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Notacion

P, es el conjunto de todos los polinomios de grado menor o igual a n.

R" = {(z1,22,...,2,) : z; € R,Vj}.

R™*™ = conjunto de matrices reales de tamano m x n. Si A € R"™*" entonces
a1 a2 ... Qin
A az1 a2 ... Qaz2p
Aml Am2 ... Qmn

a;j es la entrada (“elemento” o componente) de A en la fila ¢ y en la columna j.
R™*! = conjunto de matrices columna de n componentes.

RX™ = conjunto de matrices fila de n componentes.

Rlxl - R.

AT = la transpuesta de la matriz A.

R" := R™¥!, es decir,

1
T2
L= (:Ulva)' "7‘TTL) =
Tn
T
xr = [.%'1 Tro ... xn]
A= Ai,:) = [aﬂ aio ... am], fila i-ésima de la matriz A.
alj
. azj .. .
A;=A(;,j) = | .7 |, columna j-ésima de la matriz A.
amj

nf (A) = nimero de filas de la matriz A.

nc (A) = ntimero de columnas de la matriz A.

n
Izl =il
=1
- 1/2
lzll2 = (O _7)
=1

v



e = max|a

A;;, dependiendo del contexto, denota dos cosas diferentes:

e A;;, en la expresién de una matriz por bloques, es la matriz o bloque que estd en la i-ésima fila de
bloques y en la j-ésima columna de bloques.

e A;; esla submatriz de A obtenida al quitar de A la fila ¢ y la columna j.

R" = {(z1, 22, ...,2n) : ¥ > 0,Vi}, el ortante no negativo de R".

el = j-ésima columna de la matriz identidad.

C4 espacio columna de A, o espacio generado por las columnas de A.
F'4 espacio fila de A, o espacio generado por las filas de A.

B. es la base canénica de un espacio vectorial (cuando a una base se le ha dado ese nombre). Por ejemplo,
en R3, la base canénica es {(1,0,0), (0,1,0), (0,0,1)}.

p(A) = max{|\i|c: A\; es valor propio de A}, radio espectral de A.
|z] = max{n € Z: n < x}, parte entera o parte entera inferior o piso de =.
[x] = min{n € Z: n > x}, parte entera superior o techo de z.

espec(A) = espectro de A = conjunto de valores propios de A.
sssi = si y solamente si

En la escritura de numeros decimales, las cifras enteras estan separadas de las decimales por medio de
un punto, en lugar de una coma como es la convencién del espanol. No se utiliza el punto para separar
las unidades de mil de las centenas. Por ejemplo, en este documento se escribe 12345.67 en lugar de
12.345, 67.



Matrices

1.1 Definiciones iniciales

Una matriz real A de tamano m X n es un arreglo o tabla de nimeros reales, organizados en m filas
(lineas horizontales) y n columnas (lineas verticales) y encerrados o limitados por paréntesis rectangulares
grandes. Cada fila tiene exactamente n nimeros, y cada columna tiene m ntmeros. Estos nimeros se
llaman entradas de la matriz. Algunas veces también se habla de los elementos de la matriz, pero no
en el sentido de pertenecia a un conjunto.

El conjunto de todas la matrices reales m x n se denotard por R™*", También es usual denotarlo por
Mpmxn 0 por M(m,n).

La entrada de la matriz A en la fila ¢ y en columna j se denotara por a;;.

ail a2 - Qlp
s az1 G2 - A2y c R,
aAml Am2 - Omn
Ejemplo 1.1.
=3 no es una matriz
2/3 5 6 )
Ejemplo 1.2.

. —1 —32 T 2%3 o _
A= |:2/3 5 6:| eR s ao3 = 6, ajo = —3.2.

Una matriz fila es una matriz de una sola fila. Una matriz columna es una matriz de una sola
columna. El conjunto R es lo mismo que R.

Usualmente se utilizan la letras mayusculas A, B, C, ..., para denotar las matrices. También es frecuente
denotar las matrices columna o las matrices fila por letras minusculas y las entradas con un subindice
Unicamente.
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Dos matrices A y B del mismo tamano son iguales si y solamente si todas sus entradas son iguales,

ai; = b;; para todo ¢ y para todo j.

C™*™ es el comjunto de matrices complejas (entradas complejas) de m filas y n columnas. Mientras no
se diga lo contrario, todas las matrices son matrices reales.

Una matriz cuadrada tiene tantas filas como columnas. Para las matrices cuadradas, mientras no se
diga lo contrario, n indicard el nimero de filas (y de columnas).

Ejemplo 1.3.
-1 =32
A=12/3 5 6| €R3>*3 es cuadrada.
0 0 —1
En una matriz cuadrada las entradas diagonales son aq1, a9s, ..., Gpp.

La matriz nula o matriz cero es la matriz cuyas entradas son todas nulas. Se denotard por O,,xn, y Si
no hay ambigiiedad por 0 o simplemente por 0 (puede haber ambigiiedad entre la matriz 0 y el nimero
0).

0
03,2=0=0= |0
0

o O O

La fila i de una matriz se denotara por A;. o por A(i,:), notacién de Scilab y de Matlab. Andlogamente,
la columna j se denotard por A.; o por A(:, 7).

Ai = A(i,:) = [ain ap ain] € RV,
alj
agq

A=A ) =| | er™L
amj

Sea A € R™*™. Se usard la siguiente notacién para subfilas, subcolumnas y submatrices:

A(i,j k) = [aij aijy1 - QGp—1 k)
T
Ai41,5
A(i:p,j) =
Gp—1,5
L Apj
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Ejemplo 1.4.

1.1.1 En Scilab

Ai:p,j k) =

A(i:p,:)

A(3,2:4)=[13 14 15]

A5 5+1 Qg k-1
Ai+1,5+1 j1,k—1
Ap—1,j+1 ap—1,k—1

Ap,j+1 Ap k—1

ai2 Ain—1
ai41,2 Qi+1,n—1
ap—1,2 ap—1,n—1

ap2 Qpn—1
(2 3 4 5 6

7 8 9 10 11

12 13 14 15 16
8 9 10 11] e R'*

4

9| e R¥!

14

7 8 9 10 11

112 13 14 15 16

Ain
Qi41n

ap_]-7n

Gpn

5
)

En Scilab o en Matlab, la matriz del ejemplo anterior se puede definir por

A=
t = A(2,3)
f=A4(2,:)

c = A(:,3)

F = zeros(3,4)
[p, q] = size(d)
u = size(A,1)

v = size(4,2)

[ -1 -3.2 10; 2/3 5 6]
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1.2 Suma y multiplicacién por escalar

Definicion 1.1. Sean A y B dos matrices m X n y k un nimero real. Se define la suma de matrices
y la multiplicacién de una matriz por escalar asi

[a11+b11 arz+biz 0 amtbin
a1 +ba1  age+ba - ag, +boy
A+ B = ) . ) (1.1)
| Om1 + bt Gm2 +bm2 -+ Gmn + bin
_k‘an ka12 e k:aln
kasy  kass -+ kaop
KA= Ak = | 0 _ (1.2)
_kaml kama -+ kamn

De manera compacta se puede decir: si C'= A + B, entonces c¢;; = a;; + b;; para todo i, j; si D = kA,
entonces d;; = ka;; para todo 1, j.

Ejemplo 1.5.
2 -3 4 n 1 -1 0 |3 —4 4
5 6 -7 -2 0 =3| |3 6 -10
13 -4 41 [-3/2 2 =2
213 6 —-10| |[-3/2 -3 5

Sean A, B, C' matrices cualesquiera del mismo tamano, « y S nimeros reales. La suma y la multiplicacién
por escalar tienen las siguientes propiedades:

A+B=B+A conmutatividad (1.3a)
(A+B)+C=A+(B+0C) asociatividad (1.3b)

A+0=A4 (1.3¢c)

existe A talque A+ A=0 (1.3d)
(af)A = a(BA) asociatividad (1.4a)

1A=A (1.4b)

0A=0 (1.4c)

(a+ B)A=aA+ (A distributividad (1.5a)

a(A+ B)=aA+aB distributividad (1.5b)

Dada una matriz A, la matriz 4, tal que A+ A = 0, se llama el inverso aditivo de A y se denota por —A.
Se cumple

—A=(-1)A. (1.6)
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Ejemplo 1.6. El inverso aditivo de
1 2 -3 -1 -2 3
A= [77 —1/4 0} s —d= [—w 1/4 0]

De esta manera se puede introducir, como en los nimeros reales, la resta, sustraccion o diferencia
entre matrices:

A—-B:=A+(—-B)

Si A € R™
ai a2 - A1n
a21 a2 ce A2n
A=
aml Am2 - Amn

su transpuesta, denotada AT (a veces A’ o A?), es una matriz n x m,

ail a1 - Gml
AT — a2 a2 - am2
Qlpn a2n - Omn
Ejemplo 1.7.
2 5
A_[g 2 ‘;] AT = (3 6
4 7
En Scilab la transpuesta se obtiene mediante A’
Propiedades:
(A+ B)" =A"+ B" (1.7)
(aA)" = aA” (1.8)
(AT)F = (1.9)

1.3 Ecuaciones matriciales

1 4
Ejemplo 1.8. Encontrar X tal que 3 <A + §B + 3X) =—-X — A+ 6B, donde

1 0 -1
A_[567}’ B_[2 -2 4]



1. MATRICES 6

3<A+;B+§X> =-X-A+6B

3A+B+4X =-X—-A+6B
5X = —-4A+5B

X:—§A+B

[-3/5 —12/5 —21/5
X—[ “9 _34/5 —8/5

1.4 Matrices escalonadas reducidas
Definicion 1.2. La primera entrada no nula de cada fila no nula se llama pivote. Obviamente las filas
nulas no tienen pivote.

Definicién 1.3. Una matriz A € R™*" es escalonada reducida (por filas) si cumple las siguientes
propiedades:

1. Si tiene filas nulas, éstas estdn al final (abajo).

2. En las filas no nulas el pivote es 1.

3. En las filas no nulas el nimero de ceros antes del pivote va aumentando.
4. El pivote es la tnica entrada no nula de su columna.

Ejemplo 1.9. Son matrices escalonadas reducidas:

01 -3 0 4 1 00 -2
[8 8 8] [(1) (ﬂ 00 01 =5 010 3
00 00 O 001 4
Ejemplo 1.10. No son matrices escalonadas reducidas:
01 -3 2 4 01 -3 0 4
[8 (1) 8] [(1) g} 00 01 =5 01 01 -5
00 00 O 00 O0O0 O

En una matriz escalonada reducida, las columnas correspondientes a los pivotes se llaman columnas
basicas o dependientes. Las otras columnas se llaman columnas libres, independientes o no
basicas.

1.5 Operaciones elementales

Hay tres operaciones elementales (con las filas):

1. Intercambiar dos filas. Se denota por

F « F,, F| <« F;,
o simplemente F; <> F},
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2. Multiplicar una fila por una constante ¢ no nula. Se denota por

F;(—CFZ',
o F,« cF;,

o simplemente cF;.

3. A una fila, sumar un multiplo de otra fila. Se denota por

F]g <— Fk + CFZ‘,
o Fp <+ F,+cF;,
o simplemente  F} + cFj .

Definicion 1.4. Si a partir de A, por medio de una o varias operaciones elementales se obtiene B, se
dice que A y B son matrices equivalentes por filas.

Ejemplo 1.11.

0 2 4 —2 10 2 4 8 10 20 1 24 5 10
2 48 10 20| Fi«<F |02 4 —2 10| =F |0 2 4 —2 10
1 36 4 15 1 36 4 15 1 36 4 15
1 24 5 10 1 24 5 10 100 70
1 _
Fy—1F |0 2 4 =2 101 -F |01 2 -1 5 ? f? 012 —-15
012 -1 5 012 -1 5| °° 21000 00
Todas las matrices anteriores son equivalentes por filas.
Ejemplo 1.12.
0 2 4 —2 10 1 36 4 15 1 3 6 4 15
2 4 8 10 20| Fi«<F |2 4 8 10 20| FB-2F |0 -2 —4 2 —10
1 36 4 15 0 2 4 —2 10 0 2 4 -2 10
1 36 4 15 100 70
1 _
—5F |0 12 -1 5 ?_g? 012 —-15
02 4 —2 10 3 2 000 00

FEn estos dos ejemplo se empezé con la misma matriz y por medio de operaciones elementales se lleg6 a
la misma matriz escalonada reducida. En cada ejemplo el proceso fue diferente.

Teorema 1.1. Toda matriz A es equivalente por filas a una matriz escalonada reducida. FEsta matriz es
unica. Se denotard

Ea
En Scilab se puede obtener por medio de (reduced row echelon form)

rref(a)

Dos resultados inmediatos:

Eg, = Ea (1.10)

E4 = A siy solamente si A es escalonada reducida. (1.11)
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Dos matrices diferentes del mismo tamano pueden ser equivalentes por filas a la misma matriz escalonada
reducida.

FEl rango de una matriz es el ntimero de filas no nulas de su matriz escalonada reducida. Para la matriz
del dltimo ejemplo
r(A) = rango(A) = 2.

En Scilab se puede obtener por medio de

rank (A)
Ejemplo 1.13.
2 3 6 7 10
=g o) meme ]

1.6 Algoritmo de Gauss-Jordan

Por medio de este algoritmo se obtiene la matriz escalonada reducida a partir de la matriz inicial.
A continuacién hay dos maneras diferentes de presentarlo pero es exactamente el mismo proceso. la
presentacién de la segunda versién es mas estructurada.

Sea A € R™*". En el algoritmo, (4, j) indica la posicién donde se busca obtener el pivote.

1.6.1 Versién 1

1.+ 1,51
2. Sit>m o j > n,entonces parar, la matriz resultante es escalonada reducida.
3. Si A(i:m,j) =0, entonces j < j + 1 e ir al paso 2.

4. Si es necesario, hacer intercambio de filas, entre la fila ¢ y una fila inferior, para que en la matriz
resultante a;; # 0.

1
5. Obtener pivote de valor 1 mediante F] - —F;.
aij

6. Por medio de operaciones F} < Fj, — ay;jF; obtener ceros por encima y por debajo de pivote.

7.19+1+1, j<+<j+1. Iral paso 2.
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1.6.2 Version 2

11, j+«1
mientras :<m y j<n
si A(i:m,j)#0
si Q5 = 0
buscar p >4 tal que a,; #0
Fi <~ Fp
fin-si
FleF
CLij
para k=1,...m, k#1i
F]g < Fk — akjFi
fin-para
1—i+1, j+j+1
sino
j—7+1
fin-si
fin-mientras
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Ejemplo 1.14. Aplicacién del algoritmo de Gauss-Gordan:

00 0 4 5
0 2 -6 0 8
08 —24 —-20 7
141, 51

j—2

Fi — Iy

[0 2 -6 0 8
0 0 0 4 5
|0 8 —24 20 7
1

_F
2 1

01 -3 0 4]
00 0 435
0 8 —24 —20 7]
F3—8F)

142, 7«3

j <4

1

- F

152

[0 1 -3 0 4
0 0 0 1 5/4
[0 0 0 —20 -25
F3—|—20F2

[0 1 -3 0 4

0 0 0 1 5/4
[0 0 0 0 0

13, J<+ 5

j <6

1.6.3 Matriz escalonada reducida parcial

Algunas veces es til realizar el proceso de obtencién de una matriz escalonada reducida hasta las primeras
ng columnas, con 1 < ng < n. Esto quiere decir que a partir de A se aplica el algoritmo de Gauss-Jordan
hasta que en la matriz resultante (llamada por facilidad también A) se tenga que A(:, 1 : ng) es escalonada
reducida.

Esta matriz escalonada reducida parcial no es tinica. Dependiendo de la manera de escoger p puede variar
el resultado. De todas maneras la matriz obtenida es equivalente por filas a la matriz inicial.
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Ejemplo 1.15. Obtener una matriz escalonada reducida de A hasta la columna 2,

1/2 1 3/2 2
A=| 11 13
-10 1 2

Después de procesar la primera columna, sin intercambio de filas:

-1 -2 -1
0 2 4
Después de procesar la segunda columna,
1 0 -1 2
01 21
00 04

Esta matriz es escalonada reducida hasta la segunda columna. El proceso se puede realizar, a partir de
la misma matriz inicial, de otra manera. Primero intercambio de filas 1 y 2:

11 1 3

1/2 1 3/2 2

-1 0 1 2
Al finalizar el proceso de la primera columna:

1 11 3

0 1/2 1 1/2

0 1 2 5
Intercambio de filas 2 y 3:

1 11 3

0 1 2 5

0 1/2 1 1/2
Después de procesar la segunda columna,

10 -1 =2

0 1 5

00 0 -2

Esta matriz es escalonada reducida hasta la segunda columna y diferente de la que se obtuvo en la primera
parte del ejemplo.

1.7 Producto de matrices

1.7.1 Caso mas secillo

Sea A € RY" (una matriz fila con n entradas) y B € R™*! (una matriz columna con n entradas). El
producto de estas dos matrices es un ntmero:
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b1y
ba1 n
AB=lann a2 -+ a) .| = @b + ai2bar + -+ a1nbny = Zalkbkl .
: k=1
bnl
Ejemplo 1.16.
5
[2 =3 4] | 6| =2x5 4 (=3)x6 + 4x(=7) =—36.
-7

1.7.2 Caso general

Sea A € R™™ y b € R"™P (dos matrices no necesariamente del mismo tamano, pero el nimero de
columnas de la primera debe ser igual al nimero de filas de la segunda). El producto A B € R™*P ge
define usando el producto entre filas de la primera matriz y columnas de la segunda:

A.B, Ay.By --- ALB,
Cap AQ.IB.1 Ay.By -+ AyB,
ApmBi AmBy - AnB,

n
Cij = E aikbkj, 1= 1,...,m, j = 1, P
k=1

Cij = aitbij + ai2baj + - - - + ainbn;

Ejemplo 1.17.

0o 1 2 3

A:[ié_ﬂ B=14 5 6 -1

8 —2 10 0
—20 13 —-20 5
C_AB_[40 —6 58 12}

c33=4x2 4+ 0x6 + 5x10=258.

El producto por filas o por columnas. Sean A € R™*" B ¢ R™P, f € R"*! (matrices compatibles

para el producto) y

C=AB
g=Af
Entonces:
Ai.B = (AB);. = C,. (1.12)
AB.j = (AB).; =C,; (1.14)
A.B
As.B
AB=| . | =[AB1 ABy --- AB,] (1.15)

An.B
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En palabras, el producto de una fila de A y la matriz B es una fila de C. El producto de la matriz A y
una columna de B es una columna de C.

Ejemplo 1.18.

9 3 4 2 -1 0 1 2 -1 0 1
A=[5 6 7], B=|4 10 2 -1|, [6 6 7]|4 10 2 —1|=1[69 41 33 6] =(AB)..
5 =2 3 1 5 -2 3 1

Sean A € R™*" y g € R™*1,

aiigir + aiegs + -+ + a1ngn

az191 + agegz + - -+ + azng
Ag = e rmxt (1.16)
am191 + ama2g2 + - -+ + Qmndn
a1l ai12 a1n
a1 a2 aon
Ag=gr| . | +g2| . |+ +om]| . (1.17)
am1 Am?2 Amn
Ag=g1Aa+gAa+ -+ gnAnt (1.18)

Esta dltima expresién dice que el producto Ag es la suma de las columnas de A multiplicadas, cada una,
por un escalar. Esto se conoce como combinacién lineal ! de las columnas de A.

(AB)" = BTA" (1.19)

La matriz identidad I = I,, es una matriz cuadrada tal que las entradas diagonales valen 1 y las otras
son nulas.

1 00
Is=1{0 1 0
0 01
En Scilab se puede obtener mediante eye(3,3) .

Sean A € R™*" B, C, D, F, G, H matrices de tamanos tales que las operaciones siguientes estén bien
definidas. El producto y la suma cumplen las siguientes propiedades:

InA=A (1.20)

Al = A (1.21)

Al, =1,A= A, si A escuadrada (1.22)
A0 =0 (1.23)
0A=0 (1.24)
A(BC) = (AB)C 'y se escribe simplemente ABC (1.25)
A(D+ F)=AD+ AF (1.26)
(G+H)A=GA+ HA (1.27)

!Este concepto se verd con més detalle més adelante.
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Solamente para matrices cuadradas estan definidos al mismo tiempo los productos AB y BA y, en general,
no coinciden, es decir, el producto de matrices cuadradadas no es conmutativo.

Ejemplo 1.19.

2 3 2 -1 7 22 0 1
A‘L 5]’ B_[l 8}’ AB_[13 36}’ BA_{34 43]'

Dos matrices cuadradas del mismo tamano A y B conmutan si AB = BA. Claramente hay casos
inmediatos, por ejemplo A y 0. También Ael o Ay A.

Ejemplo 1.20. Las matrices siguientes conmutan:

21 1 -1 6 -3
a=[ 3] m=[i D] sl )

De manera semejante a los niimeros reales se puede definir la potencia de una matriz cuadrada:

A2 =AA (1.28)
A3 =AAA (1.29)
ATl =A™ A (1.30)
Al = A (1.31)
AV =T (1.32)

Por el momento A™ tiene sentido para potencias enteras no negativas. Mas adelante se verd que para
algunas matrices tiene sentido A~2.

1.8 Inversa de una matriz

FEn los ntimeros reales, todo x # 0 tiene inverso multiplicativo. ;Qué pasa con las matrices cuadradas?
;Para cuales matrices existe B tal que AB = I?

Sea A € R™ ™. Si existe B tal que A B = I se dice que B es la matriz inversa de A o simplemente la
inversa de A. Esta matriz, cuando existe, se denota por

A—l
Se dice entonces que A es invertible. Primeros resultados inmediatos:
It=r1 (1.33)
1
()™ =21 sic#0. (1.34)
c

Obviamente la matriz cuadrada nula no tiene inversa. A continuacién ejemplos de una matriz invertible
y dos no invertibles.

Ejemplo 1.21.

S 3 P RO PO P |
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Mis adelante hay dos métodos para obtener la inversa. El segundo requiere el uso de determinantes.

Ejemplo 1.22. Encontrar, si posible, la inversa de la matriz siguiente:

0 1]
A‘_o 0

o]
B__c d|

(¢ d] 1 0
AB__O 0__1_[0 1]

Claramente se ve una inconsistencia en la posicién (2,2). Para que las dos matrices sean iguales, 0 = 1.
Luego A, que no es la matriz nula, no tiene inversa.

Ejemplo 1.23. Encontrar, si posible la inversa de la matriz siguiente:

(1 2
A=y il
(a b
B__c d]
__a+2(: b+2d| |1 0
AB__2a+4c 2b+4d}_[0 1]
a+2c=1
b+2d=0
20 +4c=0
2b+4d =1

De nuevo hay inconsistencia, por ejemplo, a +2c =1 y 2a+ 4c = 0. Es decir 2(a + 2¢) = 0. Luego A
no tiene inversa.

En Scilab, cuando la matriz tiene inversa, ésta se puede obtener por medio de inv(A).

1.9 Obtenciéon de la inversa

El procedimiento es muy sencillo. Se construye una matriz n x (2n). En la mitad izquierda se coloca A,
en la mitad derecha se coloca I. Se busca su matriz escalonada reducida. Si en la mitad izquierda del
resultado quedd I, entonces lo que quedé a la derecha es la inversa. Si en la mitad izquierda no estd la
identidad, entonces A no tiene inversa.

Ejemplo 1.24.

a=[5 3]
A=l 50
b= _(1) (1) 3_/3 —1/;}
AT = 3_/3 —1/;]
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Ejemplo 1.25.
(1 2
A=l 4]
(1 2 1 0
A0=l3 %00
Jr 20 1/2
E= 10 0 1 —1/2]
A no es invertible.
Ejemplo 1.26.
(-1 2 5
A= 0 3 6
| 1 4 7
(-1 2 5 1 0 0
[A I]=]| 036 010
| 1 47001
(1 0 -1 0 —-4/3 1
E=(01 20 1/3 0
100 01 -2 1
A no es invertible.
Ejemplo 1.27.
1 2 3
A=1|4 5 6
|7 8 10
[1 2 3 1 00
[A I]=]45 6 0 10
|7 8 10 0 0 1
[1 0 0 -2/3 —4/3 1
E=|0 1 0 -2/3 11/3 -2
[0 0 1 1 -2 1
[—2/3 —4/3 1
A7l =|-2/3 11/3 -2
1 -2 1
Teorema 1.2. Sea A un matriz cuadrada. Las siguientes afirmaciones son equivalentes:
e A es invertible.
e rango(A) =n
e Fy=1.
Si A es invertible se puede definir A2, A3, ...
A2 = (A7 (1.35)
A3 = (A7 (1.36)
A= (ATH" (1.37)
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Para valores enteros de p y ¢ (para enteros negativos se requiere que A sea invertible)
AP AT = APTYT (1.38)
Por ejemplo
APA2 = A3 APA = A1,

1.10 Matriz de una operacion elemental

Las operaciones elementales se pueden representar por medio del producto a la izquierda por una matriz.
Veamoslo con ejemplos.

(10 12 13 14
A |20 25 26 27
~ 132 34 35 33
44 40 48 42
1.0 0 0
0001
B=1o 01 0
0100
10 12 13 14
44 40 48 42
BA=135 34 35 33
20 25 26 27
10 0 0
01 0 0
“=1o 0 14 0
00 0 1
(10 12 13 14
20 25 26 27
CA=1"% 17/2 35/4 33/4
44 40 48 42
[ 1.0 0 0
010 0
b= 0010
—0.1 0 0 1
10 12 13 14
20 25 26 27
DA=1ay 34 35 33
43 38.8 46.7 40.6

Es claro que el resultado BA es el mismo de la operacion Fy <> Fy sobre A. El resultado C'A es el mismo

1
de la operacién ZFg. El resultado DA es el mismo de la operacién Fy — 0.1F7.

;,Como se obtiene la matriz que representa una operacién elemental? Muy sencillo. Se aplica la
operacion elemental a la matriz I. La matriz obtenida se llama matriz elemental.
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1.10.1 Inversas de la matrices elementales

La inversa de una matriz elemental, se puede obtener directamente a partir de la matriz elemental, o
también, se puede obtener como la matriz de la operacién inversa:

(M (oper. elem.))™! = M (inversa(oper. elem.)) (1.39)

Es necesario saber entonces cual es la inversa de una operacién elemental. La inversa de la operacién es
simplemente la operacién que permite llegar al estado antes de aplicar la operacion.

oper. elem. inversa( oper. elem. )

A A A
Entonces:
Operacion | inversa
Fi <~ Fj Fz <~ Fj
1
ck; —F;
c
Fk + CFi Fk - CFZ‘

Ejemplo 1.28. En R**4,

1 0 00
0 0 01
B= 0 010
0 1 0 0f
B™! = M(inversa(Fy <+ Fy)) = M(F, < Fy)
[1 0 0 O]
1 o001
B = 0 010
0 1 0 0]
Ejemplo 1.29. En R**4,
1
C=M( 1)
10 0 O
01 0 O
=10 0 1/4 0
00 0 O
1
ct = M(inversa(ZFg)) = M(4F3)
1000
. o100
¢ = 0 040
0 00O



1. MATRICES 19

Ejemplo 1.30. En R**4,

1000
0100
b= 00 10
| —01 0 0 1

D' = M (inversa(Fy — 0.1F})) = M(F; 4 0.1F})
1.0 00
0100

-1

D==1"901 0
01 0 0 1

Sean A y B dos matrices cuadradas invertibles, (AB)(B71A™!) = ABB71A™! = ATA™! = AA71 = I.
Entonces AB es invertible sssi A y B son invertibles y

(AB)"' =B 'At. (1.40)
Si A es invertible y ¢ # 0,
(cA)yL = L1g-1 (1.41)
C
(AT = (A" (1.42)

1.11 Ecuaciones matriciales

Sean A y B matrices cuadradas del mismoo tamano y A invertible. Encontrar X tal que
3XA+54A—-6B=0.
3XA+5A—-6B=0
3XA=-5A+6B

3XAA™ = (—5A+6B)A™!
3X = 5] +6BA~!

X = —gl +2BA™!

1.12 Algunas matrices especiales

Una matriz cuadrada es diagonal si sus entradas no diagonales son nulas, es decir,
Aj; = 0 si s 75 j
Ejemplo 1.31.

1
0 0 000 Lo o
00 02 0 05 0
000 00 -3
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La suma de dos matrices diagonales es una matriz diagonal. El producto de un escalar y una matriz
diagonal es una matriz diagonal. El producto de dos matrices diagonales es una matriz diagonal.

El proceso de obtencién de la inversa indica que una matriz diagonal es invertible sssi todas sus entradas
diagonales son no nulas y

aill 0 0 a1 0

0 ago 0 0 — e 0
= @ (1.43)

0 0 Ann 0 0 L

ann

Una matriz cuadrada es triangular superior si todas sus entradas por debajo de la diagonal son nulas,
es decir,
A5 = 0 si 2>7.

Ejemplo 1.32. En particular toda matriz diagonal, también es triangular superior. Las siguientes
matrices son triangulares superiores:

1
0 0 000 1o 6
00 0 2 0 05 7
000 00 -3

La suma de dos matrices triangulares superiores es una matriz triangular superior. El producto de un
escalar y una matriz triangular superior es una matriz triangular superior. El producto de dos matrices
triangulares superiores es una matriz triangular superior.

Una matriz triangular superior es invertible ssst todas sus entradas diagonales son no nulas.
De manera andloga se define matriz triangular inferior, a;; = 0 si i < j.

Matriz simétrica A = A™.

Matriz antisimétrica A = —A”.

Los elementos diagonales de una matriz antisimétrica son nulos.

Si A es cuadrada

A+ A" es simétrica (1.44)
A— A" es antisimétrica (1.45)
1 1
A= i(A + A" + i(A — A") suma de simétrica y antisimétrica. (1.46)
Si A e Rm*”
AAT € R™™  es simétrica (1.47)

ATA e R™™ es simétrica (1.48)
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(kA)" = kA"
(A+B)" = A"+ B"
(AB)" = BTA"
tr(l,) =n
tr(A+ B) = tr(A) + tr(B)

Una matriz cuadrada es idempotente si A2 = A.

Una matriz cuadrada es ortogonal si A~! = AT, es decir, AAT = I.
Una matriz cuadrada es singular si no es invertible.

Una matriz cuadrada es regular si es invertible.

N N RN

Una matriz cuadrada es escalar si existe un real ¢ tal que A = tI.

v Una matriz cuadrada es involutiva si A2 = I, es decir, A=! = A.

Ejemplo 1.33. Matrices idempotentes:
0 0 8 10
0 0’ 1 |70

Matrices nilpotentes: A = 0 es una matriz nilpotente de orden 1.

S O =
O = O

02 3 4 0 0 10 33 000 70 0000
005 6 , |00 0 35 , oo o0 o0 s 0000
A=looo7 oo o ol P looo ol P o000
0000 00 0 0 000 0 0000

A es matriz nilpotente de indice 4.

Matrices ortogonales:

V3/2  1/2 cos(d)  sen (6)
RN R B

Matrices escalares:

2
} . I, — UT—UUUT, con v € R v £0.

- —4.2 0 0
[3 0 , 0 —4.2 0
- 0 0 —4.2

Matriz involutiva:

! 2 [10
a=lo B =l 1]

Una matriz cuadrada es nilpotente de indice k si existe un entero no negativo k tal que A¥ = 0.

21
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* Si A nilpotente, entonces det(A) = 0.
* Si A idempotente, entonces det(A) es 1 0 0.
* Si A ortogonal, entonces det(A) es 1 o —1.

* Si A involutiva, entonces det(A) es 1 o —1.

1.13 Matrices por bloques

v" Una matriz A € R™*"™ estd descompuesta propiamente por bloques, o simplemente, A es una matriz
por bloques, si A se puede representar adecuadamente

A A - Ay
Aot Aoo - A

I 2 (1.49)
Apl Ap2 T qu

donde, a su vez, A;; es una matriz. Hay p filas de bloques y ¢ columnas de bloques. Las matrices
de cada fila de bloques deben tener igual nimero de filas y las matrices de cada columna de bloques
deben tener igual nimero de columnas. Asi, por ejemplo,

Ilf(All) = nf(Alg)
nc (A13) = 1nc (A23)

Las matrices por bloques pueden ser muy tiles para calcular productos, inversas, determinantes (capitulo
3), en matrices grandes con algunos o muchos bloques nulos.

Se puede definir de manera natural la suma y producto de matrices por bloques. Por ejemplo,

[An A1z Als] n [311 Bia 313] _ [Au-l-Bu A2+ B2 A3+ Bis
Agr Axp Ass Bo1 Bas Bos Ag1 + Bo1  Agx + By Agz + Bos

Obviamente se requiere que los bloques o submatrices sean del mismo tamaio,

tamano(A;;) = tamaiio(B;;) .

Un ejemplo para el producto:

A11B11 + A12Bo1 A1 Bia + A12B2»
= | A21B11 + A2oBo1  A21Bia + A2 Boo

Agr Ags
Bs1 B As31B11 + A39 By As31Big + A3sBos

Az1 Az

Los productos entre los bloques deben estar bien definidos, por ejemplo,

nc (Alg) =nf (B22) .

Para matrices cuadradas, con frecuencia es ttil que se pueda expresar como una matriz cuadrada por
bloques, que los bloques diagonales sean cuadrados y que ciertos bloques sean nulos.
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Ejemplo 1.34.
21 23 25 27 29
41 43 45 47 49
A=1]10 0 55 57 59
0 0 65 67 69
0 0 8 87 89

21 23 25 [27 29]
41 43 45| |47 49
A= 1|0 0 55| [57 59]
0 0 65 67 69

0 0 85 87 89

21 23 25| [27 29]
41 43 45 47 49
A= |0 0 55 [57 59,

0 0 65] [67 69
0 0 85 87 89|

(21 23 25 27 29]7

] [45 47 49
A=|[0 0 55 57 59
0 0 65 67 69
0 0 85 87 89

Las tres descomposiciones por bloques son correctas, pero puede ser méas tutil la tltima. En esta, A es
una matriz triangular superior por bloques.

* Una matriz triangular por bloques es invertible si y solamente si sus bloques diagonales son invertibles.
Para el caso de dos filas y dos columnas de bloques

—1 _ _ _
All A12 _ A111 *A111A12A221
= 3 (1.50)
0 A22 0 A22
Para el caso de una matriz diagonal por bloques

A 0 017" AL 0 0

0 Aoy 0 0 At 0
. = 2 (1.51)

0 0 App 0 0 A;pl

Ejemplo 1.35. Hallar la inversa de

N

Il
S O O Ut
SO O W=
I N
_— O O =N
LW N O
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Esta es una matriz triangular superior por bloques:

(2 1
A = 5 3}
(1 2 4
A2 = 11 -1 0]
[1 0 2
Ap=12 0 3
(4 1 5
[ 3 -1
Alllz __5 2:|
-3 20
Ay =1 2 -3 1
| 2 -1 0
_ 1 [-32 29 -7
“AnAndy = | 5 5 12]
3 -1 =32 29 -7
-5 2 55 =50 12
At=1 0 0 -3 2 0
0 O 2 =3 1
0 O 2 -1 0
Ejemplo 1.36. Hallar la inversa de
21 0 00
53 0 00
A=1]10 0 -2 0 0
00 0 10 3
00 0 31
Esta matriz es diagonal por bloques,
2 1
A = 5 3]
Agy = [—2]
(10 3
Az = 3 1]
3 -1 0 0 O
-5 2 0 0 O
A= 0 o0 -1/2 0 o0
0 O 0o 1 -3
0 O 0 -3 10

24
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1.14 Grafos y matrices

Un grafo no dirigido es simplemente un conjunto finito no vacio de puntos, llamados vértices o nodos,
y un conjunto de aristas que unen algunos pares de nodos.

Un sistema vial se puede representar por un grafo. Los nodos son las ciudades. Las aristas son las
carreteras.

Se puede suponer, sin pérdida de generalidad, que si hay n vértices, estos son justamente 1, 2, ..., n.

De manera formal un grafo no dirigido G esta formado por un conjunto de vértices V' = {1,2,...,n} y por
un conjunto E de aristas, es decir, de parejas no ordenadas de elementos de V. Asi, G = (V, E), donde

V={1,2,..,n},
E = {{i17j1}7 {i27j2}7 ceey {7’7717.7771}} con Zka]k S V7 Zk 7& Jk para todo k.

El nimero de aristas es m. En algunas definiciones se permite que haya aristas de un vértice a si mismo,
por ejemplo {3, 3}.

Para el grafo del dibujo anterior, G = (V, E), con
V ={1,2,3,4,5,6),
E= {{13 2}’ {3a 4}3 {4’ 5}a {47 6}} .

La matriz de adyacencia de un grafo no dirigido es una matriz de tamano n x n que indica entre cuales
vértices hay arista. Si A € R™*™ es la matriz de adyacencia, entonces

1 sifigyerm
= {0 si {i,j} ¢ B. (1.52)

La matriz de adyacencia es simétrica y sus entradas diagonales son nulas. Para el grafo anterior,

010000
100000
0007100
A=1o 0101 1
0007100
00010 0
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En algunos casos es necesario dar un orden a las aristas. Supongamos que las aristas son

e1 = {i1, j1}
ez = {i2, j2}
Em = {immjm}

El orden de las aristas puede ser cualquiera, en particular, puede ser el lexicografico.

La matriz de incidencia de un grafo es un matriz n x m, una fila por cada vértice, una columna por
cada arista. Si B € R™ ™ es la matriz de incidencia,

1 siie€ey,
bij = .
0 siide;.

En cada fila, correspondiente a un vértice, el nidmero de unos indica el numero de aristas que inciden en
el vértice. En cada columna hay dos unos.

Para el ejemplo,

OO = = OO
O EFHOOO
_ ok O oo

OO OO ==

Unn grafo dirigido o digrafo estd compuesto por un conjunto finito no vacio de vértices o nodos y
un conjunto de arcos o flechas que van de un vértice a otro vértice. De nuevo se puede suponer que si
hay n vértices, estos son {1,2,...,n}.
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Una flecha de i a j se puede representar por la pareja ordenada (i,j). Un grafo dirigido G es un pareja
de vértices y flechas, G = (V, F'), con

V={12,..,n}, n>1,
FCV V.

Para el ejemplo,

VvV ={1,2,3,4,5,6},

F={(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6), (3, 1), (3,6), (4,5), (5,2), (6,5)}.
Un sistema de distribucién de agua se puede representar por un grafo (en este caso no debe haber dos
vértices con flechas en ambos sentidos).

También un grafo puede representar un sistema donde los vértices corresponden a los actores del sistema
y la flechas indican que hay influencia directa entre un actor y otro.

La matriz de adyacencia de un grafo dirigido es una matriz n x n,

{1 si (i,§) € F,
a5 =

0 si(i,j)¢F. (1.53)

Para el ejemplo,

011010

0O 01 1 11

A— 1 0 00 01
000010
010 00O

0 0 0 01 0]

La matriz A? tiene una interpretacién interesante,

1 1 1 1 1 2]
1100 2 1

A2 01 1020
01 0 00O
001111
01 0 0 0 0]
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(A?)15 = 1 indica que hay un camino de longitud 2 (2 flechas) desde 1 hasta 5. Este camino es (1,2), (2,5).
(A%)16 = 2 indica que hay dos caminos de longitud 2 desde 1 hasta 6. Estos caminos son (1,2),(2,6) y

(1,3),(3,6).
De manera analoga A3 indica los caminos de longitud 3.

Si el grafo representa las influencias directas entre actores, A%, A3... representan las influencias indirectas

entre actores.



Sistemas de ecuaciones lineales

2.1 Sistemas 2 x 2

Fl siguiente es un sistema de dos ecuaciones lineales con dos incégnitas.
3x1 + 512 =21
41 + 229 = 14
Se puede resolver por varios métodos: sustitucién, igualacion, eliminacién, determinantes, grafico. Su
Unica solucién es x1 = 2, 2 = 3.
El sistema

201 +4xz90 = 6
—4x1 — 8xg = —12

tiene muchas soluciones (un nimero infinto de soluciones), por ejemplo
Ir = 1, To = 1
Ir = 3, To = 0
x1 =203, x9=-100

El sistema

201 +4x0 = 6
—4.%1 — 8.%2 =-10

no tiene solucién, es inconsistente.

En resumen, para un sistemas de dos ecuaciones con dos incégnitas, hay tres casos:
e Hay una tunica solucién.
e Hay un nimero infinito de soluciones.

e No hay solucién.

Esto se puede deducir teniendo en cuenta que cada ecuacion representa una recta del plano. Hay tres
€asos:

29
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1) Las dos rectas se cortan, las coordenadas del punto de corte corresponden a la solucion.
2) Las dos ecuaciones representan la misma recta, cualquier punto de la recta es una solucién.

3) Las rectas son paralelas y diferentes, no hay solucién.

Aunque no sea con rectas los tres casos se dan en sistemas mas grandes: una unica solucién, un nimero
infinito de soluciones, no hay solucién.

2.2 Caso general

Un sistema de m ecuaciones lineales con n incégnitas se puede escribir asi:

a1171 + a1222 + -+ - + a1y, = by
211 + a22T2 + -+ + a2 T, = by
(2.1)

Am1 21+ m2T2 + -+ AmpTn = by

donde los valores a;; y b; son conocidos. Se desea encontrar el valor de cada una de las incognitas x;
J J
para que se cumplan todas las ecuaciones.

Ejemplo 2.1.

2rx1 + 3xy + mwrs + % T4 =3
—x1— 2x9 + 1023 =0
6.2x9 + 4xs —0.001lxy = 2

Dos sistemas de ecuaciones son equivalentes si tienen exactamente las mismas soluciones. Los métodos
validos son aquellos que paso a paso van obteniendo sistemas equivalentes pero que cada vez sean mas
faciles, hasta llegar a un sistema equivalente donde sea muy facil obtener la solucién (si la hay).

Hay tres clases de operaciones con las ecuaciones que permiten obtener sistemas equivalentes:
1. Intercambiar dos ecuaciones, denotado FE; <+ E; .
2. Multiplicar una ecuacion por una constante no nula, denotado cFjy .

3. A una ecuacién sumar un miiltiplo de otra ecuacién, denotado FEj + cE; .

2.3 Meétodo de Gauss para sistemas cuadrados

Un sistema de ecuaciones es cuadrado si tiene tantas ecuaciones como incégnitas:
anei +apry + -+ amT, = by
az171 + 2272 + -+ + a2pTy = bo (2.2)

121 + Q222 + -+ + AppTp = by
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El método de Gauss busca obtener un sistema equivalente triangular superior

/ / / /
ay T+ a3 + -0+ ay, Ty = b
/ / /

. (2.3)

! !
Gy T, = by,

De la ultima ecuacién se obtiene x,. Con este valor, de la pentltima ecuacion, se calcula x,_1 y asi
sucesivamente hasta obtener x, usando la primera ecuacion.

Ejemplo 2.2. Resolver:

2x1+ 3x9+ 4dx3= 5
—6x1 — 929 —10x3= —19
10z1 + 1229 + 1423= 28

Es + 3E4
201+ 3x0+ 4dx3= 5
21‘3 = —4
10x1 + 1229 + 1423 = 28
Es —5FE,
2x14+3x2+4x3= 5
2.%3 =—4
— 3%2 — 61‘3 = 3
Ey & Eg
2x1 +3x9+4x3= 5
— 3$2 — 61‘3 = 3
21’3 = —4
De la dltima ecuacién se deduce x3 = —2. Remplazando este valor en al segunda ecuacién
—3.7}2 — 6.7}3 =3
—3z9 —6(—2) =3
—3z9+12=3
—3$2 =-9
To = 3

De la primera ecuacion

201 +3x9 +4x3 =5
21 +3(3)+4(-2)=5

201 +1=5
2$1 =14
Tr1 = 2
En resumen la solucién es x1 = 2, x0 = 3 y x3 = —2. Se puede comprobar que estos valores satisfacen

las tres ecuaciones iniciales.
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2.4 Notacion matricial

Sean
ail] ai2 - Qln z1 b
e a'21 G?Q e a?n € Rm*. = 2 c R, b= b'2 € R™1,
Gm1 Am2 *°  Omp In b

El sistema (2.1) se puede ecribir

Al.x = bl
AQ.JI = b2
Ap.x = by,

Usando (1.12), A;.x = (Ax);.. Como Az es una columna, (Az);. = (Ax);, es decir, A;.x = (Ax);,

(Al’)l = b1
(Al’)g = b2
(Aa:)m =bpy

Las m igualdades anteriores dicen que todas las entradas de Az y b son iguales, es decir, Az = b. En
resumen, el sistema (2.1) se puede escribir de manera compacta

Az =10 (2.4)
La matriz A € R™*" es la matriz de coeficientes, b € R™*! es la columna de términos indepen-

dientes y x € R"*! es la columna de incégnitas.

2.4.1 Matriz ampliada

En lugar de escribir en cada iteracién y en cada ecuacién x1, o, ... etc., basta con escribir los coeficientes
a;; y b; en una matriz. Esta matriz es la matriz ampliada o aumentada

a1 a2 - Gl br

) a1 a2 - Az, b

A=[A =] ] . e R+ (2.5)
Aml Am2 - Qmn bm

Las operaciones elementales sobre las ecuaciones del sistema son exactamente operaciones elementales
sobre las filas de la matriz ampliada. Asi, el ejemplo anterior del método de Gauss, se puede escribir de
manera mas simple.

Ejemplo 2.3.

2x1+ 3x9+ 4x3= b
—6.1‘1 — 91’2 — 10.%'3 =-19
10z + 1229 4+ 1423 = 28
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2 3 4 )
-6 -9 —-10 -19
10 12 14 28

B+ 3R
3 —5F; i i
2 3 4 5
0 0 2 —4
|0 -3 -6 3]
< F3 -~ _
2 3 4 5
0 -3 -6 3
0 0 2 —4]
La ultima fila se traduce por la ecuacién 0x1 + 0xg + 223 = —4. Ahi se obtiene x3 = —2. La segunda fila

se traduce por 0xq1 — 3x2 — 623 = 3, de donde x5 = 3, etc.

2.5 Caso general, método de Gauss-Jordan

Consideremos el sistema de m ecuaciones con n incégnitas
Az =1 (2.6)

Se construye la matriz ampliada
A=[A b] ermxntD)

y se obtiene su matriz escalonada reducida

E=E;.

2.5.1 Sistema inconsistente

El sistema es inconsistente (no tiene solucién) si en A, o en E, o en una matriz intermedia, se presenta
una inconsistencia. Una inconsistencia es una ecuacién de la forma

O0x1 + 022+ -+ 0z, =a#0.

FEn la matriz ampliada inicial, o en una matriz intermedia, o en la matriz escalonada reducida final, una
inconsistencia es una fila de la forma

0 0 - 0 a], con a#0. (2.7)

Ejemplo 2.4. Resolver el sistema Az = b, donde

2 3 45 14
A=1{1 11 1|, b= |4
3456 20

Supongamos que se obtiene directamente la matriz escalonada reducida, por ejemplo con Scilab.

2345 14 10
A=l1111 4|, E;j=|01 2 30
3 45 6 20 00
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En la tercera fila de F'; hay una inconsistencia, luego el sistema no tiene solucién.

Veamos ahora paso a paso el proceso de obtencion de E; .

2 3 45 14
1111 4
345 6 20
iR
1 3/2 2 5/2 7
1 11 1 4
3 45 6 20
F,—F, F;—3F
(1 3/2 2 5/2 7]
0 —1/2 —1 —-3/2 -3
0 —1/2 -1 —3/2 —1]
—2F,

1 3/2 2 5/2 71
0 1 2 3 6
0 —1/2 -1 —3/2 -1

Fi — 3P, F3+ 3F,
1 0 -1 -2 =2
0 1 2 3 6
0 0 0 0 2

Esta matriz no es escalonada reducida, pero ya se ve una inconsistencia. Luego el sistema no tiene
solucion. No es necesario continuar con el proceso.

2.5.2 Sistemas consistentes

En un sistema consistente, a partir de £ ; se obtiene la solucién o la forma general de las soluciones.

e La variables de las columnas de los pivotes se llaman variables basicas.
e Las otras variables se llaman variables libres, independientes o no basicas.
e Si no hay variables libres, la solucién es tinica y los valores son los términos independientes en E ;.

e Cuando hay variables libres, las variables bésicas se pueden expresar facilmente en funcién de las
varibles libres.

Ejemplo 2.5. Resolver el sistema Ax = b, donde

2 4 6 16
2 3 4 11
A=141 4| b=1_9|"

8 9 18
2 4 6 16 100 2
. 2 3 4 11 010 -3
A_—11—1—9’ Fi=lo 01 4
38 9 18 000 O
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El sistema es consistente y no hay variables libres, luego la solucién es tnica:

$1:2,

Ejemplo 2.6. Resolver el sistema Az = b, donde

2 3 4

A=11 11
345

2 3 4 5 14
A=111 11 4|,
345 6 18

To = —3,

—_

x3 = 4.

14

, b= 14

18
10 -1 -2 =2
E;=10 1 2 3 6
Ooo0 0 0 0

El sistema es consistente. Las variables bédsicas son x1 y x3. Las variables libres son x3 y x4. Las dos

primeras filas representan las ecuaciones

Tr1 — T3 — 21‘4
To + 223 + 324

Luego

r1 =

x2

-2

6

-2+ x3+ 214 (2.8)
6 — 2x3 — 314

Para obtener una solucién basta con dar cualquier valor a x3 y x4 y calcular los valores de z1 y xo. Por
ejemplo,

T =—2 r =-—1 x1 =0 r] =—22
Tro = 6 T = 4 J}2:3 To = 31
I3 — 0 T3 — 1 $3:0 T3 — 10
4= 0 4= 0 Ty =1 Ty =—15

La solucién general se puede escribir de manera matricial asi (para valores cualesquiera de o y 3):

T -2 1 2
xI9 o 6 —2 -3
e | L ool T 1| TP o
T4 0 0 1

Después del signo igual, la primera columna es simplemente la solucién obtenida para z3 =0y x4 = 0.

La segunda columna esté orientada por z3 y tiene dos partes. La correspondiente a las variables basicas
tiene los coeficientes de z3 en (2.8). La correspondiente a las variables libres tiene los valores z3 = 1y
cero para las demads variables libres.

La tercera columna estd orientada por x4 y también tiene dos partes. La correspondiente a las variables
bésicas tiene los coeficientes de x4 en (2.8). La correspondiente a las variables libres tiene los valores
x4 = 1 y cero para las deméds variables libres.

2.6 Método de Gauss para sistemas cuadrados con solucién tnica

El método de Gauss se usa para sistemas cuadrados que se suponen de solucién tnica, aunque esta ultima
condicion no se conozca por adelantado. Requiere menos operaciones que el método de Gauss-Jordan. Es
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la base del método usado para sistemas cuadrados generales (no de estructura especifica) en la mayoria
de los programas de computador.

Simplemente se busca triangularizar el sistema, como en un ejemplo anterior, utilizando la matriz
ampliada. Una vez triangularizado el sistema, se calcula x,, después x,,_1, después x,_2, y asi suce-
sivamente hasta obtener x7.

e El pivote siempre debe quedar en las entradas diagonales y no es necesario que valga 1.

e Si no es posible obtener un pivote en las entradas diagonales, es decir, si durante el proceso de
triangularizacién, buscando el pivote en agg, todo el pedazo de columna A(k : n, k) = 0, entonces
el sistema no es de solucién unica, o sea, puede ser inconsistente o tener un numero infinito de
soluciones. Seria necesario continuar con el método de Gauss-Jordan.

e Las operaciones elementales usadas son el intercambio de filas y sumar a una fila un multiplo de
otra fila. Normalmente no es necesario multiplicar una fila por una constante.

Ejemplo 2.7. Resolver el sistema Ax = b, donde

0 5 6 3
A=12 3 4], b= 5
10 35 42 41
[0 5 6 3]
2 3 4 5
|10 35 42 41
F1 e F2
2 3 4 5]
0 5 6 3
|10 35 42 41
F; -5k
2 3 4 5
0 5 6 3
0 20 22 16
F5; —4F,
23 45
05 6 3
0 0 —2 4
Entonces x3 = -2, zo =3, z1=2.

Ejemplo 2.8. Resolver el sistema Ax = b, donde

2 2 3 —4
A=1|-8 8 16|, b=|-24
10 —10 —10 10

-2 2 3 -4
-8 8§ 16 —24
10 -10 —-10 10
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Fy—4F;
F3+5F
-2 2 3 -4
00 4 -8
0 0 5 —10

La porcién de columna A(2 : 3,2) es nula, luego no es un sistema de solucién tinica y no se puede continuar
con el método de Gauss. Si se desea continuar se debe utilizar el método de Gauss-Jordan.

2.7 Solucién usando la inversa

La solucién de un sistema Ax = b cuando A es cuadrada e invertible se puede obtener mediante

Ax =D
A7 Az = A7
Io=A"1
z=A""b. (2.9)

Esta forma de solucién es teéricamente perfecta, pero en la mayoria de los casos requiere mas operaciones
que el método de Gauss y el método de Gauss-Jordan.

Ejemplo 2.9. Resolver el sistema Ax = b, donde

0 5 6 3
A=|2 3 4|, b=1|5
10 35 42 41
0 5 6] '[3
c=|2 3 4 5
(10 35 42 11
(—7/10 0 1/10] [ 3
z=|-11/5 -3 3/5|| 5
2 5/2 —1/2| |41
[ 2
Tr = 3
)

2.8 Sistemas homogéneos

Un sistema homogéneo es simplemente un sistema de ecuaciones lineales donde todos los términos
independientes son nulos, es decir,

Az =0. (2.10)

A diferencia de los sistemas generales (no homogéneos), un sistema homogéneo siempre tiene solucion,
ya que 1 = 9 = - - = x, = 0, llamada solucidén trivial, siempre es solucién. Hay dos casos:
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e La solucién trivial es la unica solucion.

e Hay un ndmero infinito de soluciones, es decir, hay soluciones diferentes de la trivial.

Los métodos vistos para sistemas no homogéneos se utilizan para sistemas homogéneos. Como siempre los
términos indpendientes van a ser nulos, no importa la operacién elemental que se efectiie, no es necesario
construir la matriz ampliada y se puede simplemente trabajar con A.

Ejemplo 2.10. Resolver Az = 0, con

01 2
3 45

A=|e = o (2.11)
35 7
100
01 0

Ea=19 0 1
00 0

Luego hay una tnica solucién, la trivial, 1 = z9 = 23 = 0.
Ejemplo 2.11. Resolver Ax = 0, con

2 3 4 6
-6 —9 —11 —16
A=l 4 6 o 1 (2.12)

-2 -3 -2 =2

1 3/2 0 —1
0 01 2
Ea=lo 00 o
0 00 O
Luego hay un numero infinito de soluciones
T1= "5t + 24
r3 = —2.%4
x1 —3/2 1
T2 . 1 0
v 4 o TP
T4 0 1

Algunas veces puede ser 1til el siguiente resultado relativo a los dos sistemas, no homogéneo y homogéneo,
con la misma matriz de coeficientes, suponiendo que el sistema no homogéneo es consistente.

Az =b (2.13)
Az =0 (2.14)
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El sistema no homogéneo tiene una unica solucion sssi el sistema homogéneo tiene una unica solucion.

Cualquier solucion del sistema no homogéneo es igual a una solucion particular del sistema no homogéneo,
mds una solucion del sistema homogéneo.

Tonu = Tenu 1+ Tan (215)

Los subindices quieren decir: la solucién general del sistema no homogéneo es igual a una solucién
particular del sistema no homogeneo mas la solucién general del sistema homogéneo.
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Determinantes

El determinate es una funcién que se aplica a las matrices cuadradas dando como resultado un nimero:
det : R™" — R

A continuacién veremos dos formas de calcular el determinante. Hay una tercera por medio de permuta-
ciones pero no estd en este documento. Para n = 1,2, la definicién es muy sencilla:

det [au] =a (3.1)
det [an au] = a11a29 — 21412 (3.2)
a1 a2
Ejemplo 3.1.
det [—4] =—4

det [i g’] — 2(—5) — 4(3) = —22.

3.1 Calculo recurrente (por menores)

Si A e R™™™, A;; es una matriz de tamano (n — 1) x (n — 1), submatriz de A, obtenida al quitar de A la
fila 7 y la columna j.

Ejemplo 3.2.

(2 3 4
A=15 6 7
8 9 1

5 6

Az = B 9}

(3 4

Ao = 9 J

El céalculo recurrente del determinante de una matriz n x n se hace utilizando determinates de matrices
(n—1)x(n—1), que a su vez se obtienen por medio de determinantes (n—2) x (n—2) y asi sucesivamente.

El célculo del determinante por medio de la primera fila es:

40
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det(A) = (—1)"agy det(A1) + (=1)'Pajadet(Ar) + - - - + (=1)ay, det(A1,) (3.3)
Para una matriz 3 x 3,

det(A) =al det(AH) — a2 det(Alg) + a3 det(A13)

Ejemplo 3.3.

9 1 8 1 8 9

o.
e}
o+
co Ot N
© o w
— =T

= 2det [6 7]—3det [5 7]+4det [5 6]

= 2(6 — 63) — 3(5 — 56) + 4(45 — 48)
= 2(=57) — 3(=51) + 4(-3)
=27.

El determinante de A;; se llama el menor (i, j) y usualmente se denota por M;;, es decir
M;j = M;j(A) = det(Ay) (3.4)

Asi:

n

det(A) =) (=1)"ay; My,
j=1

El determinante se puede calcular por cualquier fila, no solo la primera, o por cualquier columna:

n

det(4) => (=1)"az det(Ay;)  por la fila i (3.5)
j=1
det(A) = Z(—l)”jaij det(A;j) por la columna j . (3.6)

=1

Ejemplo 3.4. Caélculo del determinante por la segunda columna.

2 3 4
det |5 6 7| = —3det 5 7 + 6det 2 4 — 9det 2 4
8 1 8 1 5 7
8 9 1
= —3(5 — 56) + 6(2 — 32) — 9(14 — 20)
= —3(—51) + 6(—30) — 9(—6)
= 27.

Una manera sencilla de calcular el determinante de una matriz A € R3*3 es mediante la Regla de
Sarrus:
1. Construir una tabla con las tres filas de A y debajo la primera y la segunda fila.

2. El determinante de A es igual a la suma de los productos “bajando” menos la suma de los productos
“subiendo”.
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Ejemplo 3.5. Calcular el determinante de

12 3
A=14 5 6
789
1 2 3
N
4 5 6
78 9
1 20 73
AN

4 5 6

det(A)=1-5-9 + 4-8:3 + 7-2-6—(7-5-3 + 1-8:-6 + 4-2-9)
= 45 + 96 + 84 — (105 + 48 + 72)
=225 —225=0

Para calcular el determinante de una matriz 4 X 4 es necesario calcular cuatro determinantes 3 x 3.
Normalmente se escoge la fila o columna con més ceros.

Ejemplo 3.6.
2 0 0 -3
01 2 3
A= 345 6
8 78 9
1 2 3 0 1 2
det(A) =2det |4 5 6| —(=3)det [3 4 5
789 8 7 8
det(A 0) +3(—6) = —18

3.2 Propiedades

1. A es invertible sssi det(A) # 0.

2. det(AB) = det(A) det(B).

3. det(A™) = (det(A))".

4. det(A") = det(A).

5. Si A es diagonal, triangular superior o triangular inferior,

det(A) = a11a922 - Qpn (37)

6. Si A tiene una fila nula, entonces det(A4) = 0.
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10.

11.

12.

13.
14.
15.

16.

Si A tiene dos filas iguales, entonces det(A) = 0.

. Si una fila de A es un multiplo de otra fila de A, entonces det(A4) = 0.

. Si una fila de A es combinacién lineal de otras filas de A, entonces det(A4) = 0.

Si A es invertible,

1
~ det(A)

det(A™1) (3.8)

Si en A se intercambian dos filas, el determinante cambia de signo.

Si se multiplica una fila de A por una constante, el determinante queda multiplicado por esa
constante.

det(cA) = " det(A).
Si a una fila se le suma un multiplo de otra fila, el determinante no se altera.
Las propiedades anteriores relativas a las filas, también son vélidas para columnas.

Si A se puede expresar como una matriz triangular superior por bloques con bloques diagonales
cuadrados, su determinante es el producto de los determinantes de los bloques diagonales:

A A - Ay
0 Aoy - Agp

det . = det(A11) det(Ago) - - - det(Ayp)
0 0 - Ay

Ejemplo 3.7. Calcular el determinante de

S O O Ut
O O O W o
O Oy O =
© N N ot

Esta matriz se puede escribir como una matriz triangular superior por bloques, con bloques diagonales
cuadrados:

det(A) = det [4 ﬂ det(6) det [g g]
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3.3 Areas y volumenes

* Sean z, y dos puntos de R%. El origen,  y v no deben ser colineales. El 4rea del paralelogramo
determinado por: (0,0), z y y (el paralelogramo de vértices (0,0), x, x +y y y) es

A= ‘det [‘”1 “] (3.9)
Y1 Y2
r+y
Yy
x
% Sean x, y, z tres puntos no colineales de R%. El drea del tridngulo con estos vértices es:
1 r1 X9 1
A= B det [y1 w2 1 (3.10)
VA4 1

X

* Sean z, y, z tres puntos no colineales de R3. El volumen del paralelepipedo determinado por z, v y z,
es decir, con vértices 0, z, x + vy, y, 2, c+ 2, x +y+ 2, y + z es:

r1 T2 X3
V=ldet |y1 y2 u3 (3.11)
Z1 k2 X3

r+y+=z
Y+ =z

0

% Sean x, y, z, u cuatro puntos no coplanares de R?. El volumen del tetraedro con estos vértices es:
Tr1 T2 I3 1

1
V= Llget |V ¥z w1
6 Z1 k2 Z3 1
1

Up U2 U3

(3.12)
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Ejemplo 3.8. Hallar el drea del paralelogramo de vértices (2,1), (7,2), (9,5), (4,4).

Primero es necesario hacer una traslacion para convertir un vértice en el origen. Por ejemplo restando a
cada vértice (2,1). Los nuevos vértices con: (0,0), (5,1), (7,4), (2,3).

5 1
A—‘det [2 3”

A= 13| = 13.

Ejemplo 3.9. Hallar el drea del tridngulo con vértices (3,1), (1,1), y (2,4).

1 311
A=—|det |1 1 1
2 2 41
=516
=3

También, conocidos los valores a, b, ¢, longitudes de los lados, se puede usar la férmula de Herén de

Alejandria:

A=pp—a)p-b)p—c), (3.13)
p=(a+b+c)/2, el semiperimetro.

a=||(1,1) = (3,1)]| =2
b=1|(1,1) = (2,4)| = V10
c=11(3,1) = (2,4)[| = V10
p=V10+1

A:\/(\/ﬁ+1)(\/ﬁ+1—2)(@+1—@)(\@+1—\/ﬁ)

A:\/(\/EJrl)(\/ﬁ—l):\/lO—l
A=3

Ejemplo 3.10. Hallar el volumen del paralelepipedo determinado por puntos (1,2,3), (5,2,1), (1,1,6),

v

1 2 3
det [5 2 1
1 16
=|—38/ =38
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Ejemplo 3.11. Hallar el volumen del tetraedro con vértices (1, 1,0), (5,1,0), (3,3,0) y (2,3,5).

1101
1 510 1
V=519t 13 53 o 4
2 3 5 1
1 20
——40] =2
gl ~40I=73

En este ejemplo sencillo, el volumen se puede calcular teniendo en cuenta que se puede considerar la base
formada por los tres primeros vértices, los tres tienen tercera coordenada nula. El drea de ese triangulo
es la misma del tridngulo de vértices (1,1), (5,1) y (3,3). Esta area es (4 x 2)/2 = 4. El volumen del
tetraedro es Bh/3, un tercio del area de la base por la altura, V =4 x 5/3 = 20/3.

3.4 Calculo del determinante por el método de Gauss

Es el método més usado y, para matrices sin una estructura particular, el mas eficiente (menor nimero
de operaciones). Consiste simplemente en triangularizar la matriz mediante operaciones del tipo F; <+ Fj
o Fi + cF;. El determinante de la matriz triangular superior resultante es simplemente el producto de
las entradas diagonales. El determinante de la matriz inicial es igual al determinante final multiplicado
por —1 elevado al nimero de intercambios.

Si en la iteracién j (se desea obtener ceros en la columna j debajo de la diagonal) no es posible obtener
un pivote nulo, es decir, A(j : n,j) = 0, el determinate de la matriz vale cero.

Ejemplo 3.12. Calcular el determinante de

0o -1 -3 -4
2 =2 3 4
A= —-10 7T =23 =27
4 —4 4 -4

F1 <~ F2
2 =2 3 4
0o -1 -3 -4
-10 7 =23 =27
4 —4 4 -4

Fy+5F, Fy—2F

2 -2 3 4

0 -1 -3 —4

0 -3 -8 -7

0 0 —2 —12]

F3—3F, ) ]
2 -2 3 4

0 -1 —3 —4

o 0 1 5

0 0 —2 —12]
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F4 + 2F3
2 =2 3 4
0o -1 -3 —4
0 0 1 5
0 0 0 —2

El determinante de la tdltima matriz es 2(—1)(1)(—2) = 4. Como hubo un intercambio, entonces el
det(A) = —4.

Ejemplo 3.13. Calcular el determinante de

2 3 4
A=|-14 -21 -23
12 18 30
Fy+7F, F3—6F];
2 3 4
0 0 5
0 0 6

Como no se puede colocar un pivote adecuado en la posicién (2,2), (es decir, A(2: 3,2) =0), entonces
det(A) =0.

3.5 Calculo de la inversa

Dada una matriz cuadrada, el cofactor en la posicién (i,7) es

Cij = Cl](A) == (—1)i+j det(Aij) = (—1)i+jMij . (314)

La matriz adjunta es la matriz formada por los cofactores,

Cin Ci2 -+ Cip
Cyy Oy - Cop
adi(A) = 21. 22 2
Cnl Cn? te Cnn
Dos resultados importantes relacionados:
Aadj(A)" =det(A) I (3.15)
Si det(A) #0
R adj(A)”* (3.16)
det(A) ‘ '
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Ejemplo 3.14.

2 3 4
A=1|5 6 7
8 9 9
det(A) =3
‘6 7
_ 1+1 _
CH—( 1) det _9 9_ =-9
012—(—1)1+2det Z g =11
_5 6:
_ (_1\1+3 - _
013 ( 1) det _8 9_ 3
([0 u -37"
A4:§ 9 —14 6
-3 6 —3
1 [—9 9 —37
A—lzg 11 —-14 6
| -3 6 —3]

3.6 Regla de Cramer

Permite resolver un sistema de ecuaciones cuadrado Az = b, con A invertible:

B det [b Ao Asg --- A.n]
= det(A)
det [Al b Asg --- An]
pu— .1
r2 dot(A) (3:.17)
B det [Al As -+ A, b]
n = det(A)

Para calcular x;, en el numerador esté el determinante de una matriz obtenida de A quitando la columna
1 y remplazandola por b.

Ejemplo 3.15. Resolver Az = b, donde

A= . b= |14

25

oo Ot N
© O W
©
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det(A) =3

|
Il
&\ o0
Il Il ©
© | =N k22) |
Il Il I
1 1 1
<+ I~ o M~ o <t 10
— N
[SrJEN=E e <t 10
— N Nl e))
0o <o | o
— N 0 00 10 00
1 1 1
+2 +2 +2
5] 3] |5}
o] = =
Il Il Il
— [\ [l
S 8 8



4

Espacios vectoriales

4.1 Definicion y ejemplos

El concepto de espacio vectorial es la abstraccion de las caracteristicas méds importantes de los vectores
usados en Fisica (por ejemplo, las fuerzas) o también de las matrices y de otros conjuntos usados en
Matematicas.

Un espacio vectorial es simplemente un conjunto en el que hay definidas dos operaciones, suma y producto,
que cumplen ciertas propiedades. La suma es entre elementos del conjunto. El producto es entre un
numero real y un elemento del conjunto.

Definicién 4.1. Un espacio vectorial real es una terna o tripla (V,suma, producto), donde V' es un
conjunto no vacio, suma es una operacién entre elementos de V', denotada x + y, y producto es una
operacién entre un nuimero real y un elemento de V', denotada simplemente ax (o algunas veces por za),
con las siguientes propiedades:

S.0 Para todo x,y €V, r+yeV.
S.1 Paratodo z,y,z € V, (t+y)+z=x+ (y+2).
S.2  Para todo x,y €V, rT+y=y+uw.
S.3  Existe un elemento 0 € V, tal que para todo x € V, z+0==z.
S.4 Para todo x € V existe T € V tal que z+x=0.
(4.1)
P.0 Para todo a € R y para todo x € V, ar V.
P.1 Para todo o, € Ry para todo z € V, a(fr) = (af)z.
P.2 Paratodoz eV, lx = z.
D.1 Para todo a, 3 € R y para todo x € V, (a4 B)x = ax + pux.
D.2 Para todo o € R y para todo z,y € V, alz +y) = ax + ay.

Los elementos de V se llaman vectores. En el producto ax, a es llamado el escalar. Asi, el producto
también se conoce con el nombre de producto por escalar. Mientras no haya lugar a confusion, el
elemento especial 0 € V' se denotard simplemente por 0. Para cada = € V, el elemento especial Z tal que
x + T = 0, se llama inverso aditivo de = y se denota simplemente por —z. Asi, se habla de resta, es
decir, x — y es simplemente x + (—y). Por la propiedad S.1, se puede escribir simplemente = + y + z. De
manera analoga, por la propiedad P.1, se puede escribir simplemente afz.

50
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Las propiedades de la suma se llaman, clausurativa, asociativa, conmutativa, modulativa e invertiva
(nombre no muy frecuente). Las propiedades del producto escalar se llaman clausurativa, asociativa y
modulativa. Las dos tltimas propiedades son distributivas.

Propiedades adicionales , que no hacen parte de la definicién:

0z =0 (4.2)
(-)z=—x (4.3)

También hay espacios vectoriales complejos, en ellos el producto por escalar se hace con un escalar en C.
En este documento, mientras no se diga lo contrario, si se habla de un espacio vectorial, se trata de un
espacio vectorial real.

En un espacio vectorial, dos vectores no nulos son paralelos si uno es un multiplo del otro. Sea V un
espacio vectorial, z,y € V, x # 0, y # 0 son paralelos si existe a € R tal que

r=ay. (4.4)

Ejemplo 4.1. El conjunto de matrices R™*"

espacio vectorial real.

con la suma y producto definidos en (1.1) y (1.2), es un

Ejemplo 4.2. El conjunto de niimeros reales R, con la suma y producto usuales, también es un espacio
vectorial real. Claro estd que R cumple otras propiedades y también es un cuerpo (estructura algebraica
mas sofisticada), pero es un espacio vectorial.

Ejemplo 4.3. El conjunto R?, es el conjunto de todas las parejas ordenadas reales,
]R2 = {(.T1,.T2) 1 T1,T2 € R} (45)

R? representa el conjunto de puntos del plano cartesiano, la primera coordenada es la coordenada hori-
[P}

zontal o abscisa o coordenada “z”, la segunda es la vertical u ordenada o coordenada “y”. El punto
(1, x2) también representa el vector que va desde el punto (0,0) al punto (z1, z2).

La suma y producto por escalar en R? se definen as:

x4 u=(x1,22) + (ur,u2) = (21 + u1, x2 + u2) (4.6)
ar = o(ry, re) = (axy, are) (4.7
4 Cliiez T tu
5 u/,,——”"‘/’/ ////
2
] x
0 x i x w i x i

R?, con esa suma y producto, es un espacio vectorial.
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Si se desea demostrar que un conjunto, definida la suma y el producto, es un espacio vectorial, es necesario
demostrar que se cumplen todas las propiedades. Generalmente estas demostraciones estan basadas en
las propiedades de lo niimeros reales. Si se desea demostrar que no es espacio vectorial, basta con dar un
contraejemplo, es decir, un ejemplo donde no se cumple una propiedad.

Por abuso de lenguaje y si no se presenta ambigiliedad, frecuentemente no se dice de manera completa que
tal conjunto con tal suma y tal producto es un espacio vectorial, sino que simplemente tal conjunto es un
espacio vectorial, sobreentendiéndose que la suma y el producto estdn definidas de manera “natural”. Asi,
por ejemplo, se dice frecuentemente, “R? es un espacio vectorial”, sobreentendiendo la suma y producto
naturales o candnicos (4.6) y (4.7).

Ejemplo 4.4. El conjunto R3, es el conjunto de todas las triplas o ternas ordenadas reales,
R? = { (21,32, 23) : 21,22, 73 € R}. (4.8)

R3 representa el conjunto de puntos del espacio, la primera coordenada es la coordenada “z”, la segunda
es la coordenada “y” y la tercera es la coordenada “z”. El punto (z1, z2, z3) también representa el vector
que va desde el punto (0,0,0) al punto (x1, x2, x3).

De manera analoga a R?, la suma y producto se definen asi:
T +y = (71,72,23) + (Y1, ¥2,¥3) = (21 + Y1, 22 + Y2, 23 + Y3) (4.9)
ar = a(x1, e, x3) = (ax1, X, x3) (4.10)
R3, con esa suma y producto, es un espacio vectorial.
Ejemplo 4.5. La generalizacién de los espacios anteriores es
R" = {(z1, 22, ..., zy) : 1, X2, ..., Ty, € R}, (4.11)
con las operaciones
T+ Yy = (':Clv‘er ,.’En) + (y17y2) 7yn) — (1E1 + Y1, T2 + Y2,y Tn + yn) (412)
ar = a(x1, 22, ..., Tn) = (ax1, AT, ..., aTy) (4.13)
También es un espacio vectorial.
Ejemplo 4.6.

Z2 = {(xl,xg) 1 T1,X2 € Z},
con las operaciones

T4y = (z1,22) + (y1,92) = (@1 + Y1, 22 + y2)
ar = oz, x2) = (az1, axs)

no es un espacio vectorial. Basta con mostrar un caso de una propiedad que no se cumpla. El producto
0.5(4,7) = (2,3.5) no esta en Z2.

Ejemplo 4.7. El conjunto Qy de polinomios de grado 2 (en una sola variable) con la suma y producto
por escalar “naturales” no es un espacio vectorial.

p(z) =2+ 3z —4

q(z) = —a*

p(z) + q(xr) =3z —4 no estd en Qo
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Ejemplo 4.8. El conjunto P, de polinomios de grado menor o igual a 2, con la suma y producto por
escalar “naturales” es un espacio vectorial.

Ejemplo 4.9. El conjunto P,, de polinomios de grado menor o igual a n es un espacio vectorial.
Ejemplo 4.10. El conjunto de todos los polinomios es un espacio vectorial.

Ejemplo 4.11. El conjunto de todas las funciones, de los reales en los reales, continuas, es un espacio
vectorial.

Hay tres conjuntos que son muy parecidos, pero son diferentes

RY™™ . matrices fila
R™1 . matrices columna

R™ : n-uplas

Para simplificar, en este documento, los conjuntos R™*! y R"”

conveniencia o facilidad de escritura,

son exactamente iguales. Asi, segun la

X1
€2

x = (21,22, ... Ty) = | . (4.14)
T,

2" =z oz o ) (4.15)

4.2 Subespacios

En un espacio vectorial V', un subconjunto U es un subespacio vectorial de V, si U también es un
espacio vectorial para la suma y producto definidos en V.

Para demostrar que U es un subespacio vectorial de V', seria necesario demostar que en U se cumplen las
diez propiedades (4.1). El siguiente teorema permite la comprobacién de una manera muchos mas corta.

Teorema 4.1. Sea (V, suma,producto) un espacio vectorial, U C V, U # (. U es un subespacio
vectortal de V' sssi:

e Para todo x, y en U, también x + y estd en U.

e Para todo x en U y para todo o en R, también ax estd en U.

En otras palabras, U es subespacio de V sssi U es cerrado para la suma y para el producto por escalar.

Una pequena conclusion indica que si 0 no estd en U, entonces U no es un subespacio de V. Sin embargo,
es posible que 0 esté en U y que U no sea subespacio vectorial de V.

Ejemplo 4.12. En cualquier espacio vectorial V', los conjuntos V' y {0} son subespacios de V. Son los
subespacios “triviales” de V.

En general la uniéon de dos subespacios no es un subespacio, pero la interseccién si.

Teorema 4.2. Sea V un espacio vectorial, U y W subsepacios vectoriales de V', entonces UNW también
es un subespacio vectorial de V. En general, st hay 3, 4, o cualquier cantidad de subespacios, la inter-
seccion de todos ellos, también es un subespacio.
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Ejemplo 4.13. Considere R?. Averigiie si la recta
U= {(xl,xg) S Rz LTy = 2$1}.

es un subespacio.

Sean © = (x1,22),y = (y1,y2) € U. Entonces xo = 221 y y2 = 2y1. = +y = (x1 + y1, 22 + 42),
xo+y2 = 221 + 2y1 = 2(x1 + y1). Luego x +y € U.

Sea a € R. ax = (awy, axs), axg = a2r; = 2(ax1), luego ax € U. Luego U es un subespacio de R2.

Ejemplo 4.14. Considere R2. Averigiie si la recta
U= {(1'1,1‘2) S R?: To = T1 —1—3}.

es un subespacio.

El punto (0,0) no estd en U, luego U no es un subespacio.

* Los tinicos subespacios vectoriales de R? son: R?, {(0,0)} y las rectas que pasan por el origen.

4.2.1 Rectas en R?

En R? una recta se puede representar de varias maneras. Las dos formas més usadas son las dadas por
las ecuaciones

xg =mx +b (4.16)
cr1+dry =e (4.17)

La primera no permite representar las rectas verticales. La segunda forma permite representar todas las
rectas. Unicamente se requiere que por lo menos uno de los valores ¢ y d sea diferente de cero.

En la primera forma una recta esta determinada de manera tinica por los valores m y b, es decir, si cambia
m o si cambia b, se tiene otra recta. En la segunda forma, dos ecuaciones aparentemente diferentes, definen
la misma recta. Por ejemplo

21‘1 - 3I2 = 4
—4x1 + 69 = —8
Para las rectas que pasan por el origen, las ecuaciones son
T = mx] (4.18)

cxr1 +dres =0 (4.19)

También se puede definir una recta que pasa por el origen como el conjunto de puntos multiplos de un
vector no nulo,

{t(p1,p2) : t R} (4.20)

por ejemplo

{t(6,—7):t € R}
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Los siguientes conjuntos, rectas que pasan por el origen, son exactamente iguales

{(z1,22) : 22 = 221},
{(z1,x2) : 221 — 22 = 0},
{(z1,x2) : —4x1 + 229 = 0},
{t(2,4) : t € R},

{s(-3,—6) : s € R}.

4.2.2 Rectas en R® y R

Mas adelante se verd el caso general de las rectas en R™. En esta subseccion esta el resumen sobre las
rectas de R3 o de R" que pasan por el origen. La caracterizaciéon (4.20) de la recta de R? que pasa por
el origen se puede generalizar inmediatamente a R® o R™.

Dado (p1,p2,p3) # (0,0,0), el conjunto

{t(p1,p2,p3) : t €R} (4.21)

es una recta en R? que pasa por el origen. Es la recta paralela al vector (p1, pa, p3).

Dado (p1,p2,...,pn) # (0,0, ...,0), el conjunto

{t(p1.p2, ... pn) : t ER} (4.22)

es una recta en R™ que pasa por el origen. Es la recta paralela al vector (p1,p2,...,pn).

Seanp € R", g € R", p#0, g # 0. La recta {tp : t € R} es igual a la recta {tq :t € R} sssip y q son
paralelos.

Ejemplo 4.15. Una recta que pasa por el origen es un subespacio. No importa que sea un recta de R?
o de R™.

4.2.3 Planos
En R3 el conjunto de puntos que cumplen la ecuacién
3x1 +4xo — bry =12

es un plano.
Sea (c1,c2,c3) # 0, a € R. El conjunto

{z eR3: 1wy + coma + ez = a} = {z € R3: "z = o} (4.23)
es un plano. El conjunto

{x € R®: cizy + cown + 323 = 0} = {x € R® : T2 = 0} (4.24)
es un plano que pasa por el origen (o que contiene al origen).

Ejemplo 4.16. Un plano que pasa por el origen es un subespacio de R3.
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Ejemplo 4.17. Averigiie si la interseccién de los planos definidos por las ecuaciones

—2x1 +6x9 —4x3 =0

—x1+20—23=0

es un subespacio. En caso afirmativo, dar la forma general de sus elementos.

Como se trata de dos planos que pasan por el origen, es decir subespacios, su intersecciéon también es un
subespacio.

FEn el caso general de la interseccién de 2 planos hay tres posibilidades:

e Los dos planos son paralelos y su interseccion es vacia.
e Los dos planos son diferentes y no paralelos, su interseccién es una recta.

e Se trata de dos planos iguales y su interseccién es el mismo plano.
Para la interseccién de dos planos que pasan por el origen, hay tinicamente dos posibilidades:

e Los dos planos son diferentes, su interseccion es una recta que pasa por el origen.

e Se trata de dos planos iguales y su interseccién es el mismo plano.

Para el ejemplo, es necesario resolver el sistema homogéneo, llevando la matriz de coeficientes a escalonada
reducida.

A:[_i (13 —4]’ E:[l 0 1/2}

- -1 0 1 —-1/2
Entonces
1
Ir = —51'3
Tro = §$3
T3 = T3
Forma general de la solucién
il —1/2
xo|l =s| 1/2
X3 1

La interseccién de los dos planos es la recta que pasa por el origen, paralela a (—1/2,1/2,1).

* Los subespacios de R? son: R3, {(0,0,0)}, los planos que pasan por el origen y las rectas que pasan
por el origen.
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4.2.4 Hiperplanos

El concepto de plano en R? se puede generalizar a hiperplano en R™.

Sea ¢ € R"™, ¢ # 0, a € R. Un hiperplano es un conjunto de la forma

H={zeR":ciz1 +caza+ -+ cpap =a} ={z e R": 'z = a}. (4.25)
Los hiperplanos de R? son los planos, los hiperplanos de R? son las rectas, los hiperplanos de R son los
puntos.

Ejemplo 4.18. Un hiperplano que pasa por el origen es un subespacio de R". Por ejemplo, el conjunto
de puntos de R® que satisfacen
2x1 — 329 + 4x3 + 1025 =0

es un subespacio de R®.

4.2.5 Espacio nulo de una matriz

Dada una matriz A € R™*", su espacio nulo, nticleo o kernel, es el conjunto

Ny={zeR": Az = 0}. (4.26)

Fécilmente se comprueba de manera directa que N4 es un subespacio de R™. O también, cada ecuacién
del sistema homogéneo es de la forma A;.x = 0, es decir, cada ecuacién define un hiperplano que pasa
por el origen, o sea, el espacio nulo de A es simplemente la interseccién de m hiperplanos que pasan por
el origen, luego N4 es un subespacio de R".

Vale anotar que A;.x = 0 corresponde a un hiperplano solamente si 4;. # 0. Cuando A;. es una fila nula,
el conjunto de puntos que cumplen la ecuacién A;.x = 0 es todo R".

Generalmente no basta con saber que N4 es un subespacio, es 1til conocer la forma de los elementos de
Ny. Esto se logra llevando A a la forma escalonada reducida y expresando la solucién o las soluciones
en funcién de las variables libres.

Ejemplo 4.19. Halle N4 para

1 2 3
4 5 6
A= 780
1 2 4]
La matriz escalonada reducida es ) ;
100
010
E= 0 01
10 0 0]
Traducido a ecuaciones,
r1 = 0
Tro = 0
x3 =
0=

Entonces N4 = {(0,0,0)}.
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Ejemplo 4.20. Halle N4 para

2 4 6 8
A=11 1 1 1
0 2 4 6
La matriz escalonada reducida es
1 0 -1 -2
E=10 1 2 3
00 0 O

Traducido a ecuaciones,

O también

r1 = x3 + 214

To = —2x3 — 314

T3 = I3

Ty = X4
I 1 2
i) o —2 -3
r3| 11 te 0
X4 0 1

Entonces N4 es el conjunto de vectores de la forma anterior, donde s y ¢ pueden tomar cualquier valor.

El siguiente teorema muestra una caracterizacion de los subespacios de R™.

Teorema 4.3. Todo subespacio de R™ es el espacio nulo de alguna matriz.

En esta caracterizacién no hay unicidad, es decir, dado un subespacio U hay muchas matrices A tales
que Ny =U.

4.3 Combinaciones lineales y espacio generado

Sea V un espacio vectorial, v!, v2, ..., v*¥ € V, a1, ag, ..., a € R. El elemento de V
a1vt + agv? + -+ apo® (4.27)
es una combinacién lineal de v!, v2, ..., v*.

Por ejemplo, sean v! = (1,2,3), v2 = (1,0, —1). Entonces u = (—1,4,9) es combinacién lineal de v! y v?
ya que
u = 20! — 302,

El conjunto generado por v!, v2, ..., v¥ es el conjunto de todas las combinaciones lineales de v, v?,

k.
ey UM

2

gen(v!, 0% ., 0F) = {ago! Fagv® + - Fapv® g, a0, a0 €RY. (4.28)
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Por la definicién de combinaciones lineales, gen(v!, ...,vk) es un subconjunto no vacio de V. Ademds

cumple la importante siguiente propiedad.

Teorema 4.4. Sea V un espacio vectorial, v', v2, ..., v* € V, entonces gen(vl, ...,vk) es un subespacio

vectorial de V.

Ejemplo 4.21. Encuentre la forma del espacio generado por v = (2,3,4), v2 = (6,0,1).

1 1

Como v, v? estdn en R3, entonces G = gen(v!, v?) es un subespacio de R3.
Sea © = (11, x2,x3) € G, entonces
av' + agv? = (21,22, 73)
@1(2,3,4) + 2(6,0,1) = (v1, 72, 73)
Al desarrollar e igualar coordenada a coordenada,
2c1 + 6y = 11
3a1 + 0ag = xo

4o 4+ lag = x3

Aqui las incognitas son oy y ao. La matriz aumentada es

2 6 T
3 0 x9
4 1 I3

Al buscar una matriz escalonada reducida hasta la columna 2, las primeras operaciones dan:

_1 3 %.fl
3 0 a9
_4 1 I3
_1 3 %xl
0 -9 —%xl + )
_O —11 221+ z3
Finalmente

1 0 129
01 %561 — gfL‘Q
0 0 —éah - %352 +x3

Para que este sistema sea consistente se requiere que

= ! + 0
——r1 — —X xrq =
g¥1 T g2t
22
x1+?x2—6$3:0
22
1 = ——x9 + 613
3
Asi, los puntos que estan en G son de la forma
I —22/3 6
To| =S 1{+¢]0

I3 0 1
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Se puede evitar el trabajo con x1, o y x3 y hacer las cuentas inicamente con sus coeficientes. Para esto
se contruye una matriz, pegando a la derecha de la matriz inicial, la identidad (en este ejemplo, I3).

=W N

6 1 00
0 010
10 01
Ahora se calcula la matriz escalonada reducida parcial hasta la columna 2 (véase 1.6.3).
10 0 1/3 0
01 1/6 -1/9 0
0 0 —-1/6 —11/9 1
Se observa claramente que en las tres ultimas columnas estdn los coeficentes de x1, x2 y 3 obtenidos
anteriormente.

Ejemplo 4.22. Encuentre la forma del espacio generado por v! = (0,1,2), v? = (3,4,5), v® = (6,7,0).

1 2

Como v!, v? y v3 estdn en R3, entonces G = gen(v!, v?,v?) es un subespacio de R3.

Sea x = (x1,x2,z3) € G, entonces
1 2 3
a1v + av® + agv’ = (1, T2, T3)
Al desarrollar e igualar coordenada a coordenada,

Oaq + 3ag + 6ag = x1
lag + 4o + Tag = x9
2a1 4+ bas + 0ag = x5

Este sistema es cuadrado, el determinante de la matriz es —24, luego siempre tiene solucién (ademds
tinica), luego G = R3.

Ejemplo 4.23. Encuentre la forma del espacio generado por v! = (2,3,4,5), v2 = (6,7,8,9), v* =
(8,10,12,14), v* = (4,6,8,10).

1,2

Como v, v2, ... estdan en R*, entonces G = gen(v!

, 02, 03, 1)4) es un subespacio de R*.
Sea x = (x1,x2,r3,24) € G, entonces

a1l + asv? + asv® + agt = (x1,x2,23,24)
a1(2,3,4,5) + a2(6,7,8,9) + «3(8,10,12,14) 4+ 4(4,6,8,10) = (21, z2, T3, x4)

Al desarrollar e igualar coordenada a coordenada,

21 4 6as + 8ag + 4oy = 21
3a1 + Tag + 10a3 + 6y = 29
4o 4+ 8ag + 12ai3 + 8y = a3

Saq + 9o + 14as 4+ 100y = x4

Aqui las incégnitas son «q, ..., a4. La matriz aumentada es
2 6 8 4 x
3 7 10 6 =z
4 8 12 8 ux3
5 9 14 10 z3
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Es necesario obtener la matriz escalonada reducida hasta la columna 4. El resultado es:

1012 —Ig+ %:@
01 10 %xl — §$2
0 0 0 0 x1—2x2+4+x3
0 0 0 0 2x1—3x9+ 24
Si se hubiera hecho sin la escritura explicita de x1, ..., x4, se empieza con
26 8 41000
3 710 6 01 00
4 8 12 8 0 0 1 0
59 14 10 0 0 0 1
La escalonada reducida parcial hasta la columna 4 es:
1012 =7/4 3/2 00
0110 3/4 —-1/2 00
0 00O 1 -2 10
0 00O 2 -3 0 1

Para que el sistema inicial sea consistente se necesita que
1 — 2292 +23=0
201 —3x2+ 24 =0
Al resolver este sistema homogéneo, buscando la matriz escalonada reducida, se obtiene

T = 3r3 — 224

To = 2.%3 — T4

O también
I 3 -2
€I . 2 —1
I3 = ° 1 +i 0
Ty 0 1

Los vectores de la forma anterior son los que estdn en el conjunto gen(v',v?,v3,0v%). ©

Para averiguar si v estd en gen(vl, v2, ..., v*) basta con averiguar si la ecuacién
M ) M

v:a1v1+agv2+~-+akvk

tiene solucién (las incégnitas son aj, ag, ..., ag). Si tiene por lo menos una solucién, entonces v €
1,2 1,2 k)

gen(v!,v?,...,v%). Si no tiene solucién, entonces v ¢ gen(v',v?, ..., v
Ejemplo 4.24. Averiguar si v = (1,4,7,9) estd en gen((1,2,3,4),(1,1,1,1),(5,6,7,8)).

(Es (1,4,7,9) combinacién lineal de estos tres vectores?

041(1,2,3,4) + ag(l, 1,1, 1) + 013(5,6,7, 8) =7 (1,4, 7, 9)
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La matriz aumentada del sistema es:

=W N
— = =
oo J O Ot
© 3 =

Un paso intermedio en la busqueda de la solucién puede ser,

3
-2
0
-1

S O ==

0
1
0
0

o O O

El sistema es inconsistente, es decir, (1,4,7,9) no estd en gen((1,2,3,4),(1,1,1,1),(5,6,7,8)). <
Sea A € R™*™, Asociados a esta matriz hay tres subespacios:

e N4 el espacio nulo de A, Ng = {x € R™! : Az = 0}, subespacio de R™*!.

e El espacio generado por las columnas de A, llamado usualmente espacio columna de la matriz,
Ca = gen(A.q, Ao, ..., A.,), subespacio de R™*!, Este espacio es la imagen o recorrido de la
siguiente funcién:

f:R* - R™
f(z) =Ax
Ca = f(R")

e F, , el espacio fila o espacio generado por las filas de A, subespacio de R'*".

Los més usados son los dos primeros, el espacio nulo y el espacio columna.

4.4 Independencia y dependencia lineal

Definicién 4.2. Sea V un espacio vectorial, v!, v2, ..., v™ vectores (elementos) de V, m > 1. El conjunto
C = {v',v?,...,v} es linealmente independiente (también se dice que los vectores v', v?, ..., v son
linealmente independientes) si la inica combinacién lineal igual al vector nulo es la combinacién lineal
trivial. Cuando hay una combinacién lineal diferente de la trivial que sea igual al vector nulo, se dice

que el conjunto es linealmente dependiente.

Al aplicar la definicién para un ejemplo especifico, se obtiene un sistema homogéneo, donde las incégnitas
son los escalares de la combinacién lineal. Si el sistema homogéneo tiene como tnica solucion la trivial,
entonces C es linealmente independediente. Si el sistema homogéneo tiene soluciones diferentes de la
trivial, entonces C es linealmente dependiente.

Sea A la matriz de coeficientes del sistema homogéneo y E su matriz escalonada reducida. Si F no
tiene columnas libres, entonces los vectores son linealmente independientes. Si E tiene por lo menos una
columna libre, entonces los vectores son linealmente dependientes.
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Ejemplo 4.25. Averiguar si los vectores v! = (1,2,3) y v? = (4,5, 6) son linealmente independientes.

a1(1,2,3) + as(4,5,6) = (0,0,0)
(041 + 4, 200 + bas, 3 + 6042) = (0, 0, 0)

a1+ 4oy =0
2c1 + bag =0
3aq + 6ag =0

s

A=12 5

0]

E= |0 1

Como F no tiene columnas libres, la soluciéon trivial es la tnica solucién del sistema homogéneo y los dos
vectores son linealmente independientes.

Ejemplo 4.26. Averiguar si las matrices

, [-1 0 , [3 4 s [-7 —4
A‘[12}’ A‘[56]’ =1 9]

son linealmente independientes.

~1 0], f34], [-7 —4]_fo o
Mg o T2y ] TN 2l T |0 0

—a1 +3as — Taz =0
dog — 43 =0

a1+ bag —az3 =0
2a1 + 6ag + 2a3 =0
-1 3 -7

0 —4

A= 1

OO O = N
OO = O O Ot i
e

Como E tiene una columna libre (la tercera), entonces las tres matrices son linealmente dependientes.
Hasta acd ya estd la respuesta al ejercicio propuesto. Se puede comprobar que una solucién no trivial es
a1 = —4, as = 1, ag = 1. Fécilmente se verifica que —4A" + A% + A% = 0.

Ejemplo 4.27. Averiguar si los polinomios
pi(z) =a® =4, po(x) =2 -2, ps(a)=2+2,

son linealmente independientes.
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ar(z? —4) +ag(z —2) +az(z+2) =0
a1z? + (g + ag)xr — 4ag — 2a + 203 =0
a1 =0

ag+a3 =0

—4aq — 200 + 2a3 =0

1 00
A= 0 1 1
-4 -2 2]
1 0 0]
E=1]01 0
00 1]

Como FE no tiene columnas libres, entonces los tres polinomios son linealmente independientes.

* Si en un conjunto estd el vector nulo, entonces es linealmente dependiente.
* Un conjunto de un tnico vector no nulo es linealmente independiente.

* Un conjunto de dos vectores no nulos es linealmente independiente si y solamente si uno de los vectores
no es multiplo del otro.

* Un conjunto es linealmente dependiente si y solamente si alguno de sus vectores es combinacién lineal
de los otros.

4.5 Bases y dimension

Definicién 4.3. Sea V un espacio vectorial, B = {v!,...,v™} C V. Se dice que B es una base de V si B
es linealmente independientemente y genera todo V.

Ejemplo 4.28. B = {(1,0),(0,1)} es una base de R?, es la base canénica de R?.
B = {(1,0,0),(0,1,0),(0,0,1)} es una base de R3, la base canénica.
B=1{(1,0,..,0),(0,1,...,0),...,(0,0,...,1)} es una base de R™, la base candnica y se denotard por B..

Ejemplo 4.29. B = {(1,2),(3,4)} es una base de R2.
B =1{(1,2),(3,4),(5,6)} no es una base de R2.

B ={(1,2),(3,6)} no es una base de R2.

B ={(1,2)} no es una base de R2.

Ejemplo 4.30. El conjunto de matrices
10 0 1 00 0 0
0 0o/ |0 0" |1 o |0 1|

Ejemplo 4.31. Los polinomios

es una base de R2*2,

pi(z) =1, pa(z) ==, ps(z)=2"

forman la base candnica de Ps, conjunto de polinomios de grado menor o igual a dos.
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Ejemplo 4.32. Los polinomios

pl(-f) = 1’ pQ(x) =z, pg(l‘) = .’172, veey pn-‘rl(‘r) = xn7

forman la base candnica del conjunto de todos los polinomios.

Teorema 4.5. Si un espacio vectorial tiene una base finita, entonces cualquier base tiene el mismo
numero de elementos.

v" El ntimero de vectores de una base finita de un espacio vectorial es la dimensién del espacio vectorial.
Se denotara por dim(V'). Para el espacio cuyo tnico elemento es el vector 0, la dimensién es 0.

Ejemplo 4.33. dim(R?) = 2, dim(R?) = 3, dim(R") = n, dim(R?**?) = 4, dim(P) = 3,
dim(Pg) =4.

*x Sea B = {v!,v?,...,9™} C V espacio vectorial de dimensién n. Si m = n y B es linealmente indepen-
diente, entonces B genera a V' y es base de V.

*x Sea B = {v!,v?,...,u™} C V espacio vectorial de dimensién n. Si m = n y B genera a V, entonces B
es linealmente independiente y es base de V.

*x Sea B = {v!,v?,...,u™} C V espacio vectorial de dimensién n. Si m > n, entonces B es linealmente
dependiente.

*x Sea B = {v!,v2 ..., v™} C V espacio vectorial de dimensién n. Si m < n, entonces B no genera a V.

4.5.1 Base del espacio generado

Sea V un espacio vectorial, C = {u',u?,...,u*} CV y U = gen(u!,u?, ...,u¥). Entonces

dim(U) < k.

Si C es linealmente independiente, entonces dim(U) = k y C es base de U.

Si C es linealmente dependiente, entonces dim(U) < k y C no es base de U. Hay que buscar un subconjunto
de C, del mayor tamano posible que sea linealmente independiente. Este conjunto sera base y su cantidad
de elementos serd la dimensién de U. Cualquier otro subconjunto de C, linealmente independiente con
esa misma cantidad de elementos serd también base.

A modo de ejemplo, supongamos de k = 4. Si C es linealmente independiente, entonces dim(U) =4y C
es una base de U.

Si C es linealmente dependiente, es necesario considerar los subconjuntos con 3 elementos. Si alguno de
ellos es linealmente independiente, este conjunto es una base y dim(U) = 3. Fin de la bisqueda.

Si todos los subconjunto de 3 elementos son linealmente dependientes, entonces dim(U) < 3 y es necesario
considerar los subconjuntos de 2 elementos. Asi sucesivamente hasta obtener la diemensién y una base.

El proceso descrito anteriormente puede ser rapido en algunos casos, pero en muchos casos puede ser
muy dispendioso. Un proceso mas general estd en la siguiente seccion.
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4.5.2 Base del espacio nulo, del espacio columna y del espacio fila de una matriz

Sea A € R™"™ y E su matriz escalonada reducida. Para obtener la dimensién de N4 y una base es
necesario resolver el sistema homogéneo Ax = 0. Este sistema es equivalente a Fx = 0.

dim(N4) = nimero de columnas libres de E.

Para obtener una base de N4, se obtiene la forma general de la solucidn, es decir, se expresan todas las
variables, bdsicas y libres, en funcién de las variables libres. A la primera variable libre se le asigna el
valor 1 y a las otras variables libres se les asigna 0 y se obtiene un x solucién de Fx = 0. El vector x
obtenido hace parte de una base.

En seguida se asigna el valor 1 a la segunda variable libre y 0 a las otras variables libres. El vector x
obtenido hace parte de la base que se esta construyendo y asi sucesivamente. Al final de este proceso se
tiene una base de Ny4.

Ejemplo 4.34. Hallar la dimensién y una base del espacio nulo de A,

00 0 3 12
A=10 2 4 0 -6
0 5 10 6 9
Su matriz escalonada reducida es
01 2 0 -3
E=10 0 0 1 4
00 0O 0

Como hay tres variables libres, x1, x3 y x5, entonces dim(N4) = 3. La forma general de la solucién de
Ex =0es:

T =1
To = —2x3 + 3x5
T3 = I3
x4:—4$5
Is5 = Ts5
1 0 0
1 =1 0 x1 =0 -2 z1 =0 3
z3=0, x=1|0], r3=1, x= 1], rz3=0, x= 0
x5 =0 0 x5 =0 0 5 =1 —4
0 0 1

Estos tres vectores forman una base de Ny4.

Ejemplo 4.35. Hallar la dimensién y una base del espacio nulo de A,

1 2
A= 1|4 5
7 8

S Oy W

Esta matriz es cuadrada, det(A) = 27, luego E' = I5. Entonces dim(N4) =0, N4y = {(0,0,0)}.



4. ESPACIOS VECTORIALES 67

Para obtener la dimensién y una base del espacio generado por las columnas de una matriz A, se podria
seguir el proceso presentado en la seccién anterior.

Un procedimiento, generalmente, mas eficiente es el siguiente. Se obtiene F la matriz escalonada reducida
de A.
dim(C4) = numero de filas no nulas de E
= ntimero de columnas bésicas de

= rango(A) = rango(F)

Sea r = rango(A). Para escoger de manera segura y rapida r columnas de A linealmente independientes,
basta con tomar las columnas de A correspondientes a las columnas bésicas en E.

Ejemplo 4.36. Hallar la dimensién y una base de Cy4, espacio generado por las columnas de A,
00 0 3 12
A=10 2 4 0 -6
05 10 6 9
Su matriz escalonada reducida es
1 2 0 -3
001 4
000 O

E =

o O O

Entonces dim(Cy4) = 2. Una base de Cy estd formada por las columnas

0 3
21, lo|. ©
5 6

Para obtener una base del espacio fila de A, generalmente el camino més réapido también comienza con
la obtencién de la matriz escalonada reducida de A.

dim(Fa) = dim(Cjy)
= numero de filas no nulas de £
= numero de columnas béasicas de F

= rango(A) = rango(FE)

Las filas no nulas de E forman una base de F)4. Para la matriz A del ejemplo anterior, [0 1 20 —3]
y [0 0 0 1 4} forman una base de Fj.

En algunos casos cuando se conoce r = rango(A) y A tiene una estructura especial, puede ser mas rapido,
encontrar un subconjunto de r filas de A linealmente independientes.

Sea V un espacio vectorial de dimensién finita. Algunas veces es necesario saber si dos conjuntos de
vectores C; y Cy (ambos subconjuntos de V') generan el mismo subespacio. Un proceso natural, no
necesariamente el méas eficiente, consiste en tomar cada vector de C; y averiguar si estd en gen(Cq) y de
igual forma tomar cada vector de Cy y averiguar si estd en gen(Cy). Si en todos los casos la respuesta es
afirmativa, entonces gen(C;) = gen(Ca).

Otra manera, equivalente a la anterior y algunas veces mas eficiente, consiste en escoger B; C C; base de
gen(Cy) y B2 C Co base de gen(Ca). Si el niimero de elementos de B es diferente del niimero de elementos
de Ba, entonces gen(Bi) = gen(Cy) # gen(B2) = gen(Cz2). Si By y B2 tienen igual nimero de elementos,
basta con verificar si cada elemento de By es combinacién lineal de los vectores de Bs. No es necesario
verificar si cada elemento de By es combinacién lineal de los elementos de ;.
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Ejemplo 4.37. Sean C; = {(4,3,6,5),(0,2,2,4),(3,4,5,6)} v Co = {(1,2,3,4),(1,1,1,1),(1,0,1,0)}.
Averiguar si gen(C1) = gen(Ca).

Como los dos conjuntos son linealmente independientes, entonces C; es base de gen(Cy) y Cq2 es base de
gen(Cq). Después de algunas operaciones, se constata que cada elemento de C; es combinacién lineal de
los elementos de Ca. Luego gen(C;) = gen(Ca). <

Ejemplo 4.38. Sean C; = {(—10,—-15,—-20,—25), (-6, —12, —14, —20),(-7,—7,—11,10)} y C2 =
{(-=7,-9,-13,-15),(-1,-1,-3,-3),(—4,—3,—6,—5) }. Averiguar si gen(C;) = gen(Cs).

En este ejemplo también los dos conjuntos son linealmente independientes y son base de sus generados.
El tercer vector de C; no es combinacion lineal de los vectores de Co, luego los subespacios generados son
diferentes. <

4.6 Coordenadas y matriz para cambio de base

% Sea V un espacio vectorial y B = {v!, ..., v"} una base de V. Si v € V, entonces v se puede expresar

de manera tnica como combinacién lineal de v!, ..., v™.

v Sea V un espacio vectorial, B = {v!,...,v"} una base de V, v € V. Con los n escalares de la
combinacién lineal se construye un vector de R" llamado el vector de coordenadas de v con respecto
a la base B.

v=aqv! + a® + -+ au"

aq

(0%)
g = (a1, a2,y ...;an) =

Qp
Aunque una base se definié simplemente como un conjunto de vectores con dos propiedades, para
la definicién de coordenadas con respecto a una base, es indispensable tener en cuenta un orden
determinado en la base. Al cambiar el orden de los elementos de la base el conjunto no cambia pero la
base si cambia para la consideracion de las coordenadas. Entonces cuando se requiera tener en cuenta
el orden se habla de base ordenada.
Ejemplo 4.39. Seav = (—9,0,—11), B. = {(1,0,0),(0,1,0),(0,0,1)}, By = {(1,2,3),(-1,0,1),(2,1,5)}.

Obviamente
[v]p. = (—9,0,—11)

Para hallar las coordenadas de v con respecto a B es necesario resolver un sistema de ecuaciones prove-
niente de la igualdad
a1(1,2,3) + ae(—1,0,1) + a3(2,1,5) = (—9,0,—11)

Al resolverlo se obtiene
[U]Bl = (2, 3, _4)

* Para el caso de R", si B = {v!,...,0"}

[v]g = [v! v?* - v”]flv (4.29)



4. ESPACIOS VECTORIALES 69

Ejemplo 4.40. Hallar las coordenadas de v = (—9,0,—11) y de w = (3,2,1) con respecto a B =
{(]-a 25 3)7 (717 O’ 1)’ (27 17 5)}

- -1

1 -1 2 -9
vlg= |2 01 0
|3 1 5 —11
[—1/10  7/10 —1/10] [ -9 2
= |—-7/10 —1/10  3/10 0| = 3
| 1/5 —2/5 1/5] [ —11 —4
[—1/10  7/10 —1/107 [3 1
[wlp=|-7/10 —1/10  3/10 21 =1]-2
1/5 =2/5 1/5] |1 0

Ejemplo 4.41. Halle las coordenadas de A con respecto a la base B en el espacio de las matrices
triangulares superiores 2 x 2, donde

31 10 1 1 1 1
a=[5 4] #={lo o] [o o) [o 1]}
El sistema de ecuaciones es

a1 +as+oaz3 =3
as+az =1

a3 — 4
Al resolverlo se obtiene

[A}B =(2,-3,4).

v' Sea V un espacio vectorial de dimension finita, By y By bases de V. La matriz A tal que
A[v]Bl = [U]Bz (4'30)

para cualquier v € V se llama la matriz de cambio de base (o de transicién) de B; a By. En
palabras, al multiplicar A por las coordenadas de un vector cualquiera v con respecto a By se obtienen
las coordenadas de v con respecto a 3. Usualmente se denota por

Mp, B, (4.31)

x Sean las bases By = {v},...,v"} y By = {w!,...,w"}. Las columnas de Mg, s, son las coordenadas de
los v’/ con respecto a Ba,

M3152 = [[Ul]Bz [02]32 T [Un]Bz] (4'32)
* En el otro sentido
MBQBI = [[w1]31 [w2]31 T [wn]Bl] = (MB1BQ)71 (433)

* Si Bg es otra base,

Mp,B; = Mp,; Mp, 5, - (4.34)
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*x En R", sean B. la base canénica y By = {v!,...,v"} otra base. Entonces las matrices que permiten
pasar de By a B, y de B, a By son:

Mg, = [vt ©v* - "] (4.35)
Mg, = (Mg,s,)"" = [v's. [Ps, - [")g] " =o' o -0 7] (4.36)
* En R", sean las bases B; = {v!,...,o"} y By = {w!,...,w"}. Usando (4.34),
Mp,B, = MB.B, Mp,B. (4.37)
Mg, = [w' w? o w?] [l 02 o on] (4.38)

Laigualdad (4.37) dice simplemente: para pasar de las coordenadas con respecto a 31 a las coordenadas
con respecto a Ba, primero se pasa de B; a B, usando Mg, 5, (matriz a la derecha) y después, se pasa
de B. a By usando Mp_p, (producto por la izquierda).

Ejemplo 4.42. Obtener la matriz para cambiar de base, de By a Bs, donde

B ={(1,2,3),(-1,0,1),(2,1,5)}, By ={(1,1,1),(1,1,0),(0,1,1)}.

-1

110 1 -1 2 2 0 6
Mgg, = |1 1 1 2 0 1|=]-1 -1 -4
101 3 15 1 1 -1

Para una pequena verificacién, sea v = (—9,0,—11). Al calcular las coordenadas con respecto a las dos
bases, [v]g, = (2,3,—4) y [v]p, = (—20,11,9). Por otro lado,

2 0 6 2 —20
-1 -1 -4 3| = 11
1 1 -1 —4 9

4.7 Ejercicios

1. Considere la funcién redondeo, que a un nimero real le asigna el entero mas cercano. En caso de
empate y de un nimero positivo, se le asigna el entero superior. Con empate y nimero negativo,
se le asigna el entero inferior.

r(3.8) =4
r(3.2) =3
r(3)=3
r(3.5) =4
r(—3.5)=—4

Considere Z? con las siguientes operaciones:

r+y = (r1,72) + (y1,92) = (¥1 + Y1, 72 + Y2)
ar = ory, z2) = (r(axy),r(azs))
Por ejemplo:  0.5(4,7) = (r(2), 7(3.5)) = (2,4).

. Este conjunto con estas dos operaciones es un espacio vectorial?
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2. Considere V =R, = {z € R: x > 0} con las siguientes operaciones para z,y € V' y a € R.

rdy=2ay

a®x=7z"
. Este conjunto con estas dos operaciones es un espacio vectorial?
3. En R?*2 diga cuales conjuntos son subespacios. Cuando no sea un subespacio, dé un contraejemplo.

Las matrices simétricas
Las matrices triangulares superiores
Las matrices triangulares inferiores

Las matrices diagonales

)
)
)
)

e) Las matrices invertibles
) Las matrices no invertibles
) Las matrices tales que aj; + aza =0
) Las matrices tales que |a11 + a2 =0
) Las matrices tales que |aj1| + |agz| =0
)

Las matrices tales que ajiage =0



Producto interno, norma

5.1 Producto interno

Definicién 5.1. En un espacio vectorial'! V, un producto interno o producto interior o producto
escalar? o producto punto es una operacién que a cuaquier pareja de vectores asigna un niimero y que
cumple ciertas propiedades:

(x,y) € para todo z,y € V, (5.1)
(x,y) = < , ) para todo z,y € V, (5.2)
(r+ =2, > (z,y) + (2,9) para todo z,y,2 € V, (5.3)
(o, y < ) para todo z,y € V' y para todo a € R, (5.4)
(x,z) > para todo z € V, (5.5)
(x,z) = si y solamente si 2 = 0. (5.6)

En este documento, para el producto interno, se utilizard la notacién (x,y) o algunas veces x -y, de uso
frecuente en R™ (por eso se le llama algunas veces producto punto). Asi, las propiedades se escriben:

-y €R,

Ty =y,

(z+2)y=(vy) +(zy) =2y+2zvy,

(az)-y = a(zy) = a z-y,

-z >0,

x-x =0, siy solamente si z =0.
Ejemplo 5.1. En R?, (z,9) = x1y1 + 2292 es un producto interno. En R,

(z,y) = T1y1 + T2y + - + TpYn (5.7)
es un producto interno, es el producto interno candénico de R".
((1,2,3),(2,0,—1)) =1x2+2x04+3x (-1) =—1.
Ejemplo 5.2. En R?,
(z,y) = 4w191 + Sr2ys

también es un producto interno.

'En este documento se trata de espacios vectoriales reales.
2No confundir con producto por escalar.

72



5. PRODUCTO INTERNO, NORMA 73

Ejemplo 5.3. En el R™*",
(A,B) = (A, B) = tr(A"B) = tr(AB") (5.8)

es un producto interno, es el producto interno canénico de R™*",

12 3 2 0 1
A_[4 5 6}’ B_[—1 0 1]’

-2 0 5
A'B=|-1 0 7

009
(A,B) =17.

Mientras no se diga lo contario, si V= R™ o0 si V = R™*", se supone que el producto interno es el
producto interno candnico.

El producto interno canénico (5.8) se puede ver simplemente como el producto interno canénico de dos
vectores en R™" formados con las filas (o con las columnas) de las dos matrices. En el ejemplo anterior

<A?B> = <(17213a47576)7 (270711_1707 1)> =T

Ejemplo 5.4. Sea V = (|, el conjunto de funciones continuas en el intervalo [a, ],

b
(f. ) = / f(@)g(x)dz, (5.9)

es un producto interno, es el producto interno canénico de Cigyp)-

Ejemplo 5.5. Sea V' = P,, el conjunto de polinomios de grado menor o igual a dos. Sea p(z) =
ag + a1z + asz?, q(x) = by + bz + box?. Sean ty < t; < tg tres ndmeros reales fijos. Los siguientes son
algunos ejemplos de producto interior:

(p,q) = aobo + arb1 + azbs, (5.10)
9
(p.q) = / p(z)q(z)dz, (5.11)
7
(p,q) = p(to)a(to) + p(t1)q(t1) + p(t2)q(tz) (5.12)

Teorema 5.1. Teorema de Cauchy-Schwarz. Sea V un espacio vectorial, { , ) un producto interno,
entonces

(@, 9)? < (z,2)(y,y) - (5.13)

Algunas veces se llama teorema de Cauchy-Schwarz-Bunyakovsky.

* Sean x # 0, y # 0,

(z,y)>
o)y =
e my (5.14)

Viz, o) (y,y)
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v' La anterior desigualdad permite definir el coseno del angulo 6 entre dos vectores no nulos,

(z,9)
(z, 2)(y,y)

cosf =

(5.15)

Esta definicién, para vectores de R? o de R?, coincide exactamente con el significado geométrico. Para
otros espacios, es simplemente la generalizacién.

v' Dos vectores z, y, son perpendiculares u ortogonales si
(x,y) =0. (5.16)

De nuevo, esta definicién, para vectores de R? o de R3, coincide exactamente con el significado
geométrico. Para otros espacios, es simplemente la generalizacion.

Ejemplo 5.6. Sean x = (3,1), y = (2,5), 2z = (—2,6), 6 el angulo entre z y y.

cosf = 1 = 0.6459422

/10 x 29
6 = 0.8685394 rad = 49.76°

(x,z) =0, luego = y z son perpendiculares.

Ejemplo 5.7. Averiguar si A y B son ortogonales, con
1 2 -9 1
Sl LR

(A,B) = tr [‘12 é] —0

Luego A y B son ortogonales.

Ejemplo 5.8. Hallar la medida de los dngulos del tridngulo con vértices A = (1,2), B = (2,5) y
C = (6,4).

cos 04 = (u,v)/+/{u,u){v,v)

cosf4 = 11/4/10 x 29 = 0.645942

64 = 49.76°
u=A—-B=(-1,-3)
v=C—-B=(4,-1)

cosO0p = (u,v)//(u,u)(v,v)

cosfp = —1/4/10 x 17 = —0.076696
Op = 94.40°
fc = 35.84°
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5.2 Norma

Definicion 5.2. En un espacio vectorial V', una norma es una funcién v que a cada vector asigna un
numero real, con las siguiente propiedades:

v(r) R para todo x € V, (5.17)
v(z) >0 para todo x € V, (5.18)
v(z) =0 si y solamente si x = 0, (5.19)
v(azx) = |alv(z) para todo x € V' y para todo a € R, (5.20)
viz+y) <v(z)+v(y) para todo z,y € V. (5.21)

Una norma corresponde a una manera de medir el tamano o magnitud de un vector. En un espacio
vectorial puede haber varias normas. Para una norma es mas frecuente la notacién || || (andlogo a valor
absoluto que es una norma en R). Asf las propiedades son:

||lz]| € R, (5.22)
[lz]| > 0, (5.23)
||z|| = 0 si y solamente si x = 0, (5.24)
|loz|| = |l ||, (5.25)
llz + yll < [lz|[ + [lyll- (5.26)

La propiedad (5.21) o (5.26) se conoce como desigualdad triangular ya que en un tridngulo la longitud
de un lado siempre es menor o igual a la suma de las otras dos.

lyll / Iz +9] 2

|||

Teorema 5.2. Sea V' un espacio vectorial y ( , ) un producto interno. Entonces
lzl] = V{2, ) (5.27)

es una norma.

v En R™, con el producto interno canénico, la norma obtenida

lzl| = V{w, @) = \Ja? + 2§+ +a2 (5.28)

se llama la norma euclidiana. Mientras no se diga que se trata de otra norma, se supone que || || es
la norma euclidiana. Esta norma, en R? y R3, corresponde exactamente a la distancia entre el origen
y el punto z.
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v' En R"™ sea p > 1. La siguiente es la norma de Ho6lder de orden p:

n 1/17
|zl = (Z \%‘!”) (5.29)

v Los casos més usuales son p = 1, p = 2 (la norma euclidiana) y el limite cuando p — oo:
n
lelh = il
i=1
n 1/2
|ll] = [|=[l2 = (Zﬁf) ,
i=1

max |z;|.
1<i<n

[1#][max = [[2]oo

En Scilab, norm(x,1), norm(x), norm(x,’inf’) o, por ejemplo, norm(x,5) para la norma de
Holder de orden 5.

v' En R"™*"™ la utilizacién de (5.8) y (5.27) da lugar a la norma de Frobenius

[|A]|F = /tr(ATA) = Zzagj. (5.30)

=1 j=1

En Scilab, norm(A,’fro’). Para matrices hay otras normas méas usadas, las normas matriciales
) )
generadas por las normas vectoriales, fuera del alcance de este resumen.

v En Ps la utilizacién de (5.10) y (5.27) da lugar a la norma

Ipll = \/ag + af + a3

donde p(x) = ap + a1x + azx?.

: B 12 -3
Ejemplo 5.9. Sean z = (3,—4), A = [4 5 —6}
|zllh =7,
||]| = [|z|]2 = 5,

|||l max = 4,

1Al = V1.

* Con la utilizacién de la norma euclidiana, la desigualdad de Cauchy-Schwarz (5.13) y la definicién de
coseno (5.15) para vectores no nulos quedan asf:

| (@, 9) | < =] ]yl] (5.31)
(z,y)

cosf) = ——F—
[ |yl

(5.32)
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5.3 Proyeccion ortogonal

v’ Sean z,y € V espacio vectorial con producto interno, z # 0. La proyecciéon ortogonal de y sobre
x, denotada por m,(y), es un miltiplo de x tal que x y y — m,(y) son ortogonales.

Y
y — s (y)
Wm(y)
T2 (y) = tx
(z,y —tx) =
(z,y) —t(z,2) =0
(z,y)
" e
_ly ey
W) ) T P 539
Ejemplo 5.10. Sean = = (5,1), y = (2,3). Calcular m,(y) y my(z)

() = ;%(5, 1) = (2.5, 0.5)

my(@) = 13(2,3) = (2.3)

5.4 Bases ortogonales, ortonormales

v Sea V un espacio vectorial y B = {v!,...,v"} una base. Se dice que B es una base ortogonal si

(W v?)y =0 si i #j. (5.34)
Si ademas,
o' =1, (5.35)
es decir,
(v',v") =1 para todo 1, (5.36)

se dice que es una base ortonormal.

% Sea V un espacio vectorial de dimensién n, B = {v!,...,v"} C V en el que no est el vector nulo. Si
(Wol) =0 si i#j,
entonces B es una base ortogonal.

Ejemplo 5.11. En R"”, la base candnica es una base ortogonal y ortonormal. B = {(1,2,3),(1,1,—-1),(-5,4,—1)}
es una base ortogonal. Al dividir cada vector por su norma se obtiene una base ortonormal:

{(0.2673, 0.5345, 0.8018), (0.5774, 0.5774, —0.5774), (—0.7715, 0.6172, —0.1543) }
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5.4.1 Ortogonalizacion de Gram-Schmidt

Mediante este proceso se puede obtener a partir de un conjunto {v!,....,v™} linealmente independiente
un conjunto {w?, ....,w™} ortonormal ((w',w’/) =0sii# jy (w',w’) =1) tal que

gen(v!) = gen(uw!)
gen(v!,v?) = gen(w!, w?)

gen(vh,v?, ..., v™) = gen(w!, w?, ..., w™)

Hay dos enfoques, primero se ortogonaliza y después se normaliza, o bien, directamente se ortonormaliza.

y' =o' (5.37)
2 .1
2 2 < Y >
y _ 5.38
(yl, yh) (5.38)
3 .1 2
3 5 (v°,y) (v°,y%)

Yy = — — 5.39
(yt,yt) (2,92 (5.39)
y4 _ 4 <U4ay1> <U47y2> y? — <U47y3> y3 (540)

(yt,y) (2, 9?) (3,93)

yi
w' = = (5.41)
[y
Ortonormalizacion directa:

y1 = ! (5.42)
w' =y /|y (5.43)
y =2 - <v2, wl) wt (5.44)
w? = /| (5.45)
v =0® — (03wl w! — (03, w?) w? (5.46)
= /|1y (5.47)
yt =t = (h wl)w! = (0! w?) w? — (0! W) w? (5.48)
wt =y (5.49)

Ejemplo 5.12. Aplicar la ortogonalizacién de Gram-Schmidt a

= (1, 1, 1, 1)

= (1, ;0)

(0,1,4 0)

=(-1,0,1,2)
yt=(1,1,1,1)
y? = (1,0,—1,0)
y® = (0.75,-0.25,0.75, —1.25)
y* = (0.1818,—0.7273, 0.1818, 0.3636)
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=(0.5,0.5,0.5,0.5)

w? = (0.7071,0,—0.7071,0)

w? = (0.4523, —0.1508, 0.4523, —0.7538)
wt = (0.2132, —0.8528, 0.2132, 0.4264)

Ortonormalizacion directas:

w! (0 5,0.5,0.5,0.5)

y = (1, ,0)
(0 7071,0,—0.7071,0)
= (0.75,—0.25,0.75, —1.25)

w® = (0.4523, —0.1508, 0.4523, —0.7538)
= (0.1818, —0.7273,0.1818, 0.3636)
= (0.2132, —0.8528, 0.2132, 0.4264)

5.5 Complemento ortogonal

v' Sea V un espacio vectorial con producto interno, C un subconjunto no vacio de V. El complemento
ortogonal de C es el conjunto de vectores de V ortogonales a los elementos de C,

L ={veV:(vz)=0, para todo z € C}. (5.50)

* Si C # (0, entonces C es un subespacio vectorial de V.
* VE={0}, {03r=V, (cY)" =gn(C).
* Si W es un subespacio vectorial de V', entonces (W+)+ = W.
*x Si V es de dimensién finita,
dim (gen(C)) + dim(C*) = dim(V). (5.51)
* Si W es un subespacio vectorial de V', entonces
dim(W) + dim(W+) = dim(V). (5.52)
Ejemplo 5.13. Si C = {(1,2,3)}, entonces C* es el plano
1 + 229 + 323 = 0.
Ejemplo 5.14. Si C es la recta {t(1,2,3) : t € R}, entonces C* es el plano
1 + 229 + 3x3 = 0.
Ejemplo 5.15. Si C = {(1,2,3),(1,1,1)}, entonces

J‘:{xGR3:x1+2x2+3x3:O y x1+x2+x3 =0}
— (z e R [1 ; ﬂ — 0},

es decir, es el espacio nulo de esa matriz. Al buscar la matriz escalonada reducida, la base del espacio
nulo tiene un solo vector, (1, —2,1). Entonces C* es la recta

{t(1,-2,1) : t € R}.
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Rectas y planos

6.1 Rectas

v' Sea V un espacio vectorial, por ejemplo R", a € V, p € V, p # 0. La recta que pasa por a y es
paralela al vector p, o la recta que pasa por a con vector director p, es el conjunto

R={a+tp:teR}. (6.1)

Algunas veces no se escribe en notacién de conjuntos y se dice simplemente la recta
a+tp,
sobreentendiéndose que es el conjunto de puntos de la forma anterior cuando t varfa en los reales. Por
ejemplo,
(2,3) +t(2,1)
(1,0,—1) 4+ s(2,4,0)
(1,2,4,8) +7(2,—1,1,5)

Algunas veces se habla de las ecuaciones paramétricas de la recta, simplemente son n ecuaciones de la
forma z; = a; + p;t. Por ejemplo para la tltima recta,

r1 =1+ 2t
To=2—1t
rx3 =4+t
rqy =8+ 5t

Averiguar si un punto b esta en la recta a + tp, se puede hacer de dos maneras. La primera es considerar
el sistema de n ecuaciones b = a + tp con una incognita. El sistema tiene solucién si y solamente si b esta
en la recta. La segunda consiste en averiguar si los vectores b — a y p son paralelos.

80
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Ejemplo 6.1. Averiguar si b = (—5,5,1,—5) estd en la recta (1,2,4,8) + 7(2,—1,1,5).

El punto b no esta en la recta ya que el sistema

—-5=1+4+2t
5=2-—1
1=4+1¢

-5 =8+5t

no tiene solucién. De otra forma b —a = (—6,3, —3,—13) no es paralelo a (2,—1,1,5).

Dos rectas son paralelas si son paralelas a vectores paralelos. Dos rectas son iguales si son paralelas y
tienen un punto comun, en este caso todos los puntos son comunes.

6.2 Hiperplanos

v  Dados c € R", ¢ #0 y a € R, un hiperplano es el conjunto

Heo=H={ceR":c"z =a}. (6.2)

En R? un hiperplano es una plano, por ejemplo, {(x1,72,23) : 2z1 — 3x2 + 423 = —10}. En R? un
hiperplano es una recta, por ejemplo, {(z1,22) : 51 — 622 = 1}. En R un hiperplano es un punto, por
ejemplo, {z € R : 3z = 2}. El conjunto {(x1, e, x3, x4, x5) : 201 —3x9+4x3+25 = —10} es un hiperplano
de R®.

Por facilidad y mientras no haya confusion se habla del hiperplano dando simplemente la ecuacién sin
utilizar la notacién de conjuntos. Asi por ejemplo se habla del hiperplano 2xy — 3xo + 4x3 + x5 = —10.

Si z y z son dos puntos de H, entonces
c'(x—2)=0. (6.3)

Por esto se dice que c es perpendicular al hiperplano H o que ¢ es un vector normal a H.
v" Dos hiperplanos son paralelos si sus vectores normales son paralelos.

Los hiperlanos 1 + 222 + 323 +4x4 =5 y —3x1 — 6x2 — 9x3 — 1224 = 1 son paralelos.

Otra manera de determinar un hiperplano es mediante n puntos x!, 22, ..., 2™ que estén en él y tales que

2?2 — !, 23 — 2!, ..., 2™ — 2! sean linealmente independientes. Se requiere entonces encontrar un vector
¢ no nulo y perpendicular a estos n — 1 vectores (las diferencias). Esto da como resultado un sistema
homogéneo de n — 1 ecuaciones con n incégnitas. Cualquier solucién no nula es un vector c.

3 1

b=t —2l, Lyt =2

Sean 32 =z " 1
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En forma matricial

vi vyl
viows o v
yr Yy Y

Una vez conocido ¢, se calcula el valor a = ¢"2* con cualquier z* (el resultado es el mismo).

Ejemplo 6.2. Determinar el hiperplano que pasa por los puntos zl = (—=2,-5,-2,-2), 22 — (0,~1,-2,-2),
3 =(=3,-5,-3,1), z* = (-3, -3, -2, -3).

y? = (2,4,0,0)
y3 = (_1707 _17 3)
yt=(-1,2,0,-1)

Resolver el sistema Ac = 0, con

24 0 0
A=|-1 0 -1 3
-1 2 0 -1

Una solucién es ¢ = (—1/2, 1/4, 7/2, 1). También sirve ¢ = (=2, 1, 14, 4). Asf a = 2! = —-37. El
hiperplano es
H = {($1,$2,$3,1’4) s —2x1 + 2o + 1das + 4xy = —37}.

6.3 Distancia de un punto a un hiperplano

Seac € R", ¢#0, H={x € R": ¢"z = a} un hiperplano. Dado b € R" se puede encontrar la distancia
de b a H y también p, el punto de H ma&s cercano a b, también llamado la proyeccion de b sobre H.

Como c es ortogonal a H, se pusca p en H tal que:

p=>b-+tc
c'p=a«o
c'(b+tc) =«
Entonces,
a—cth
t= " (6.4)
p=bttc (6.5)
T
—c'b
dist (b, H) = [¢]]|cf| = 12— (6.6)

[lel]
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Como una recta es un hiperplano de R? y un plano es un hiperplano de R3, las férmulas anteriores se
pueden aplicar para la distancia de un punto a una recta de R? o para la distancia de un punto a un
plano.

Ejemplo 6.3. Hallar la distancia del punto (1,2,3,4) al hiperplano x; — x9 + 2x3 — 3x4 = 6.

_6-(-7) _13

t

15 15
13
p=(1,2,3,4) + 1=(1,-1,2,-3) = (28/15,17/15,71/15,7/5)
dist = [|b — p[| = 3.3565856

Ejemplo 6.4. Hallar la distancia del punto b = (4, —2) a la recta 221 — 3z2 = 5, y el punto de la recta
mas cercano a b.

52 -84 27 9

= —— =~ —0.69
t 419 13
9 34 1
=(4,-2)— —(2,-3)= [ =, — | =~ (2.62,0.077
p=4-2)~ (23 (13,13) (2.62,0.077)
distancia = [ =9I ~ 2.5
V13

6.4 Distancia de un punto a una recta de R”

Sea a,d € R", d # 0, R={a+td:t € R} una recta. Dado b € R" se puede encontrar la distancia de b a
R y también p, el punto de R mas cercano a b, también llamado la proyeccion de b sobre R.

p=a+td
(p—b)"d=0 (6.7)
(a+td—1b)'d=0
T
g b-a)d ;TC;) d (6.8)
p=a+td (6.9)

dist(b, R) = ||b — p|| (6.10)
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Ejemplo 6.5. Hallar la distancia entre el punto b = (4, —2) a la recta (1,—1) 4 ¢(6,4).

b—a=(3,-1)
 36+16 26
7 34 1
=(1,-1)+ —(6,4) = | =, —
p=(-1+ 5060 = (3.55)
V1053
distancia = [|(4, —2) — (34/13,1/13)|| = [|(18/13, —27/13))|| = 5 ~ 2.50

Obsérvese que la recta 2xq7 — 3x2 = 5 es la misma recta (1,—1) + #(6,4). Obviamente los resultados
coinciden.

6.5 Distancia entre dos rectas de R?

Si las rectas no son paralelas, se cortan y su distancia es cero. Supongamos entonces que las dos rectas
son paralelas.

Sean R={u+tf:t € R}y S ={v+sg:seR} las dos rectas tales que f = kg.
dist(R, S) = dist(v, R) = dist(u, S) (6.11)

Ejemplo 6.6. Hallar la distancia entre las rectas R = {(1,2)+¢(—3,4) : t € R} y S ={(3,1)+7(6,-8):
7 € R}.

Las dos rectas son paralelas. Para calcular dist( (1,2),5):

b—a=(-2,1)
t=-1/5
p=(9/5,13/5)
dist =1
Para calcular dist((3,1), R):
b—a=(2,-1)
t=-2/5
p=(11/5,2/5)
dist =1

6.6 Producto vectorial

Est4 definido tinicamente en R3. También se llama producto cruz. Dados x, y en R3, el producto vectorial
es un vector de R3,

i j k
xxy=det |z1 m2 x3|, (essimplemente notacion)
Y1 Y2 Y3



6. RECTAS Y PLANOS 85

donde i = (1,0,0), j = (0,1,0), k = (0,0, 1).

i j ok

rxy=det |z x2 x3]|, (6.12)
Y1 Y2 Y3
r Xy =i(z2ys3 — y2x3) — j(z1y3 — y173) + k(2192 — y122) (6.13)
r Xy = (T2y3 — Y223, —T1Y3 + Y123, T1Y2 — Y122 ) (6.14)
Propiedades

ux0=0 (6.15)
yxx=—(xxy) (6.16)
(az) xy = a(z xy) (6.17)
xx (y+2)= (xxy)—l—(mxz) (6.18)
2t (zxy) = (6.19)
y'(x xy) = es decir, = X y es perpendicular a z y a y. (6.20)
Sixxy= 0, entonces x es paralelo a y (6.21)
||z x y|| = drea(paralelogramo(0, =, y)) (6.22)
%Hx « y|| = drea(trigngulo(0, z, y)) (6.23)

donde paralelogramo(0, z,y) es el paralelogramo determinado por 0, x y y, es decir, el paralelogramo de
vértices 0, z, © +y y y. Este resultado es andlogo a (3.9), pero ahora z y y estdn en R3. Obviamente el
paralelogramo estd, contenido en un plano de R3, el plano determinado por 0, z y .

r+y

Ejemplo 6.7. x = (1,2,3), y = (2,—1,1)

i j k
xXy=det |1 2 3
1 1
)

2
=i(2—-(-3)) —j(1 —6) + k(-1 —4)
— 5i+ 5j — 5k
= (5,5,—5).
Ejemplo 6.8. z = (1,2,3), y = (-2, —4, —6)
ik
x X y = det 1 2 3
-2 —4 -6
=i(—12+12) —j(—6+6) + k(-4 +4)
— 0i + 0j + Ok

=(0,0,0),
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luego = y y son paralelos.

6.6.1 Producto triple escalar o producto mixto

r1 T2 I3
z-(yxz)=det |y1 Y2 Y3 (6.24)
Z1 k2 Z3
Ejemplo 6.9.
(1,2,3) - ((4,5,6) x (7,8,0)) = (1,2,3) - (—48,42, —3) = 27
1 2 3
=det |4 5 6| =27
7 80
Propiedades
y-(zxz)=—x-(yx2) (6.25)
z-(yxz)=y-(zxz)=2(xxy) (6.26)
|z - (y X z)| = volumen(paralelepipedo(0, z, y, z)) (6.27)

El paralelepipedo determinado por 0, x, y y 2 es el paralelepipedo cuya tapa inferior tiene como vértices
0, z, z+yy y. Los vértices de la tapa superior son: z, z + z, ¢ +y + z y y + z. Este resultado, (6.27),
es exactamente el mismo (3.11).

6.7 Planos

Un plano es simplemente un hiperplano de R3. Sea ¢ € R?, ¢ # 0, a € R,
P={zecR3: "z =al. (6.28)
Por ejemplo, si ¢ = (2,-3,4) y a = 10,
P = {(x1,m2,23) : 221 — 3w2 + 423 = 10}.
También, por facilidad, se habla del plano

2x1 — 3xo + 4x3 = 10
Six,yeP,

c'(x—y)=0 (6.29)

6.7.1 Plano determinado por el vector normal y un punto

Sea ¢ € R3, ¢ # 0, el vector normal y a un punto del plano:

P={zecR®: "z =c"a}. (6.30)
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v" Dos planos son paralelos si sus vectores normales son paralelos.

Ejemplo 6.10. Obtener el plano de vector normal (2, —3,4) que pasa por el punto (1,0, —1).

2x1 — 3wy + 4x3 = (2,—-3,4) - (1,0, —1)
2331 — 3.732 + 4.733 =-2

6.7.2 Plano determinado por tres puntos

Sean wu, v, w tres puntos distintos no colineales (no estan en la misma recta).

c=(u—v) %X (u—w)
a = uno de los tres puntos
P={zcR®: "z =c"a}.

Si ¢ = 0, entonces los tres puntos son colineales.

Ejemplo 6.11. Hallar la ecuacién del plano que pasa por los puntos v = (1,2,3), v = (1,1,1), w =
(2,4,-5).

u—v=1(0,1,2)
u—w=(-1,-2,8)
c=(u—v)x(u—w)=(12,-2,1)
cru=11
1221 — 229 + 23 =11

6.8 Distancia de un punto a un plano

Es un caso particular de la distancia de un punto a un hiperplano.

Si el plano es P = {(x1,z2,23) : c121 + coxa + csxs = a} y b = (b1, by, b3),

by + caby + cabs — b—
dist(b, p) = (201 T2 tesbs mal _Jerb—af (6.31)

\/cf—l—c%—i-c% [lel]
Oé—C1b1—CQb2—03b3 a—c-b
c%—l—c%—i—c% c-c

t:

(6.32)
p=>b+tc punto del plano més cercano a b. (6.33)

Ejemplo 6.12. Hallar la distancia del punto b = (=9, 6,5) al plano —2z1 + 3 + 223 = —2.

dist = A=,
3
_9_34
t= 2y
9

p=1(-9,6,5)+(—4)(-2,1,2) = (-1,2,-3).
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6.9 Distancia entre dos rectas de R?

Sean a,p,b,q € R3, p#0, ¢ # 0 y las dos rectas
R={a+tp:teR}
L={b+sq:seR}

La distancia entre las dos rectas es

[(a—10)-(pxq)|
llp x 4|

dist(R, L) =

88

(6.34)

Ejemplo 6.13. Hallar la distancia entre las rectas (—3,9,8) +¢(3,—-2,—-2) y (3,2,1) +#(-2,1,2).

a—b=(-6,7,7)
pxq=(-2,-2,-1)
(a=b)-(pxq)=-9
lp > qll =3
dist =3

6.10 Distancia entre dos rectas de R"

Sean a,p,b,q € R™ p £ 0, ¢ # 0 y las dos rectas

R={a+tp:teR}
L={b+sq:seR}

Se buscan, x en R, y en L, tales que

dist(R, L) = ||z — y||

Entonces

(a+tp—b—sq)-p=0
(a+tp—b—sq)-q=0

Resolver el sistema 2 x 2, con incognitas t y s

(p-p)t—(p-q)s=(b—a)p
(p-t—(q¢-q)s=(b—a)-q

Construir

Tr=a+tp
y=>b+sq
dist(R, L) = ||z — y]|

(6.37)
(6.38)
(6.39)
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Ejemplo 6.14. Hallar la distancia entre las rectas (—1,0, —4, 3)+%(4,2,2,2) y (1,0,—1,0) +t(—4, —3,—-3,-3)

t=3/2
s=-—1
x=(53,—-1,6)
y=(5,3,2,3)

dist = 4.242641

Ejemplo 6.15. Hallar por este método, la distancia entre las dos rectas de R3, del ejemplo 6.13:
(—3,9,8) +t(3,—-2,-2) y (3,2,1)+t(—2,1,2).

b—a=(6-7,-7)

5 5[4

t =

s=1
z=(3,5,4)
y=(1,3,3)

dist = 3
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Funciones lineales

xscf

7.1 Definiciéon y ejemplos

Definicion 7.1. Sean U, V espacios vectoriales. Se dice que la funcién f : U — V es una funcién
lineal o una transformacién lineal si para todo z, y en U y para todo o € R,

flx+y) = f(x)+ fy),
flax) = af(z).

* Si f es lineal, entonces

Si f(0) # 0, entonces f no es lineal. Sin embargo, si f(0) =0, f podria ser no lineal..

£(0) = 0.

Ejemplo 7.1.

f:R—=R, f(x) =3z +4, no es lineal.

f:R—=R, f(z) = 3z, es lineal.

f:R =R, f(x) =4, no es lineal.

f:R—=R, f(x) =0, es lineal.

f:R =R, f(x) = |z|, no es lineal.

f:R? =5 R, f(z1,72) = 221 — 3x2 + 1, no es lineal.
f:R?2 =R, f(z1,22) = 221 — 329, es lineal.

f:R? =5 R, f(z1,72) = 2x172, no es lineal.
f:R—=R% f(z) = (3w, —4x), es lineal.

f:R —=R2 f(x)=(0,0), es lineal.

f:R—=R? f(z) = (3z + 1, —4x), no es lineal.

f:R?2 = R2, f(x1,20) = (221 + 3x2, 21 — T2), es lineal.
f:R?2 = R2 f(x1,22) = (x2,71), es lineal.

f:R?2 = R2, f(zx1,22) = (x1 + 2, 2122), no es lineal.

f:R3 = R?, flx1,x9,23) = [

1 1 ol [%2|>es lineal.

2 3 —4] 1
T3

Sea A € R™*" f:R" — R™, f(x) = Az, es lineal.

90

(7.3)
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Sea A € R™ ™ f(A) = A" es lineal.

Sea A € R™*" f(A) = A" A no es lineal.

Sea A € R™", f(A) = A+ AT es lineal.

Sea M € RP*™ una matriz fija, A € R™*", f(A) = M A es lineal.

Sea u € R™! un vector fijo, la proyeccién de z sobre u (5.33), 7, (z) es lineal.

Ejemplo 7.2. Sea f : R? — R? la funcién que obtiene el punto simétrico con respecto al eje horizontal:

Esta funcién, f(x1,x2) = (1, —x2), es lineal.
La simetria con respecto al eje vertical, g(x1,x2) = (—x1,x2), es lineal.
La simetria con respecto a la recta zo = x1, también es lineal: h(xy,z2) = (x2,z1).

La rotacién de un cuarto de vuelta (7/2 radianes o 90 grados) en el sentido antihorario,

p(x) «

p(x1,22) = (—x2,21) es lineal.

La rotaciéon de un angulo 6 en el sentido antihorario:

r(z1,22) = (cos(f)x1 — sen (0)xa, sen (0)x1 + cos(0)x2)

ol Pt e {1 ]

es lineal.

7.2 Algunas propiedades

Sean A y B conjuntos, f: A — B una funcién cualquiera, C C A, D C B.

v f(C)={f(z):x € C} C B eslaimagen de C por f.

vV f(A)={f(z):x € A} C B es la imagen o recorrido de la funcién f.
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vV f[TYD)={r € A: f(x) € D} C A es la imagen inversa o preimagen de D.
Observacion: f(f~1(D)) C D pero no es necesariamente igual a D. Andlogamente, C C f~1(f(C)).

A

* Sean U, V espacios vectoriales, f : U — V lineal, U’ subespacio vectorial de U, V' subespacio vectorial
de V. Supdngase, cuando se requiera, que U y V son de dimension finita. Entonces:

1.
2.

No Uk w

10.

f(U’) es subespacio vectorial de V. En particular, f(U) se llama el espacio imagen de f.

f esta perfectamente determinada si se conoce f(u'), f(u?), ..., f(u™) para {u',...,u"} una base
de U.

f71(V") es subespacio vectorial de U. En particular, f~1(0) se llama el nticleo o kernel de f.
dim(U’) > dim(f(U")).

Si B = {w!,w?,...,w*} es una base de U’, entonces f(U’) = gen( f(w'), f(w?), ..., f(w")).

f es uno a uno si y solamente si el nicleo es igual a {0}.

Si los vectores de U, w', w?, ..., w* son linealmente independientes y f es uno a a uno, entonces

fwh), f(w?), ..., f(w*) son linealmente independientes.

Si By = {w',w?,...,w*} es una base de U’ y f es uno a uno, entonces { f(w'), f(w?), ..., f(w*) }
es una base de f(U).

. Sea By = {u!,u?,...,u"} una base de U. Si g: U — V es otra otra funcién lineal y g(u’) = f(u?)

para i = 1,...,n, entonces g(x) = f(z) para todo x € U, es decir, f = g (es la misma propiedad
2., dicha de otra manera).

dim(U ) = dim( f(U) ) + dim( f~1(0)) (7.4)

En palabras, la dimensién del dominio (espacio de salida) es igual a la dimensién del espacio
imagen mas la dimensién del ntcleo.

La dimensién de la imagen de f se llama el rango de f. La dimension del nicleo de f se llama
la nulidad de f.

dim(U ) = rango( f) + nulidad(f). (7.5)
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Dado U’ subespacio de U, para encontrar f(U’) se puede aplicar el siguiente proceso: encontrar una base
de U’; encontrar las imdgenes de los elementos de esta base; hallar una base del espacio generado por
estas imégenes.

Ejemplo 7.3. Sea f : R? — R3 definida por f(z1,z2,23) = (721 — 929 + 423, —621 + Twy — 323,71 +
3xg — 2x3), U = gen((1,2,3),(1,1,1),(3,5,7)). Encontrar una base de f(U’).

E =

Ol—‘[\DII\ICﬂw

1
1
1
0
1
0

Como las variables bdsicas son z1 y 2, entonces una base de U’ es By = {(1,2,3),(1,1,1)}

f(1,2,3) =(1,-1,1)
f(1,1,1) =(2,-2,2)

f(U") =gen((1,-1,1), (2,—2,2)). Una base de f(U’) es {(1,—1,1)}. En este ejemplo, U’ es un subespa-
cio de R? de dimensién dos, es decir, un plano que pasa por el origen. Su imagen es una recta que pasa
por el origen. <

Dado V' subespacio de V, para encontrar f~!(V’) se puede aplicar el siguiente proceso. Supongamos
por facilidad que f : R™ — R™, definida por f(x) = Az, donde A € R™*" es una matriz fija. Cuando
f:U — Veslineal y U y V son otros espacios de dimensién finita, la representaciéon matricial (siguiente
seccién) permite no perder generalidad al suponer que f(x) = Az.

e Encontrar B’ = {v!,...,v*} base de V.

e Plantear el sistema de ecuaciones,
Az = ajol 4+ - + agof,

con variables x1, ..., Tp, a1, ..., ai, es decir, el sistema homogéneo

Az — aqvt — - — ago® = 0.

O sea, construir la matriz

A= [A —l . —Uk]

e Calcular la matriz escalonada reducida.

e Obtener la solucién general del sistema homogéneo, en funcién de las variables libres.

e Dar a las variables libres los valores 1,0, ...,0, luego 0, 1,0, ...,0, luego ... y finalmente 0,0, ...,0, 1.

Los vectores z obtenidos seran generadores de f~(V").

Estos dltimos tres pasos se pueden ver como: construir una base del espacio nulo de A y de estos vectores
tomar unicamente las primeras n entradas. Como se trata del conjunto generado, la matriz A también
se puede construir [A vl vk].
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Ejemplo 7.4. Sea V' = gen( (6,2, —8), (-3, —1,4), (—4,—8,10) ). Hallar f~*(V’) para la funcién f(z) =
Az, con
1 -1 1 0
A= 1 0 2 2
-2 2 =2 =2

Una base de V' es {v!,v?} = {(6,2, —8),(—4,—8,10)}. Es necesario resolver

Az = ajv' + agv?

equivalente al sistema homogéneo
Az — aqvt — agv? =0

La matriz de coeficientes del sistema es

1 -1 1 0 —6 4
1 0o 2 2 =2 8
-2 2 =2 -2 8 -10

Su matriz escalonada reducida es

10 2 0 —6 6
0110 0 2
0001 21
La solucién general es de la forma

T = —2x3 + 61 — 6ag

To = —T3 — 2009

3 = I3

Ty = —2000 — (9

a1 = (1

g = (g

Dando a las variables independientes, x3, a1, g, los valores 1,0,0, 0,1,0 y 0,0,1, se obtiene

1 -2 6 —6
z2| | —1 0 -2
x3| 1|’ 0]’ 0
T4 0 -2 -1

Entonces f~1(V’) = gen( (-2, —-1,1,0),(6,0,0,—2), (-6, —2,0,—1)).

Ejemplo 7.5. Sea f(z) = Az, con

-2 -1 2 2
A=|-1 -1 1 0
-1 -1 1 0

Hallar f=*(gen(v!)), con v! = (1,2,3).
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Siguiendo los mismos pasos:

10 -1 -2 0
E;=[01 0 20

00 0 01

Una base de f~!(gen(v')) es

1 2

0 -2

1]’ 0

0 1

En esta caso la variablle o es bésica y debe valer 0. Esto quiere decir que los tinicos x tales que Az = ajv?
son aquellos tales que Ax = 0. O sea, en este caso, f~1(gen(v!)) = Na.

Ejemplo 7.6. Para la misma funcién del ejemplo anterior, hallar f~!(gen(v?)), con v? = (1,1, 1).

10 -1 -2 0
Ei=|01 0 21
00 O 0 0
Una base de f~!(gen(v?)) es
1 2 0
0 -2 —1
1] 0’ 0
0 1 0

7.3 Representacion matricial

e Si f:R™ — R™ es lineal, entonces existe una tnica matriz de m filas y n columnas, denotada Ay
o [f], tal que

f(@) =1flx (7.6)

Esta matriz es la matriz de la funcién lineal f o la matriz asociada a la funcién lineal f.
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Ejemplo 7.7. Si f(z1,22) = (x1 — x2, 221 + 322, —221), entonces

1 -1
Ap=1[fl=| 2 3
—2 0
puesto que
1 -1 r1 — T2
2 3 Bl] = | 2z + 31,
-2 0 L2 —21

v Sea By = {ul,...,u"} una base ordenada de U, By = {v!,...,9u™} una base ordenada de V, f : U — V
una funcién lineal. La matriz de R™*™, llamada matriz de f con respecto a las bases By y B,
denotada [f]s,5,, es la matriz tal que al multiplicar por las coordenadas de un = € U con respecto a
B, se obtienen las coordenadas de f(x) con respecto a Ba,

[f]BlBQ [x]Bl = [f(x)]BQ : (77)

SiU =1V ysi By = B, la matriz de la funcién lineal f se denota con una sola base: [f]g,.

Si U y V tienen bases candnicas, entonces [f] denota la matriz de f con respecto a la base canénica
de U y a la base candnica de V.

La columna j de la matriz [f]p,5, estd formada por las coordenadas de f(u’) con respecto a Ba, es
decir

s, = [[f(@)ls, [f(u?)]s, - [f(w")]B,] (7.8)

La matriz definida en (7.6) es la matriz con respecto a la base canénica de R™ y a la base canénica de
R™. Ver ejemplo anterior.
*x Sean U y V espacios vectoriales de igual dimension, f: U — V lineal, By base de U, By base de V.

e f es uno a uno sssi [f]p,5, es invertible.

e f es sobre sssi [f]p,B, es invertible.

Ejemplo 7.8. Sea f(x17x2) = (‘Tl_$27 2x1+3x2, —2%1), By = {(17 1)7 (17 _1)} y By = {(17 0, 0)7 (17 1, 0)7 (]-7 L 1)}
Obtener [f]5,5,-

0 )
f(17 1) = o1, [f(la 1)]32 = 7,
—2 —2
2 3
f(17_1) = -1 ’ [f(lv_l)}lﬁ - 1 )
—2 —2
-5 3
[f]&Bz = 7 1



7. FUNCIONES LINEALES 97

Comprobacién de un caso particular. Sea x = (5, —1). Obviamente f(z) = (6,7, —10). Por otro lado,

-5 3 ~1
2
f@g=| 7 1 =| 17
° !2 2][3} {10]
f(z) = —1(1,0,0) + 17(1,1,0) — 10(1,1,1) = (6,7, —10).

Ejemplo 7.9. Obtener la matriz [f]5,5, con f(A) = A+ AT en R?*? y las dos bases
10 11 0 0 00
e | R R e

32:{01:[3 g],@:[é g}’@:{i ﬂﬂc‘*:[i g]}

1

) =[5 o s = |

- 0
o [ 2/3
fan =7 ol eale = |1
- 0
- [—1/3
fan =[] ol e = | 1]
- 0
o -1/3
fan =] . e = | g
- 2/5

Entonces

2/3 —1/3 —1/3
112 1/12  1/12
1/4  1/4 —3/20

0 0  2/5

[f]3132 =

o O O

Como se habia dicho antes, f estd completamente determinada si se conoce f evaluada en los elementos
de una base del espacio de salida. En particular, sea f : R® — R™ lineal, B = {v!,v2,...,9"} una base
de R" y se conoce f(v'), f(v?), ..., f(v"). Se desea conocer la expresién explicita de f(x1, s, ..., Ty).
Esta expresién se obtiene de manera directa si se conoce [f], ya que f(x) = [f] .

[f] = [f] BB. Mp.5 (7.9)
[f] = [F(0Y) F@?) o f@M)], 0t v o] (7.10)

nxn
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Ejemplo 7.10. Sea f : R? — R? lineal tal que f(1,1,1) = (6,15), f(2,0,—1) = (=1,2) y £(0,2,1) =
(7,16). Obtener f(x1,x2,x3).

Facilmente se comprueba que (1,1,1), (2,0, 1) y (0,2,1) forman una base de R? (el determinante de la
matriz es 4).

1 2 0
1= 1g _; 12] L0
. 1 -1 1
[ 1/2 —1/2 1
= 1§ _; 1;] 1/4  1/4 —1/2
L | —1/4  3/4 —1/2
[t 2 3
T4 5 6

Luego f(z1,x2,23) = (x1 + 222 + 33, 421 + Sxo + 623).

Ejemplo 7.11. Sea B; = {(1,1),(2,—-1)}, Bs = {(2,3),(—5,4)} dos bases y f : R? — R? una funcién
lineal tal que

[f1B8.8, [Z _ﬂ

Obtener f(x1,z2).

[f15.8. = Mp,5.[f]5.8, MB.B, (7.11)

Este producto, de derecha a izquierda, significa: primero se pasa de la base candnica a Bi; después se
obtienen las coordenadas de la imagen con respecto a la base Bs; finalmente se obtienen las coordenadas

de la imagen con respecto a B..
12 =512 1]11/3 2/3
ls.s. = {3 4] {4 —1] [1/3 —1/3]

[flB.B. = [_3 _12]

f(z1,22) = (—3x1 — 1329, T2y + 1522).

7.4 Isomorfismos

Definicion 7.2. Sean U y V espacios vectoriales. Un isomorfismo es una funcion lineal f : U — V
uno a uno y sobre. Si existe un isomorfismo de U a V, se dice que U y V son isomorfos.
* Los espacios isomorfos tienen la misma dimension.

* En espacios de dimension finita, f es un isomorfismo sssi [f]g,5, es invertible.

Ejemplo 7.12. Sea U = R?*2 V = R*, f(A) = (a11, a12, az1,aze). Esta funcién es lineal, uno a uno y
sobre, es decir, es un isomorfismo y R?*2, R* son isomorfos. Hay muchas més isomorfismos, pero basta
con uno solo para decir que los dos espacios son isomorfos.
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Ejemplo 7.13. De manera andloga, R™*" y R™" gon isomorfos.

2

Ejemplo 7.14. Sea p(x) = ag + a1z + azx? un polinomio de Ps. La funcién f : Po — R3 definida por

f(p) = (ap,a1,az) es un isomorfismo.

Ejemplo 7.15. Sea S5 el conjunto de matrices en R2*2 simétricas. La funcién f : So — R? definida por
f(A) = (a11,a12,az2) es un isomorfismo.

Ejemplo 7.16. Sea Ty el conjunto de matrices en R?*? triangulares superiores. La funcién f : Tp — R3
definida por f(A) = (a11, a12, az2) es un isomorfismo.

Ejemplo 7.17. Sea U = R?, V un plano que pasa por el origen y {v!,v?} una base de V. La funcién
f:U —V tal que f(1,0) =o'y £(0,1) = v%, es un isomorfimsmo.
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Valores y vectores propios

8.1 Introduccion

Definicién 8.1. Sea A € R™ ™. Sean = # 0 en R™*! y X € R, tales que
Az = Az. (8.1)

se dice que A es un valor propio de A y x es un vector propio asociado a A. Se dice que (A, z) es una
pareja propia de A.

En Scilab v = spec(A) permite obtener los valores propios, [V, v] = spec(A) permite obtener los
valores propios y vectores propios.

Ejemplo 8.1.
3 —24 10 3 —24 10| |4 8 4
A= 10 0o 1], 0 0 1| |1 =12| =21
1 0 0 1 0 0f |2 4 2

Luego = = (4, 1,2) es un vector propio de A asociado al valor propio A = 2.

3 =24 10 9 27 9
0 0 1 1l=| -3|=-3 1
1 0 0 -3 9 -3
Luego = = (9,1, —3) es un vector propio de A asociado al valor propio A = —3. <
Si se cumple
Ax = Mz
Ax—dx =0
Ax — Az =0
(A= Xz =0
Como z # 0
det(A—AI)=0

Se puede demostrar que det(A — AI) es un polinomio con coeficientes reales, de grado n, llamado el
polinomio caracteristico de A. Se denota por p4(A) o simplemente p(\). Los valores propios de A
son las raices del polinomio caracteristico.

100



8. VALORES Y VECTORES PROPIOS 101

Ejemplo 8.2.
-4 6 2
A= 2 0 2
-19 13 10
—4 - ) 6 2

pa(A) = det 2 0— A 2
—19 13 10—\

pA(A) = (=4 —=X)((0—=XA)(10 —A) —26) — 6 (2(10 — ) + 38) +2 (26 — 19A)

pa(N) = =A%+ 6)% 4 40\ — 192
La raices de este polinomio son: A = —6, A = 8 y A = 4. Esos mismos valores son exactamente los valores
propios de A.

Para encontrar un vector propio asociado a A = —6 es necesario encontrar una solucién no trivial de
(A — (—6)I)x = 0. Esta se obtiene a partir de la escalonada reducida de A + 61.

2 6 2
A+6I=| 2 6 2
| —19 13 16

10 —1/2

E=10 1 1/2

10 0 0

Entonces, una solucién del sistema homogéneo es x = (1/2,—1/2,1). Este x es un vector propio asociado
al valor propio —6. Verificacion:

2 6 2 1/2 -3
2 6 2| |-1/2|=] 3
—-19 13 16 1 —6

De manera andloga se pueden encontrar vectores propios asociados a 8 y 4. <&

El polinomio caracteristico tiene necesariamente n raices, pero algunas pueden ser complejas. Cuando
hay raices complejas, siempre vienen por parejas, una raiz y su conjugado (que también es raiz). Los
polinomios de grado impar siempre tienen por lo menos una raiz real. Los vectores propios asociados a
valores propios complejos son complejos.

En Scilab un polinomio se puede construir por medio de p = poly([-192 40 6 -1], ’t’, ’c’). Sus
raices se pueden obtener por medio de roots(p).

El conjunto de todos los valores propios de A es el espectro de A, espc(A).

Un conjunto de vectores propios de A, {v!, v2, ..., v™}, es un conjunto completo de vectores propios,

si los vectores son linealmente independientes.
e Si z es un vector propio asociado a Ay k € R, k # 0, entonces kx también lo es.
e )\ es un valor propio de A sssi det(A — ) = 0.
e Sea pA()‘) = a,\" + O‘nfl)\n_l + anf2)\n_2 +- -t a A+ o

a) an = (—1)"
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b) ap_1 = traza(A).

C) ag = A Ap = det(A)
e Si A es un valor propio, Ns_»s es el espacio propio de A asociado a A:

Ny_rr = {QZ cR": (A—)\I)$:0}.
Todos sus elementos no nulos son vectores propios asociados a A.
e Teorema de Hamilton-Cayley:
pa(A) = a, A" + A1 A" a9 A" 24 g A+ ol = 0.

e Todos los valores propios de una matriz simétrica son reales.

e A es singular (no es invertible) sssi 0 es un valor propio.
1
e Si A es invertible y (A, x) es una pareja propia de A, entonces ( Y r) es una pareja propia de A~L.

e Si A es diagonal o triangular superior o triangular inferior, entonces su valores propios son sus
elementos diagonales.

e Sien una fila (o columna) de A, todas las entradas no diagonales son nulas, entonces el elemento
diagonal de la fila es un valor propio.

Ejemplo 8.3. Averiguar si 5 es valor propio de

C 1 -3 —2 -3
-1 5 1 0
A= 410
1 1 1 6
(4 -3 —2 -3
-1 0 1 0
A—5I= L 5 4| det(A-5D)=0,
11 1 1

luego 5 es un valor propio de A.
Ejemplo 8.4. Sea

1 -3 -2 -3

-1 5 1 0
A= 0 0 10 O
1 1 1 6

Inmediatamente se deduce que 10 es un valor propio de A.

Ejemplo 8.5. Teorema de Hamilton Cayley.

N

pa(AN) = A2 —TA—2

O - R R R
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8.2 Semejanza de matrices y diagonalizacion

Definicion 8.2. Dos matrices cuadradas del mismo tamano A, B, son semejantes si existe una matriz
invertible P tal que

B=PlAP. (8.2)

La multiplicidad algebraica de un valor propio es la multiciplicidad en el polinomio caracteristico.

La multiplicidad geométrica es la dimensién de N_»;.

* multiplicidad-geométrica(A) < multiplicidad-algebraica(\)

Ejemplo 8.6.
6 7
(2]
12 3 1 |—5/2 3/2
pelii] =75 ]
i [-22 =29
B=P AP_[ 28 37
Ay B son semejantes.
Ejemplo 8.7.
0 2
=l )
p(A) =A* = (A~ 0)?
A1207
A =0
0 2
aeor-]0 ]
01
=0
Na—or = gen([l 0]")
mult-alg(0) = 2
mult-geom(0) = 1
Ejemplo 8.8.
4 0 00
A= 8 _il)’ 18 8 ;o pe(A) = AT =523 —18A2 + 128X — 160 = (A — 4)*(A — 2)(A + 5)
|10 0 0 4
[0 0 0 0 1 0 00
0 -7 10 0O 0100
A-dl=1 o 1 4o F o010
|10 0 0 0 00 00

mult-alg(4) = 2. Como en E hay una sola variable libre, entonces mult-geom(4) = 1.
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Ejemplo 8.9.
(4 0 0 0
B= 8 _i’ 18 8 ;o pe(A) = A= 5X3 —18A% £ 128X — 160 = (A — 4)2(A — 2)(A + 5)
0 0 0 4
[0 0 0 0 0100
R e S
0 0 00 0000

mult-alg(4) = 2. Como en E hay dos variables libres, entonces mult-geom(4) = 2.

Definicion 8.3. Una matriz es diagonalizable si es semejante a una matriz diagonal.
e Las matrices semejantes tienen los mismos valores propios (pero no necesariamente los mismos
vectores propios).
e No todas las matrices cuadradas son diagonalizables.
e Todas las matrices simétricas son diagonalizables.
e Si A tiene n valores propios reales y diferentes, entonces es diagonalizable.

e Una matriz es diagonalizable si y solamente si todos su valores propios son reales y existen n vectores
propios linealmente independientes. O, dicho de otra forma:

e A es diagonalizable sssi A tiene un sistema completo de vectores propios {v!,v?,...,9"}. Més atin,
si P= [Ul v? v”], entonces

P7LAP = diag(\1, A2, ..y M)
e A es diagonalizable sssi todos los valores propios son reales y
multiplicidad-geométrica(\) = multiplicidad-algebraica(\)
para todos los valores propios.
Ejemplo 8.10. Si es posible, diagonalice A.
5 —6
=1 ]
p(A) =A2 —51+6
p(A) =(A=3)(A-2)

)\1 = 3, ’Ul = [3:|

1
Ay =2, vi= [ﬂ
o1

a1

PlAP = _g g}
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Ejemplo 8.11. Si es posible, diagonalice A.

A=

o o O

10
-1 0
0 4
p(A) = =A% + 327 + 10\ — 24
pA) ==(A=2)(A=3)(A—4)

[1/2 —1/3 0]
P = 1 1 0
| 0 0 1]
6/5 2/5 0]
Pl=1|-6/5 3/5 0
| 0 0 1]
[2 0 0
PlAP=10 -3 0| ©
|0 0 4
Ejemplo 8.12. Si es posible, diagonalice A.
0 2
=0

Como se vio en un ejemplo anterior, mult-alg(0) = 2, mult-geom(0) = 1. Luego A no es digonalizable.

Ejemplo 8.13. Si es posible, diagonalice A.

A=

O O W
UL = O
w O O

Su polinomio caracteristicos es
p(A\) = =A%+ 1002 =330 +36 = (A — 3)%(\ — 4)
Es necesario hallar la multiplicidad geométrica de A = 3.

06 0 010
A-3I=10 10|, E=10 0 0
050 000



8. VALORES Y VECTORES PROPIOS 106

Luego mult-geom(3) = 2 y, en consecuencia, A es diagonalizable.

0
A=3, ov'=10 v =0
1

1 0 6/5 1 -6 0 300
P=10 0 1/5|, P'=]0 -5 1|, P'AP=1{0 3 0
01 1 0 50 00 4

* Sea A diagonalizable con D = P~! AP diagonal. Entonces

A¥ = (PDP Y (PDP™Y)...(PDP™1)
AF = ppkp~t (8.3)

Ejemplo 8.14. Calcular A'° con

Por un ejemplo anterior,

(3 2
r=|1 ]
a1 -2
P I

14 30
D=P AP__O2

Entonces

AlO — PDlO_Pfl

A10 _ 3 2| [959049 0 1 =2  |175099 —348150 o
11 0 1024| |—-1 3] | 58025 —115026|"



