la manera
más natural y más segura posible, pero obviamente hay algunas redundancias
y admiten simplificaciones.

max{i− Vk, 0} ≤ j ≤ min{i, vk}

Consideremos los siguientes datos: m = 5, n = 4, vj : 3, 4, 2, 3 y los siguientes
beneficios:

i bi1 bi2 bi3 bi4

0 0 0 0 0
1 2 2 1 4
2 4 3 4 5
3 6 4 7 6
4 8

Entonces

V1 = 3, V2 = 5, V3 = 5, V4 = 5.

Condiciones iniciales:

B∗1(0) = 0, j∗ = 0,

B∗1(1) = 2, j∗ = 1,

B∗1(2) = 4, j∗ = 2,

B∗1(3) = 6, j∗ = 3.

...

16



B∗2(2) = max
0≤j≤2

{B∗1(2− j) + bj2}

= max{B∗1(2) + b02, B
∗
1(1) + b12, B

∗
1(0) + b22}

= max{4 + 0, 2 + 2, 0 + 3}
B∗2(2) =4, j∗ = 0.

...

B∗2(5) = max
2≤j≤4

{B∗1(5− j) + bj2}

= max{B∗1(3) + b22, B
∗
1(2) + b32, B

∗
1(1) + b42}

= max{6 + 3, 4 + 4, 2 + 8}
B∗2(5) =10, j∗ = 4.

...

i B∗1(i) j∗ B∗2(i) j∗ B∗3(i) j∗ B∗4(i) j∗

0 0 0 0 0 0 0
1 2 1 2 0 2 0
2 4 2 4 0 4 0
3 6 3 6 0 6 0
4 8 1 8 0
5 10 4 10 0 12 1

El beneficio máximo es 12. Este beneficio máximo se obtiene asignando 1 médico
al cuarto páıs (j∗ = 1). Entonces quedan 4 médicos para los primeros 3 paises.
El j∗ correspondiente a B∗3(4) es 0, esto indica que hay que asignar 0 médicos al
tercer páıs. Entonces quedan 4 médicos para los primeros 2 paises. El j∗ corres-
pondiente a B∗2(4) es 1, esto indica que hay que asignar 1 médico al segundo
páıs. Entonces quedan 3 médicos para el primer páıs.

x∗1 = 3

x∗2 = 1

x∗3 = 0

x∗4 = 1

B∗4(5) = 12
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0.2.6 Problema de asignación de médicos con cotas infe-
riores y superiores

El planteamiento de este problema es una generalización del anterior, ahora para
cada páıs Pj hay una cota inferior uj y una cota superior vj para el número de
médicos que se pueden asignar alĺı. Obviamente se debe cumplir que 0 ≤ uj <
vj ≤ m.

Los datos para este problema son:

• m número de médicos,

• n número de paises,

• u1, ..., un cotas inferiores para el número de médicos,

• v1, ..., vn cotas superiores para el número de médicos,

• para cada páıs Pj los valores de los beneficios bij ≡ b(i, j): bujj , buj+1,j ,
..., bvjj .

Para que no haya información redundante, los datos deben cumplir la sigu-
iente propiedad: la cota superior para el número de médicos en el páıs Pj debe
permitir asignar el número mı́nimo de médicos en los otros paises, es decir:

vj ≤ m−
n∑

i=1
i 6=j

ui.

En caso contrario

v′j = min{vj ,m−
n∑

i=1
i 6=j

ui}.

El problema tiene solución si y solamente si el número total de médicos disponibles
alcanza para cumplir con las cotas inferiores:

n∑
j=1

uj ≤ m.

El planteamiento del problema de optimización es el siguiente: encontrar x1,
x2, ..., xn para maximizar el beneficio total con ciertas restricciones:
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max

n∑
j=1

b(xj , j)

n∑
j=1

xj ≤ m,

uj ≤ xj ≤ vj , j = 1, ..., n,

xj ∈ Z, j = 1, ..., n.

Antes de plantear la solución recurrente es necesario considerar lo siguiente:
el número de médicos que se asignan al conjunto de paises P1, P2, ..., Pk, no
puede ser inferior a la suma de sus cotas inferiores. Por otro lado, no puede ser
superior a m, tampoco puede ser superior a la suma de sus cotas superiores y
debe permitir satisfacer las cotas mı́nimas para el resto de paises, es decir, para
los paises Pk+1, Pk+2, ..., Pn. Para esto se introducen unos nuevos valores

Uk =

k∑
j=1

uj , k = 1, ..., n

Vk = min{m,
k∑

j=1

vj , m−
n∑

j=k+1

uj}, k = 1, ..., n

Vk = min{
k∑

j=1

vj , m−
n∑

j=k+1

uj}

Aqúı se sobreentiende que el valor de una sumatoria es cero, cuando el ĺımite
inferior es más grande que el ĺımite superior, por ejemplo,

2∑
i=4

ai = 0.

B∗k(i) = beneficio máximo obtenido al asignar i médicos

a los paises P1, P2, ..., Pk, k = 1, ..., n, i = Uk, ..., Vk.

Objetivo final:

B∗n(m) = ?

Condiciones iniciales:
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B∗1(i) = bi1, i = U1, ..., V1.

Relación recurrente:

B∗k+1(i) = max{B∗k(i− j) + bj,k+1}, k = 1, ..., n− 1, i = Uk+1, ..., Vk+1.

Uk ≤ i−j≤Vk

i−j≤ i

uk+1≤ j≤vk+1

j≤ i

En resumen, la variación de j en la relación recurrente está dada por:

max{i− Vk, uk+1} ≤ j ≤ min{i− Uk, vk+1}.

Consideremos los siguientes datos: m = 5, n = 4, uj : 0, 0, 1, 2 , vj : 3, 4, 2, 3
y los siguientes beneficios:

i bi1 bi2 bi3 bi4

0 0 0
1 2 2 1
2 4 3 4 5
3 6 4 6
4 8

Si se considera el segundo páıs, para los demás paises en total se necesitan por
lo menos 0+1+2=3 médicos, luego en el segundo páıs no se pueden asignar más
de 5 − 3 = 2 médicos, entonces los valores b32 = 4 y b42 = 8 nunca se van a
utilizar. En realidad los datos con los cuales se va a trabajar son:

uj : 0, 0, 1, 2, vj : 2, 2, 2, 3.

i bi1 bi2 bi3 bi4

0 0 0
1 2 2 1
2 4 3 4 5
3 6
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U1 = 0, V1 = min{2, 5− 3} = 2,

U2 = 0, V2 = min{4, 5− 3} = 2,

U3 = 1, V3 = min{6, 5− 2} = 3,

U4 = 3, V4 = min{9, 5− 0} = 5.

Condiciones iniciales:

B∗1(0) = 0, j∗ = 0,

B∗1(1) = 2, j∗ = 1,

B∗1(2) = 4, j∗ = 2.

B∗2(1) = max
0≤j≤1

{B∗1(1− j) + bj2}

= max{B∗1(1) + b02, B
∗
1(0) + b12}

= max{2 + 0, 0 + 2}
B∗2(1) = 2, j∗ = 0.

...

B∗3(3) = max
1≤j≤2

{B∗2(3− j) + bj3}

= max{B∗2(2) + b13, B
∗
2(1) + b23}

= max{4 + 1, 2 + 4}
B∗3(3) = 6, j∗ = 2.

...

i B∗1(i) j∗ B∗2(i) j∗ B∗3(i) j∗ B∗4(i) j∗

0 0 0 0 0
1 2 1 2 0 1 1
2 4 2 4 0 4 2
3 6 2
4
5 11 2
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El beneficio máximo es 11. Este beneficio máximo se obtiene asignando 2
médicos al cuarto páıs (j∗ = 2). Entonces quedan 3 médicos para los primeros
3 paises. El j∗ correspondiente a B∗3(3) es 2, esto indica que hay que asignar 2
médicos al tercer páıs. Entonces queda 1 médico para los primeros 2 paises. El
j∗ correspondiente a B∗2(1) es 0, esto indica que hay que asignar 0 médicos al
segundo páıs. Entonces queda 1 médico para el primer páıs.

x∗1 = 1,

x∗2 = 0,

x∗3 = 2,

x∗4 = 2,

B∗4(5) = 11.

El problema anterior también se puede resolver como un problema con cotas
superiores (sin cotas inferiores) considerando unicamente los datos por encima
de lo exigido por las cotas mı́nimimas, es decir, de los m médicos disponibles en
realidad hay únicamente

m′ = m−
n∑

i=1

ui

médicos para distribuir, pues de todas formas hay que asignar
∑n

i=1 ui para
satisfacer las cotas mı́nimas.

La cota máxima para el número de médicos adicionales en el páıs Pj es natu-
ralmente

v′j = vj − uj , j = 1, ..., n.

De manera análoga se puede pensar en un beneficio b′ij correspondiente al ben-
eficio adicional al asignar i médicos, por encima de de la cota mı́nima uj en el
páıs Pj

b′ij = b(i+ uj , j)− b(uj , j), 1 ≤ j ≤ n, 0 ≤ i ≤ v′j .

Al aplicar estos cambios a los datos del problema se tiene:

m′ = 5− 3 = 2, n = 4, v′j : 2, 2, 1, 1.

i b′i1 b′i2 b′i3 b′i4
0 0 0 0 0
1 2 2 3 1
2 4 3
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La solución de este problema modificado es:

x∗
′

1 = 1,

x∗
′

2 = 0,

x∗
′

3 = 1,

x∗
′

4 = 0,

B∗
′

4 (2) = 5.

Entonces

x∗1 = 1 + u1 = 1 + 0 = 1,

x∗2 = 0 + u2 = 0 + 0 = 0,

x∗3 = 1 + u3 = 1 + 1 = 2,

x∗4 = 0 + u4 = 0 + 2 = 2,

B∗4(5) = 5 +

n∑
i=1

b(ui, i) = 5 + 6 = 11.

Como observación final sobre estos datos numéricos, se puede ver que para
cada uno de los tres problemas hay varias soluciones, en particular para este
último problema hay otra solución:

x∗1 = 0,

x∗2 = 1,

x∗3 = 2,

x∗4 = 2,

B∗4(5) = 11.

0.3 EL PROBLEMA DEL MORRAL
(KNAPSACK)

0.3.1 Enunciado del problema

Un montañista está planeando una excursión muy especial. Evaluando la ca-
pacidad de su morral, la dificultad de la excursión, algunos implementos indis-
pensables y sus fuerzas, cree que tiene en su morral una capacidad de C ∈ Z
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kilos (u otra unidad de peso, o de manera más precisa, de masa) disponibles
para alimentos. De acuerdo con su experiencia, sus necesidades y sus gustos ha
escogido n tipos de alimentos A1, A2, ..., An, todos más o menos equilibrados.
Estos alimentos vienen en paquetes indivisibles (por ejemplo en lata) y pi ∈ Z
indica el peso de cada paquete del alimento Ai. Teniendo en cuenta la com-
posición de cada alimento, las caloŕıas, las vitaminas, los minerales, el sabor, el
contenido de agua, etc., el montañista asignó a cada paquete del alimento Ai

un beneficio global bi.

El montañista desea saber la cantidad de paquetes de cada alimento que debe
llevar en su morral, de tal manera que maximice su beneficio, sin sobrepasar la
capacidad destinada para alimentos.

En este problema se supone que no es obligación llevar paquetes de cada uno
de los alimentos. También se supone que no hay cotas inferiores ni superiores
para el número de paquetes de cada alimento.

Tal vez ningún montañista ha tratado de resolver este problema para organizar
su morral, seguramente ni siquiera ha tratado de plantearlo. Lo que si es cierto es
que hay muchos problemas, de gran tamaño y de mucha importancia, que tienen
una estructura análoga. Hay libros y muchos art́ıculos sobre este problema.

0.3.2 Planteamiento del problema de optimización

Si xj indica el número de paquetes del alimento Aj que el montañista debe llevar
en su morral, entonces se debe maximizar el beneficio, bajo ciertas restricciones:

max

n∑
j=1

bjxj

n∑
j=1

pjxj ≤ C.

xj ∈ Z, j = 1, ..., n.

Este problema se puede resolver por la fuerza bruta construyendo todas las
combinaciones, haciendo variar xj entre 0 y bC/pjc, verificando si cada combi-
nación es factible (

∑n
j=1 pjxj ≤ C) y escogiendo la mejor entre las factibles. El

significado de b t c es simplemente la parte entera inferior, o parte entera usual,
es decir, el mayor entero menor o igual a t. Es claro que para valores grandes
de n el número de combinaciones puede ser inmanejable.

La función objetivo (la función que hay que maximizar) es lineal, la restricción
también es lineal, las variables deben ser enteras y se puede suponer que los
coeficientes bj y pj también son enteros. Entonces este problema también se
puede resolver por métodos de programación entera (programación lineal con
variables enteras).
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0.3.3 Solución recurrente

Para conocer optimamente el número de paquetes de cada uno de los n ali-
mentos, se divide el morral con capacidad i = C en dos “submorrales”, uno
con capacidad j utilizado únicamente para el alimento An y otro submorral con
capacidad i − j utilizado para los alimentos A1, A2,, ..., An−1. Si se conoce
la solución optima de un morral con capacidad c = 0, ..., C para los alimen-
tos A1, A2,, ..., An−1 entonces basta con estudiar todas las posibilidades de
variación de j y escoger la mejor para obtener la respuesta global. Las posibles
combinaciones son:

• C kilos para A1,...,An−1, 0 kilos para An

• C − 1 kilos para A1,...,An−1, 1 kilo para An

...

• 0 kilos para A1,...,An−1, C kilos para An

El razonamiento anterior se puede aplicar para los primeros n−1 alimentos con
un morral de i kilos de capacidad, y aśı sucesivamente. Precisando más:

B∗k(i) = beneficio máximo utilizando los primeros k alimentos en un

morral con capacidad de i kilos, 1 ≤ k ≤ n, 0 ≤ i ≤ C.

Objetivo final:

B∗n(C) = ?

Condiciones iniciales:

B∗1(i) = b1

⌊
i

p1

⌋
, 0 ≤ i ≤ C

Relación recurrente:

B∗k+1(i) = max
0≤j≤i

{
B∗k(i− j) + bk+1

⌊
j

pk+1

⌋}
, 1 ≤ k ≤ n− 1, 0 ≤ i ≤ C.

Esta relación recurrente dice que la mejor manera de conocer el número de
paquetes de los alimentos A1, A2, ..., Ak+1 en un morral con una capacidad de
i kilos es estudiando todas las posibilidades consistentes en dejar j kilos para el
alimento Ak+1 y el resto, i− j kilos, para los alimentos A1, A2, ..., Ak.
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0.3.4 Resultados numéricos

Consideremos los siguientes datos: C = 11, n = 4, pi : 4, 3, 2, 5, bi :
14, 10, 6, 17.8.

B∗1(0) = 0, j∗ = 0,

B∗1(1) = 0, j∗ = 1,

B∗1(2) = 0, j∗ = 2,

B∗1(3) = 0, j∗ = 3,

B∗1(4) = 14, j∗ = 4,

B∗1(5) = 14, j∗ = 5,

B∗1(6) = 14, j∗ = 6,

B∗1(7) = 14, j∗ = 7,

B∗1(8) = 28, j∗ = 8,

B∗1(9) = 28, j∗ = 9,

B∗1(10) = 28, j∗ = 10,

B∗1(11) = 28, j∗ = 11.

...

B∗2(3) = max
1≤j≤3

{
B∗1(3− j) + b2

⌊
j

p2

⌋}
,

= max
1≤j≤3

{
B∗1(3− j) + 10

⌊
j

3

⌋}
,

= max{0 + 0, 0 + 0, 0 + 0, 0 + 10},
B∗2(3) = 10, j∗ = 3.

En la tabla está el resumen de los resultados. El beneficio máximo es 38. Este
beneficio máximo se obtiene asignando 0 kilos al cuarto alimento (j∗ = 0).
Entonces quedan 11 kilos para los primeros 3 alimentos. El j∗ correspondiente a
B∗3(11) es 0, esto indica que hay que asignar 0 kilos al tercer alimento. Entonces
quedan 11 kilos para los primeros 2 alimentos. El j∗ correspondiente a B∗2(11) es
3, esto indica que hay que asignar 3 kilos al segundo alimento, o sea, 1 paquete
del segundo alimento. Entonces quedan 8 kilos para el primer alimento, o sea,
2 paquetes.
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i B∗1(i) j∗ B∗2(i) j∗ B∗3(i) j∗ B∗4(i) j∗

0 0 0 0 0 0 0
1 0 1 0 0 0 0
2 0 2 0 0 6 2
3 0 3 10 3 10 0
4 14 4 14 0 14 0
5 14 5 14 0 16 2
6 14 6 20 6 20 0
7 14 7 24 3 24 0
8 28 8 28 0 28 0
9 28 9 30 9 30 0
10 28 10 34 6 34 0
11 28 11 38 3 38 0 38 0

x∗1 = 2,

x∗2 = 1,

x∗3 = 0,

x∗4 = 0,

B∗4(11) = 38.

Uno podŕıa pensar que una manera simple de resolver este problema es buscar
el alimento con mayor beneficio por kilo, y asignar la mayor cantidad posible de
este alimento. Para los datos anteriores los beneficios por kilo son: 3.5, 3.33, 3
y 3.56 . Entonces se debeŕıan llevar dos paquetes del cuarto alimento para un
beneficio de 35.6 . Es claro que esta no es la mejor solución.

El problema del morral se puede convertir en uno análogo al problema de los
médicos, introduciendo bij el beneficio obtenido con i kilos dedicados al alimento
Aj

bij = bj

⌊
i

pj

⌋
Para los datos anteriores se tendŕıa la tabla
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i bi1 bi2 bi3 bi4

0 0 0 0 0
1 0 0 0 0
2 0 0 6 0
3 0 10 6 0
4 14 10 12 0
5 14 10 12 17.8
6 14 20 18 17.8
7 14 20 18 17.8
8 28 20 24 17.8
9 28 30 24 17.8
10 28 30 30 35.6
11 28 30 30 35.6

y la solución óptima

x∗
′

1 = 8,

x∗
′

2 = 3,

x∗
′

3 = 0,

x∗
′

4 = 0,

B∗4(11) = 38.

Es conveniente recordar que x′i indica el número de kilos dedicados al producto
i, luego x1 = 2, x2 = 1, x3 = 0, x4 = 0, B∗4(11) = 38.

Este paso por el problema de los médicos, presenta un inconveniente cuando C
tiene un valor grande: es necesario construir una tabla muy grande de datos
(los beneficios), cuando en realidad el conjunto de datos es pequeño: n, C, los
pi, los bi.

El problema del morral también se puede generalizar al caso con cotas inferiores
y superiores para el número de paquetes de cada alimento.

0.4 PROBLEMA DE UN SISTEMA
ELÉCTRICO

0.4.1 Enunciado del problema

Un sistema eléctrico está compuesto por n partes. Para que el sistema funcione
se requiere que cada parte funcione. En cada parte hay que colocar por lo
menos una unidad, pero se pueden colocar varias unidades para aumentar la
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probabilidad de que esa parte funcione. La probabilidad de que todo el sistema
funcione es igual al producto de las probabilidades de que cada parte funcione.
Los datos del problema son:

• n : número de partes

• vi : número máximo de unidades que se pueden colocar en la parte i,
1 ≤ i ≤ n

• pij ≡ p(i, j) : probabilidad de que la parte i funcione si se colocan j
unidades, 1 ≤ i ≤ n, 1 ≤ j ≤ vi

• cij ≡ c(i, j) : costo de colocar j unidades en la parte i del sistema, 1 ≤
i ≤ n, 1 ≤ j ≤ vi

• C ∈ Z : cantidad disponible para la construcción del sistema eléctrico

Se desea conocer el número de unidades que hay que colocar en cada parte de
manera que se maximice la probabilidad de que todo el sistema funcione si se
dispone de un capital de C pesos para la fabricación.

Se supone, lo cual es totalmente acorde con la realidad, que pij , cij son crecientes
con respecto a j, es decir, si el número de unidades aumenta entonces ni el
costo ni la probabilidad pueden disminuir, o sea, pij ≤ pi,j+1, cij ≤ ci,j+1 para
1 ≤ j ≤ vi − 1. También se supone que 1 ≤ vi. Además el dinero disponible
C debe alcanzar para colocar en cada parte el número máximo de unidades
posible, o sea, c(i, vi) ≤ C Si esto no es aśı, se puede modificar el valor vi de la
siguiente manera:

v′i = ji donde c(i, ji) = max
1≤j≤vi

{cij | cij ≤ C}.

Además se debeŕıa cumplir

c(i, vi) ≤ C −
n∑

j=1
j 6=i

c(j, 1), ∀i.

El problema tiene solución si y solamente si

n∑
i=1

ci1 ≤ C

0.4.2 Planteamiento del problema de optimización

Sea xi el número de unidades colocadas en la parte i
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max f(x1, x2, ..., xn) =

n∏
i=1

p(i, xi)

n∑
i=1

c(i, xi) ≤ C,

1 ≤ xi ≤ vi, i = 1, ..., n,

xi ∈ Z, i = 1, ..., n.

Este problema se puede resolver con fuerza bruta, construyendo todas las posi-
bilidades realizables y escogiendo la que maximice la probabilidad de que todo
el sistema funcione.

0.4.3 Solución recurrente

La idea recurrente es la misma de los problemas anteriores, el problema se
puede resolver dinámicamente, considerando inicialmente las mejores poĺıticas
para la primera parte, luego para la primera y segunda partes, en seguida para
la primera, segunda y tercera partes y aśı sucesivamente hasta considerar todo
el sistema eléctrico.

La cantidad de dinero que se gasta en las primeras k partes tiene que ser su-
ficiente para colocar por lo menos una unidad en cada una de las primeras k
partes, además debe permitir que con el resto se pueda colocar por lo menos una
unidad en las restantes n− k partes y no debe ser superior a la cantidad nece-
saria para colocar el número máximo de unidades en cada una de las primeras
k partes. Entonces los ĺımites de variación serán:

Ck =

k∑
i=1

ci1 1 ≤ k ≤ n

Dk = min

{
k∑

i=1

c(i, vi), C −
n∑

i=k+1

ci1

}

P ∗k (t) = probabilidad máxima de que el subsistema formado por

las primeras k partes funcione, si se gastan t pesos

en su construcción, donde 1 ≤ k ≤ n, Ck ≤ t ≤ Dk.

Objetivo final:

P ∗n(C) = ?
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Condiciones iniciales:

P ∗1 (t) = max
1≤j≤v1

{p1j | c1j ≤ t}, C1 ≤ t ≤ D1

Relación recurrente: Si se dispone de t pesos para el subsistema formado por las
partes 1, 2, ...., k, k+1, entonces se puede disponer de s pesos para las primeras
k partes y el resto, t− s pesos, para la parte k+ 1. Haciendo variar s se escoge
la mejor posibilidad. Si Ck+1 ≤ t ≤ Dk+1 entonces la relación recurrente es:

P ∗k+1(t) = max{P ∗k (t− s)( max
1≤j≤vk+1

{pk+1,j | ck+1,j ≤ s})}.

0≤s≤t

0≤t−s≤t

Ck≤t−s≤Dk

c(k+1,1)≤s≤c(k+1,vk+1)

En esta fórmula resultan 4 cotas inferiores y 4 cotas superiores para s. Algunas
resultan redundantes. Sin embargo, ante la duda, es preferible escribir dos veces
la misma cosa, que olvidar alguna restricción importante. Entonces s vaŕıa entre
la mayor cota inferior y la menor cota superior.

El planteamiento puede resultar más claro si se define πit como la máxima prob-
abilidad de que la parte i funcione si se dispone de t pesos para su construcción,

π(i, t) = πit := max
1≤j≤vi

{pij | cij ≤ t}, 1 ≤ i ≤ n, c(i, 1) ≤ t ≤ c(i, vi).

Basados en esta función π, la condiciones iniciales y la relación de recurrencia
son:

P ∗1 (t) = π1t, C1 ≤ t ≤ D1,

P ∗k+1(t) = max{P ∗k (t− s)π(k + 1, s)}, Ck+1 ≤ t ≤ Dk+1.

t−Dk≤ s≤t−Ck

c(k+1,1)≤ s≤c(k+1,vk+1)

0.4.4 Resultados numéricos

Consideremos los siguientes datos: C = 10, n = 4, vi : 3, 3, 2, 3
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j → 1 2 3

p1j 0.4 0.6 0.8
p2j 0.5 0.6 0.7
p3j 0.7 0.8
p4j 0.4 0.6 0.8

j → 1 2 3

c1j 2 3 5
c2j 2 4 5
c3j 2 5
c4j 1 3 6

entonces:

C1 = 2, D1 = 5,

C2 = 4, D2 = 7,

C3 = 6, D3 = 9,

C4 = 7, D4 = 10.

Condiciones iniciales: con 2 pesos se puede colocar una unidad en la primera
parte y la probabilidad de que la primera parte funcione es 0.4, con 3 pesos se
pueden colocar dos unidades en la primera parte y la probabilidad de que esta
parte funcione es 0.6, con 4 pesos se pueden colocar únicamente dos unidades
en la primera parte y la probabilidad sigue siendo 0.6, con 5 pesos se pueden
colocar tres unidades en la primera parte y la probabilidad de que funcione la
primera parte pasa a ser 0.6.

P ∗1 (2) = π12 = 0.4, s∗ = 2,

P ∗1 (3) = π13 = 0.6, s∗ = 3,

P ∗1 (4) = π14 = 0.6, s∗ = 4,

P ∗1 (5) = π15 = 0.8, s∗ = 5.

...

Para el cálculo de P ∗2 (6) la variación de s está dada por 6 −D1 ≤ s ≤ 6 − C1,
c21 ≤ s ≤ c(2, v2), o sea, 6− 5 ≤ s ≤ 6− 2, 2 ≤ s ≤ 5,
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P ∗2 (6) = max
2≤s≤4

{P ∗1 (6− s)π2s}

= max{P ∗1 (4)π22, P
∗
1 (3)π23, P

∗
1 (2)π24}

= max{0.6× 0.5, 0.6× 0.5, 0.4× 0.6}
P ∗2 (6) = 0.3, s∗ = 2.

...

La tabla con el resumen de los reultados es la siguiente:

i P ∗1 (i) s∗ P ∗2 (i) s∗ P ∗3 (i) s∗ P ∗4 (i) s∗

2 .4 2
3 .6 3
4 .6 4 .2 2
5 .8 5 .3 2
6 .3 2 .14 2
7 .4 2 .21 2
8 .21 2
9 .28 2
10 .126 3

Con 10 pesos disponibles, la probabilidad máxima de que el sistema funcione es
0.126, asignando 3 pesos para la cuarta parte, o sea, con 2 unidades en la cuarta
parte. Quedan 7 pesos y el s∗ correspondiente a P ∗3 (7) es 2, luego con 2 pesos se
coloca una unidad en la tercera parte. Quedan 5 pesos y el s∗ correspondiente a
P ∗2 (5) es 2, luego con 2 pesos se coloca una unidad en la segunda parte. Quedan
3 pesos y el s∗ correspondiente a P ∗1 (5) es 3, luego con 3 pesos se colocan dos
unidades en la primera parte.

x∗1 = 2,

x∗2 = 1,

x∗3 = 1,

x∗4 = 2,

P ∗4 (10) = 0.126 .
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0.5 PROBLEMA DE MANTENIMIENTO Y
CAMBIO DE EQUIPO POR UNO NUEVO

0.5.1 Enunciado del problema

Hoy 31 de diciembre del año 0, el señor Tuta y su socio el señor Rodŕıguez,
propietarios de un bus de e0 años de edad, desean planificar su poĺıtica de
mantenimiento y compra de su equipo de trabajo, es decir de su bus, durante n
años. La decisión de seguir con el mismo equipo o comprar uno nuevo se toma
una vez al año, cada primero de enero. El señor Tuta tiene mucha experiencia
y puede evaluar de manera bastante precisa los siguientes valores.

• u : vida útil del equipo, en años,

• pi : precio de un equipo nuevo al empezar el año i, 1 ≤ i ≤ n,

• mij = m(i, j) : precio del mantenimiento durante el año i, desde el 2 de
enero hasta el 31 de diciembre, de un equipo que al empezar ese año (el 2
de enero), tiene j años de edad, 1 ≤ i ≤ n, 0 ≤ j ≤ u− 1,

• vij = v(i, j) : precio de venta, el 1 de enero del año i, de un equipo que
en esta fecha tiene j años de edad, 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ u.

La decisión de comprar un equipo nuevo o guardar el que se tiene, se toma y se
lleva a cabo el 1 de enero de cada año. Al final de los n años la compañ́ıa vende
el equipo que tenga.

0.5.2 Solución recurrente

Sea Ek el conjunto de valores correspondientes a la edad que puede tener el
equipo al finalizar el año k. Si e0 < u entonces la edad que puede tener el
equipo al finalizar el primer año es 1 (si se compra uno nuevo) o e0 + 1 (si se
continua con el mismo equipo durante el primer año), entonces E0 = {1, e0 +1}.
Si e0 = u entonces la edad del equipo al finalizar el primer año es necesariamente
1, luego E0 = {1}. De manera análoga, dependiendo de e0 las edades al finalizar
el segundo año pueden ser: E2 = {1, 2, e0 + 2} o E2 = {1, 2}. En general

E0 = {e0},
Ek+1 = { 1 } ∪ {j + 1 : j ∈ Ek, j < u}.

Sea
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C∗k(e) = costo mı́nimo de la poĺıtica de compra y mantenimiento del equipo
desde el 31 de diciembre del año 0 hasta el 31 de diciembre del año k, de
tal manera que el 31 de diciembre del año k el equipo tiene e años de edad,
1 ≤ k ≤ n, e ∈ Ek.

Si el 31 de diciembre del año n el equipo tiene e años entonces hay que vender
el 1 de enero del año n+ 1 a un precio v(n+ 1, e). Entonces se debe escoger la
mejor opción entre las posibles. O sea, el objetivo final es conocer el valor:

min
e∈En

{C∗n(e)− vn+1,e} = ?

Condiciones iniciales: Si al empezar el primer año se compra un bus nuevo,
bien sea porque e0 = u o bien sea porque se tomó esa decisión, se recupera el
dinero de la venta, se compra un bus nuevo y durante el primer año se gasta en
el mantenimiento de un bus con 0 años, aśı al final del primer año el bus tiene
1 año. Si no se compra bus entonces el único gasto es el manteniemiento de un
bus de e0 años, y al final del primer año el bus tiene e0 + 1 años.

C∗1 (e) =

{
m(1, e0) si e = e0 + 1,

−v(1, e0) + p1 +m1,0 si e = 1.

Relación de recurrencia: Si e indica la edad del bus al final del año k + 1,
entonces e = 1 o e toma otros valores en Ek+1. Si e > 1 entonces al costo de la
poĺıtica óptima de los primeros k años se le aumenta el costo del mantenimiento
de un bus con e − 1 años. Si e = 1 entonces al final del año k el bus pod́ıa
tener d años, luego para cada edad d se toma el valor C∗k(d), se le resta lo de la
venta, se le suma el valor de la compra y se le agrega el costo del mantemiento,
y finalmente se escoge el menor valor.

C∗k+1(e) =

{
min
d∈Ek

{C∗k(d)− vk+1,d}+ pk+1 +mk+1,0 si e = 1,

C∗k(e− 1) +mk+1,e−1 si e > 1.

k = 1, ..., n− 1, e ∈ Ek+1.

0.5.3 Resultados numéricos

Consideremos los siguientes datos: n = 4, u = 4, e0 = 2, pi : 10, 12, 14, 15.

i mi0 mi1 mi2 mi3

1 1 3 4 6
2 1 3 4 5
3 1 2 4 6
4 2 3 4 5
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i vi1 vi2 vi3 vi4

1 6 4 3 2
2 6 4 3 1
3 7 5 3 2
4 7 4 3 2
5 6 4 2 0

Entonces:

E1 = {1, 3},
E2 = {1, 2, 4},
E3 = {1, 2, 3},
E4 = {1, 2, 3, 4}.

Condiciones iniciales:

C∗1 (1) = −4 + 10 + 1 = 7,

C∗1 (3) = 4.

C∗2 (1) = min
d∈E1

{C∗1 (d)− v2d}+ p2 +m20

= min{C∗1 (1)− v21, C
∗
1 (3)− v23}+ p2 +m20

= min{7− 6, 4− 3}+ 12 + 1

C∗2 (1) = 14, d∗ = 1.

C∗2 (4) = C∗1 (3) +m23

= 4 + 5 = 9, d∗ = 3.

...

La tabla con el resumen de los reultados es la siguiente:

e C∗1 (e) s∗ C∗2 (e) s∗ C∗3 (e) s∗ C∗4 (e) s∗

1 7 2 14 1 20 2 28 3
2 10 1 16 1 23 1
3 4 2 14 2 20 2
4 9 3 19 3

36



Ahora es necesario encontrar min
e
{C∗4 (e) − v5e}, es decir, el mı́nimo de 28 − 6,

23 − 4, 20 − 2, 19 − 0. Este valor mı́nimo es 18 y se obtiene para e = 3. Si ek
indica la edad del bus al finalizar el año k, entonces e4 = 3, e3 = 2, e2 = 1. Al
mirar en la tabla, para C∗2 (1) se tiene que d∗ = 1, o sea, e1 = 1.

Si xk indica la decisión tomada al empezar el año k, con la convención

xk = 0 : se compra un bus nuevo,

xk = 1 : se mantiene el bus que se tiene,

entonces se puede decir que ek = 1 ⇒ xk = 0 y que ek > 1 ⇒ xk = 1.

x∗1 = 0,

x∗2 = 0,

x∗3 = 1,

x∗4 = 1.

0.6 PROBLEMA DE PRODUCCION Y
ALMACENAMIENTO

0.6.1 Enunciado del problema

Considere una compañ́ıa que fabrica un bien no perecedero. Esta compañ́ıa
estimó de manera bastante precisa las demandas d1, d2, . . ., dn de los n peŕıodos
siguientes. La producción en el peŕıodo i, denotada por pi, puede ser utilizada,
en parte para satisfacer la demanda di, o en parte puede ser almacenada para
satisfacer demandas posteriores. Para facilitar la comprensión del problema,
supóngase que la demanda de cada peŕıodo se satisface en los últimos dias del
peŕıodo. Sea xi el inventario al final del peŕıodo i − 1 despues de satisfacer la
demanda di−1, es decir, el inventario al empezar el peŕıodo i. El costo ci(xi, pi)
de almacenar xi unidades y producir pi unidades durante el peŕıodo i se supone
conocido. También se conoce x1 el inventario inicial y xn+1 el inventario deseado
al final de los n peŕıodos.

Se desea planear la producción y el almacenamiento de cada peŕıodo, de manera
que permitan cumplir con las demandas previstas y se minimice el costo total
de almacenamiento y producción.

Para facilitar el planteamiento se puede suponer que el inventario deseado al
final de los n periodos se puede incluir en la demanda del último periodo dn, o
sea, hacer dn ← dn + xn+1, xn+1 ← 0.
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0.6.2 Planteamiento del problema de optimización

Las variables de este problema son: x2, x3, ..., xn, p1, p2, ..., pn. Recordemos
que x1, xn+1 son datos del problema. Las variables están relacionadas por las
siguientes igualdades

x1 + p1 − d1 = x2

x2 + p2 − d2 = x1 + p1 − d1 + p2 − d2 = x3

x3 + p3 − d3 = x1 + p1 − d1 + p2 − d2 + p3 − d3 = x4

En general,

xi + pi − di =

i∑
j=1

pj −
i∑

j=1

dj + x1 = xi+1, i = 1, ..., n. (1)

Es claro que para i = n,

xn + pn − dn =

n∑
j=1

pj −
n∑

j=1

dj + x1 = 0. (2)

Sea

Di =

i∑
j=1

dj − x1, i = 1, ..., n, (3)

es decir, la demanda neta acumulada de los primeros i peŕıodos, descontando el
inventario inicial. En particular, toda la producción esta dada por

∑n
j=1 pj =

Dn. Entonces las igualdades que relacionan las variables son:

i−1∑
j=1

pj −Di−1 = xi, i = 2, ..., n, (4)

n∑
j=1

pj −Dn = 0. (5)

El problema de optimización es entonces:
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min

n∑
i=1

ci(xi, pi)

i−1∑
j=1

pj −Di−1 = xi, i = 2, . . . , n

n∑
j=1

pj −Dn = 0,

x2, . . . , xn, p1, . . . , pn ≥ 0,

x2, . . . , xn, p1, . . . , pn ∈ Z.

El problema se puede plantear únicamente con las variables p1, ..., pn−1. A
partir de (2) y (4) se tiene

−xn + dn = pn,

−
n−1∑
j=1

pj +Dn−1 + dn = pn,

Dn −
n−1∑
j=1

pj = pn.

La función objetivo se puede agrupar en tres partes:

min c1(x1, p1) +

n−1∑
i=2

ci(xi, pi) + cn(xn, pn)

Entonces el problema, expresado únicamente con las variables p1, ..., pn−1, es :
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min c1(x1, p1) +

n−1∑
i=2

ci
(i−1∑
j=1

pj −Di−1, pi
)

+ cn
(n−1∑
j=1

pj −Dn−1, Dn −
n−1∑
j=1

pj
)

i−1∑
j=1

pj −Di−1 ≥ 0, i = 2, ..., n,

Dn −
n−1∑
j=1

pj ≥ 0,

pi ≥ 0, pi ∈ Z, i = 1, ..., n− 1.

Para resolver este problema por la fuerza bruta, estudiando todas las posi-
bilidades, basta con considerar que el mayor valor de pi se tiene cuando esta
producción satisface por śı sola toda la demanda de los peŕıodos i, i + 1, ...,
n. En ese caso no habŕıa producción en los peŕıodos i + 1, ..., n. Dicho de
otra forma, la producción en el peŕıodo i no debe ser mayor que la demanda
acumulada de los peŕıodos i, ..., n.

Sea

Ei =

n∑
j=i

dj , i = 1, ..., n,

entonces los siguientes son ĺımites para la variación de las variables pi

0 ≤ pi ≤ Ei, i = 1, ..., n− 1

Obviamente los valores p1, ..., pn−1 deben cumplir las otras restricciones. Igual-
mente es claro que para las variables xi también se tiene la misma restricción, o
sea, ni el inventario al empezar el peŕıodo i, ni la producción durante el peŕıodo
i pueden ser superiores a Ei

De la definición de Di y Ei se deduce inmediatamente que

Di + Ei+1 = Dn, i = 1, ..., n− 1

0.6.3 Solución recurrente

Sea
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C∗k(q) = costo mı́nimo de producir en total q unidades durante

los primeros k peŕıodos tal manera que se satisfagan las

demandas de estos peŕıodos, 1 ≤ k ≤ n.

La producción acumulada de los primeros k peŕıodos debe ser suficiente para
satisfacer la demanda total de estos k peŕıodos (descontando x1) y no debe
sobrepasar la demanda total de los n peŕıodos, entonces en la definición de
C∗k(q) la variación de q está dada por

Dk ≤ q ≤ Dn.

Objetivo final:

C∗n(Dn) = ?

Condiciones iniciales:

C∗1 (q) = c1(x1, q), D1 ≤ q ≤ Dn.

Si en los primeros k+1 peŕıodos la producción es de q unidades y la producción
en el peŕıodo k + 1 es de y unidades, entonces la producción en los primeros
k peŕıodos es de q − y unidades y el inventario durante el peŕıodo k + 1 es
q − y −Dk.

Relación recurrente:

C∗k+1(q) = min{C∗k(q − y) + ck+1(q − y −Dk, y)},
0≤q−y≤q

Dk≤q−y≤Dn

0≤q−y−Dk≤Ek+1

0≤ y≤Ek+1

definida para k = 1, . . . , n− 1, Dk+1 ≤ q ≤ Dn.

De las anteriores cotas inferiores y superiores para y y para q − y se deduce
fácilmente que 0 ≤ y ≤ q −Dk. En resumen

C∗k+1(q) = min
0≤y≤q−Dk

{C∗k(q − y) + ck+1(q − y −Dk, y)}.
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0.6.4 Resultados numéricos

Consideremos los siguientes datos: n = 4, di = 2, 3, 2, 5, ci(xi, pi) = hxi+γipi,
h = 2, γi = 1, 4, 3, 6, x1 = 1, x5 = 0.

Entonces
D1 = 1, D2 = 4, D3 = 6, D4 = 11.

C∗1 (q) = c1(x1, q)

= 2x1 + 1q

= 2 + q, 1 ≤ q ≤ 11.

C∗2 (q) = min
0≤y≤q−1

{C∗1 (q − y) + c2(q − y−, y)}

= min
0≤y≤q−1

{2 + (q − y) + 2(q − y − 1) + 4y}

= min
0≤y≤q−1

{3q + y}, y∗ = 0

= 3q, 4 ≤ q ≤ 11.

C∗3 (q) = min
0≤y≤q−4

{C∗2 (q − y) + c3(q − y − 4, y)}

= min
0≤y≤q−4

{3(q − y) + 2(q − y − 4) + 3y}

= min
0≤y≤q−4

{5q − 2y − 8}, y∗ = q − 4

= 3q, 6 ≤ q ≤ 11.

C∗4 (11) = min
0≤y≤11−6

{C∗3 (11− y) + c4(11− y − 6, y)}

= min
0≤y≤5

{3(11− y) + 2(5− y) + 6y}

= min
0≤y≤5

{43 + y}, y∗ = 0

= 43.

La producción óptima en el cuarto peŕıodo es 0, luego la producción en los
tres primeros peŕıodos es 11. La producción óptima en el tercer peŕıodo es
q − 4 = 11 − 4 = 7, luego la producción en los dos primeros peŕıodos es 4. La
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producción óptima en el segundo peŕıodo es 0, entonces la producción óptima
para el primer peŕıodo es 4

p∗4 = 0,

p∗3 = 7,

p∗2 = 0,

p∗1 = 4,

C∗4 (11) = 43.
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EJERCICIOS

12.1 Una corporación tiene n plantas de producción, P1, P2, ..., Pn. De cada
una de ellas recibe propuestas para una posible expansión de las instala-
ciones. La corporación tiene un presupuesto de D billones de pesos para
asignarlo a las n plantas. El gerente de la planta Pj env́ıa mj propues-
tas, indicando cij el costo de su propuesta i-ésima, 1 ≤ i ≤ mj , y gij la
ganancia adicional total acumulada al cabo de 10 años, descontando la
inversión. Obviamente en cada planta se lleva a cabo una sola propuesta.
Una propuesta válida para cada una de las plantas consiste en no inver-
tir en expansión, siendo su costo y ganancia nulos. Más aún, se podŕıa
pensar que en este caso la ganancia podŕıa ser negativa. El gerente de
cada planta envió las propuestas ordenadas por costo en orden creciente
es decir, cij ≤ ci+1,j , i = 1, ...,mj − 1. Se supone que a mayor costo,
también mayor ganancia.

Plantee el problema de optimización. Resuelva el problema por PD: defina
una función que permita la recurrencia, dé las condiciones iniciales, la
relación de recurrencia.

Resuelva el problema para los siguientes valores numéricos: n = 3, D = 5,

Planta 1 Planta 2 Planta 3
ci1 gi1 ci2 gi2 ci3 gi3

Prop. 1 0 0 0 0 0 0
Prop. 2 2 8 1 5 1 3
Prop. 3 3 9 2 6
Prop. 4 4 12

12.2 El proceso de manufactura de un bien perecedero es tal que el costo de
cambiar el nivel de producción de un mes al siguiente es $a veces el
cuadrado de la diferencia de los niveles de producción. Cualquier cantidad
del producto que no se haya vendido al final del mes se desperdicia con
un costo de $b por unidad. Si se conoce el pronóstico de ventas d1 , d2 ,
. . ., dn para los próximos n meses y se sabe que en el último mes (el mes
pasado) la producción fue de x0 unidades.

Plantee el problema de optimización. Resuelva el problema por PD: defina
una función que permita la recurrencia, dé las condiciones iniciales, la
relación de recurrencia.

Resuelva el problema para los siguientes valores numéricos: n = 4, a = 1,
b = 2, di = 42, 44, 39,36, x0 = 40 .

12.3 Considere el problema del morral con cotas inferiores y superiores con los
siguientes datos: C = capacidad en kilos del morral (entero posotivo); n
número de alimentos; p1, p2, ..., pn, donde pi es un entero positivo que
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indica el peso, en kilos, de un paquete del alimento i; b1, b2, ..., bn, donde
bi indica el beneficio de un paquete del alimento i; u1, u2, ..., un, donde
ui es un entero no negativo que indica el número mı́nimo de paquetes del
alimento i que el montañista debe llevar; v1, v2, ..., vn, donde vi es un
entero que indica el número máximo de paquetes del alimento i que el
montañista debe llevar. Los datos cumplen con la condición ui < vi ∀i.
Plantee el problema de optimización. Resuelva el problema por PD: defina
una función que permita la recurrencia, dé las condiciones iniciales, la
relación de recurrencia.

12.4 A partir del lunes próximo usted tiene n exámenes finales y m ≥ n d́ıas
para prepararlos. Teniendo en cuenta el tamaño y la dificultad del tema
usted a evaluado cij la posible nota o calificación que usted obtendŕıa si
dedica i d́ıas para estudiar la materia j. Usted ha estudiado regularmente
durante todo el semestre y en todas sus materias tiene buenas notas de
tal forma que aún obteniendo malas notas en los exámenes finales usted
aprobará todas las materias. En consecuencia su único interés es obtener
el mejor promedio posible. De todas maneras piensa dedicar por lo menos
un d́ıa para cada materia.

Plantee el problema de optimización. Resuelva el problema por PD: defina
una función que permita la recurrencia, dé las condiciones iniciales, la
relación de recurrencia.

Resuelva el problema para los siguientes valores numéricos: n = 4 mate-
rias, m = 7 d́ıas,

c0j 10 10 05 05
c1j 20 15 35 10
c2j 23 25 30 20
c3j 25 30 40 35
c4j 40 35 42 40
c5j 45 40 45 45
c6j 48 48 45 48
c7j 50 48 48 50

12.5 Una empresa agŕıcola tiene actualmente x0 empleados y conoce de manera
bastante precisa las necesidades de mano de obra para las siguientes n
semanas de cosecha, es decir, conoce los valores ei, i = 1, ..., n, donde
ei es el número de empleados necesarios durante la semana i. También
conoce: ci(j) el precio de contratar j empleados nuevos al empezar la
semana i, i = 1, ..., n; di(j) el costo de despedir j empleados al finalizar
la semana i, i = 0, ..., n; y mi(j) el costo de mantener sin trabajo (pero
con sueldo) j empleados durante la semana i, i = 1, ..., n. Después de las
n semanas de cosecha, la empresa únicamente necesita en+1, un número
pequeño de empleados que se quedan trabajando por varias semanas. La
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empresa desea saber cuantos empleados debe tener durante cada una de
las n semanas.

Plantee el problema de optimización. Resuelva el problema por PD: defina
una función que permita la recurrencia, dé las condiciones iniciales, la
relación de recurrencia.

Resuelva el problema para los siguientes valores numéricos: n = 4, x0 =
10, ei = 30, 45, 40, 25, en+1 = 5, ci(j) = 10 + 3j, di(j) = 6j, mi(j) = 8j.

12.6 Un zoocriadero de chigüiros tiene actualmente x0 animales y tiene capaci-
dad para una gran cantidad de ellos. En un año el número de chiguiros se
multiplica por a > 1. Al principio de cada año (del año i) el gerente toma
la decisión de vender algunos chigüiros al precio unitario pi, i = 1, ..., n+1.
Después de n años se venden todos los chigüiros. El gerente desea saber
cuantos chigüiros debe vender al comienzo de cada uno de los n años.

Plantee el problema de optimización. Resuelva el problema por PD: defina
una función que permita la recurrencia, dé las condiciones iniciales, la
relación de recurrencia.

Resuelva el problema para los siguientes valores numéricos: n = 4, x0 = 5,
a = 3, pi = 50, 10, 60, 25, 45.

12.7 Resuelva por PD el siguiente problema de optimización:

min f(x1, x2) = (x1 − 3)2 + (x2 − 4)2 + (x1 − x2)2

Sugerencia. Fije una variable y halle la solución (en función de la variable
fija). Haga variar la variable que estaba fija.

12.8 Resuelva por PD el siguiente problema de PL:

max z = x1 + 1.4x2

x1 + x2 ≤ 40

x1 + 2x2 ≤ 58

x ≥ 0.
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