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Notación

Pn es el conjunto de todos los polinomios de grado menor o igual a n.

Rn = {(x1, x2, . . . , xn) : xj ∈ R,∀j}.

Rm×n = conjunto de matrices reales de tamaño m× n. Si A ∈ Rm×n, entonces

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


aij es la entrada (“elemento” o componente) de A en la fila i y en la columna j.

Rn×1 = conjunto de matrices columna de n componentes.

R1×n = conjunto de matrices fila de n componentes.

R1×1 = R.

AT = la transpuesta de la matriz A.

Rn := Rn×1, es decir,

x = (x1, x2, . . . , xn) :=


x1
x2
...
xn


xT =

[
x1 x2 . . . xn

]
Ai· = A(i, :) =

[
ai1 ai2 . . . ain

]
, fila i-ésima de la matriz A.

A·j = A(:, j) =


a1j
a2j
...

amj

, columna j-ésima de la matriz A.

nf (A) = número de filas de la matriz A.

nc (A) = número de columnas de la matriz A.

∥x∥1 =
n∑

i=1

|xi|

∥x∥2 =
( n∑
i=1

x2i
)1/2
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∥x∥∞ = max
1≤i≤n

|xi|

Aij , dependiendo del contexto, denota dos cosas diferentes:

� Aij , en la expresión de una matriz por bloques, es la matriz o bloque que está en la i-ésima fila de
bloques y en la j-ésima columna de bloques.

� Aij es la submatriz de A obtenida al quitar de A la fila i y la columna j.

Rn
+ = {(x1, x2, ..., xn) : xi ≥ 0, ∀i}, el ortante no negativo de Rn.

ej = j-ésima columna de la matriz identidad.

CA espacio columna de A, o espacio generado por las columnas de A.

FA espacio fila de A, o espacio generado por las filas de A.

Bc es la base canónica de un espacio vectorial (cuando a una base se le ha dado ese nombre). Por ejemplo,
en R3, la base canónica es {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

ρ(A) = max{|λi|C : λi es valor propio de A}, radio espectral de A.

⌊x⌋ = max{n ∈ Z : n ≤ x}, parte entera o parte entera inferior o piso de x.

⌈x⌉ = min{n ∈ Z : n ≥ x}, parte entera superior o techo de x.

espec(A) = espectro de A = conjunto de valores propios de A.

sssi = si y solamente si

En la escritura de números decimales, las cifras enteras están separadas de las decimales por medio de
un punto, en lugar de una coma como es la convención del español. No se utiliza el punto para separar
las unidades de mil de las centenas. Por ejemplo, en este documento se escribe 12345.67 en lugar de
12.345, 67.
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Matrices

1.1 Definiciones iniciales

Una matriz real A de tamaño m × n es un arreglo o tabla de números reales, organizados en m filas
(lineas horizontales) y n columnas (ĺıneas verticales) y encerrados o limitados por paréntesis rectángulares
grandes. Cada fila tiene exactamente n números, y cada columna tiene m números. Estos números se
llaman entradas de la matriz. Algunas veces también se habla de los elementos de la matriz, pero no
en el sentido de pertenecia a un conjunto.

El conjunto de todas la matrices reales m × n se denotará por Rm×n. También es usual denotarlo por
Mm×n o por M(m,n).

La entrada de la matriz A en la fila i y en columna j se denotará por aij .

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Rm×n.

Ejemplo 1.1. [
1 −3

2/3 5 6

]
no es una matriz.

Ejemplo 1.2.

A =

[
−1 −3.2 π
2/3 5 6

]
∈ R2×3, a23 = 6, a12 = −3.2.

Una matriz fila es una matriz de una sola fila. Una matriz columna es una matriz de una sola
columna. El conjunto R1×1 es lo mismo que R.

Usualmente se utilizan la letras mayúsculas A, B, C, ..., para denotar las matrices. También es frecuente
denotar las matrices columna o las matrices fila por letras minúsculas y las entradas con un sub́ındice
únicamente.

g =


g1
g2
...
gn

 ∈ Rn×1.

1



1. MATRICES 2

Dos matrices A y B del mismo tamaño son iguales si y solamente si todas sus entradas son iguales,

aij = bij para todo i y para todo j .

Cm×n es el comjunto de matrices complejas (entradas complejas) de m filas y n columnas. Mientras no
se diga lo contrario, todas las matrices son matrices reales.

Una matriz cuadrada tiene tantas filas como columnas. Para las matrices cuadradas, mientras no se
diga lo contrario, n indicará el número de filas (y de columnas).

Ejemplo 1.3.

A =

 −1 −3.2 π
2/3 5 6
0 0 −1

 ∈ R3×3 es cuadrada.

En una matriz cuadrada las entradas diagonales son a11, a22, ..., ann.

La matriz nula o matriz cero es la matriz cuyas entradas son todas nulas. Se denotará por 0m×n, y si
no hay ambigüedad por 0 o simplemente por 0 (puede haber ambigüedad entre la matriz 0 y el número
0).

03×2 = 0 = 0 =

0 0
0 0
0 0

 .

La fila i de una matriz se denotará por Ai· o por A(i, :), notación de Scilab y de Matlab. Análogamente,
la columna j se denotará por A·j o por A(:, j).

Ai· = A(i, :) =
[
ai1 ai2 · · · ain

]
∈ R1×n,

A·j = A(:, j) =


a1j
a2j
...

amj

 ∈ Rm×1.

Sea A ∈ Rm×n. Se usará la siguiente notación para subfilas, subcolumnas y submatrices:

A(i, j : k) =
[
aij ai,j+1 · · · ai,k−1 aik

]

A(i : p, j) =


aij

ai+1,j
...

ap−1,j

apj


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A(i : p, j : k) =


aij ai,j+1 · · · ai,k−1 aik

ai+1,j ai+1,j+1 · · · ai+1,k−1 ai+1,k
...

ap−1,j ap−1,j+1 · · · ap−1,k−1 ap−1,k

apj ap,j+1 · · · ap,k−1 apk



A(i : p, :) =


ai1 ai2 · · · ai,n−1 ain

ai+1,1 ai+1,2 · · · ai+1,n−1 ai+1,n
...

ap−1,1 ap−1,2 · · · ap−1,n−1 ap−1,n

ap1 ap2 · · · ap,n−1 apn


Ejemplo 1.4.

A =

 2 3 4 5 6
7 8 9 10 11

12 13 14 15 16


A2· = A(2, :) =

[
7 8 9 10 11

]
∈ R1×5,

A·3 = A(:, 3) =

 4
9

14

 ∈ R3×1,

A(3, 2 : 4) =
[
13 14 15

]
A(2 : 3, :) =

[
7 8 9 10 11
12 13 14 15 16

]

1.1.1 En Scilab

En Scilab o en Matlab, la matriz del ejemplo anterior se puede definir por

A = [ -1 -3.2 10; 2/3 5 6]

t = A(2,3)

f = A(2,:)

c = A(:,3)

F = zeros(3,4)

[p, q] = size(A)

u = size(A,1)

v = size(A,2)
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1.2 Suma y multiplicación por escalar

Definición 1.1. Sean A y B dos matrices m× n y k un número real. Se define la suma de matrices
y la multiplicación de una matriz por escalar aśı

A+B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
am1 + bm1 am2 + bm2 · · · amn + bmn

 (1.1)

kA = Ak =


ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n
...

...
...

kam1 kam2 · · · kamn

 (1.2)

De manera compacta se puede decir: si C = A+ B, entonces cij = aij + bij para todo i, j; si D = kA,
entonces dij = kaij para todo i, j.

Ejemplo 1.5. [
2 −3 4
5 6 −7

]
+

[
1 −1 0
−2 0 −3

]
=

[
3 −4 4
3 6 −10

]
−1

2

[
3 −4 4
3 6 −10

]
=

[
−3/2 2 −2
−3/2 −3 5

]

Sean A, B, C matrices cualesquiera del mismo tamaño, α y β números reales. La suma y la multiplicación
por escalar tienen las siguientes propiedades:

A+B = B +A conmutatividad (1.3a)

(A+B) + C = A+ (B + C) asociatividad (1.3b)

A+ 0 = A (1.3c)

existe Ã tal que A+ Ã = 0 (1.3d)

(αβ)A = α(βA) asociatividad (1.4a)

1A = A (1.4b)

0A = 0 (1.4c)

(α+ β)A = αA+ βA distributividad (1.5a)

α(A+B) = αA+ αB distributividad (1.5b)

Dada una matriz A, la matriz Ã, tal que A+ Ã = 0, se llama el inverso aditivo de A y se denota por −A.
Se cumple

−A = (−1)A. (1.6)
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Ejemplo 1.6. El inverso aditivo de

A =

[
1 2 −3
π −1/4 0

]
es −A =

[
−1 −2 3
−π 1/4 0

]

De esta manera se puede introducir, como en los números reales, la resta, sustracción o diferencia
entre matrices:

A−B := A+ (−B)

Si A ∈ Rm×n,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


su transpuesta, denotada AT (a veces A′ o At), es una matriz n×m,

AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

a1n a2n · · · amn

 .

Ejemplo 1.7.

A =

[
2 3 4
5 6 7

]
, AT =

2 5
3 6
4 7

 .

En Scilab la transpuesta se obtiene mediante A’

Propiedades:

(A+B)T = AT +BT (1.7)

(αA)T = αAT (1.8)

(AT)T = A (1.9)

1.3 Ecuaciones matriciales

Ejemplo 1.8. Encontrar X tal que 3

(
A+

1

3
B +

4

3
X

)
= −X −A+ 6B, donde

A =

[
2 3 4
5 6 7

]
, B =

[
1 0 −1
2 −2 4

]
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3

(
A+

1

3
B +

4

3
X

)
= −X −A+ 6B

3A+B + 4X = −X −A+ 6B

5X = −4A+ 5B

X = −4

5
A+B

X =

[
−3/5 −12/5 −21/5
−2 −34/5 −8/5

]

1.4 Matrices escalonadas reducidas

Definición 1.2. La primera entrada no nula de cada fila no nula se llama pivote. Obviamente las filas
nulas no tienen pivote.

Definición 1.3. Una matriz A ∈ Rm×n es escalonada reducida (por filas) si cumple las siguientes
propiedades:

1. Si tiene filas nulas, éstas están al final (abajo).

2. En las filas no nulas el pivote es 1.

3. En las filas no nulas el número de ceros antes del pivote va aumentando.

4. El pivote es la única entrada no nula de su columna.

Ejemplo 1.9. Son matrices escalonadas reducidas:

[
0 0 0
0 0 0

] [
1 0
0 1

] 0 1 −3 0 4
0 0 0 1 −5
0 0 0 0 0

 1 0 0 −2
0 1 0 3
0 0 1 4


Ejemplo 1.10. No son matrices escalonadas reducidas:

[
0 0 0
0 1 0

] [
1 0
0 2

] 0 1 −3 2 4
0 0 0 1 −5
0 0 0 0 0

 0 1 −3 0 4
0 1 0 1 −5
0 0 0 0 0


En una matriz escalonada reducida, las columnas correspondientes a los pivotes se llaman columnas
básicas o dependientes. Las otras columnas se llaman columnas libres, independientes o no
básicas.

1.5 Operaciones elementales

Hay tres operaciones elementales (con las filas):

1. Intercambiar dos filas. Se denota por

F ′
i ← Fk , F ′

k ← Fi ,

o simplemente Fi ↔ Fk
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2. Multiplicar una fila por una constante c no nula. Se denota por

F ′
i ← cFi ,

o Fi ← cFi ,

o simplemente cFi .

3. A una fila, sumar un múltiplo de otra fila. Se denota por

F ′
k ← Fk + cFi ,

o Fk ← Fk + cFi ,

o simplemente Fk + cFi .

Definición 1.4. Si a partir de A, por medio de una o varias operaciones elementales se obtiene B, se
dice que A y B son matrices equivalentes por filas.

Ejemplo 1.11.0 2 4 −2 10
2 4 8 10 20
1 3 6 4 15

 F1 ↔ F2

2 4 8 10 20
0 2 4 −2 10
1 3 6 4 15

 1

2
F1

1 2 4 5 10
0 2 4 −2 10
1 3 6 4 15



F3 − 1F1

1 2 4 5 10
0 2 4 −2 10
0 1 2 −1 5

 1

2
F2

1 2 4 5 10
0 1 2 −1 5
0 1 2 −1 5

 F1 − 2F2

F3 − 1F2

1 0 0 7 0
0 1 2 −1 5
0 0 0 0 0


Todas las matrices anteriores son equivalentes por filas.

Ejemplo 1.12.0 2 4 −2 10
2 4 8 10 20
1 3 6 4 15

 F1 ↔ F3

1 3 6 4 15
2 4 8 10 20
0 2 4 −2 10

 F2 − 2F1

1 3 6 4 15
0 −2 −4 2 −10
0 2 4 −2 10



−1

2
F2

1 3 6 4 15
0 1 2 −1 5
0 2 4 −2 10

 F1 − 3F2

F3 − 2F2

1 0 0 7 0
0 1 2 −1 5
0 0 0 0 0


En estos dos ejemplo se empezó con la misma matriz y por medio de operaciones elementales se llegó a
la misma matriz escalonada reducida. En cada ejemplo el proceso fue diferente.

Teorema 1.1. Toda matriz A es equivalente por filas a una matriz escalonada reducida. Esta matriz es
única. Se denotará

EA

En Scilab se puede obtener por medio de (reduced row echelon form)

rref(a)

Dos resultados inmediatos:

EEA
= EA (1.10)

EA = A si y solamente si A es escalonada reducida. (1.11)
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Dos matrices diferentes del mismo tamaño pueden ser equivalentes por filas a la misma matriz escalonada
reducida.

El rango de una matriz es el número de filas no nulas de su matriz escalonada reducida. Para la matriz
del último ejemplo

r(A) = rango(A) = 2.

En Scilab se puede obtener por medio de

rank(A)

Ejemplo 1.13.

A =

[
2 3
4 5

]
, B =

[
6 7
9 1

]
, EA = EB =

[
1 0
0 1

]

1.6 Algoritmo de Gauss-Jordan

Por medio de este algoritmo se obtiene la matriz escalonada reducida a partir de la matriz inicial.
A continuación hay dos maneras diferentes de presentarlo pero es exactamente el mismo proceso. la
presentación de la segunda versión es más estructurada.

Sea A ∈ Rm×n. En el algoritmo, (i, j) indica la posición donde se busca obtener el pivote.

1.6.1 Versión 1

1. i← 1, j ← 1

2. Si i > m o j > n, entonces parar, la matriz resultante es escalonada reducida.

3. Si A(i : m, j) = 0, entonces j ← j + 1 e ir al paso 2.

4. Si es necesario, hacer intercambio de filas, entre la fila i y una fila inferior, para que en la matriz
resultante aij ̸= 0.

5. Obtener pivote de valor 1 mediante F ′
i ←

1

aij
Fi.

6. Por medio de operaciones F ′
k ← Fk − akjFi obtener ceros por encima y por debajo de pivote.

7. i← i+ 1, j ← j + 1. Ir al paso 2.
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1.6.2 Versión 2

i← 1, j ← 1
mientras i ≤ m y j ≤ n
si A(i : m, j) ̸= 0

si aij = 0
buscar p > i tal que apj ̸= 0
Fi ↔ Fp

fin-si

F ′
i ←

1

aij
Fi

para k = 1, ...,m, k ̸= i
F ′
k ← Fk − akjFi

fin-para
i← i+ 1, j ← j + 1

sino
j ← j + 1

fin-si
fin-mientras
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Ejemplo 1.14. Aplicación del algoritmo de Gauss-Gordan:0 0 0 4 5
0 2 −6 0 8
0 8 −24 −20 7


i← 1, j ← 1

j ← 2

F1 ↔ F20 2 −6 0 8
0 0 0 4 5
0 8 −24 −20 7


1

2
F10 1 −3 0 4
0 0 0 4 5
0 8 −24 −20 7


F3 − 8F10 1 −3 0 4
0 0 0 4 5
0 0 0 −20 −25


i← 2, j ← 3

j ← 4

1

4
F20 1 −3 0 4
0 0 0 1 5/4
0 0 0 −20 −25


F3 + 20F20 1 −3 0 4
0 0 0 1 5/4
0 0 0 0 0


i← 3, j ← 5

j ← 6

1.6.3 Matriz escalonada reducida parcial

Algunas veces es útil realizar el proceso de obtención de una matriz escalonada reducida hasta las primeras
n0 columnas, con 1 ≤ n0 ≤ n. Esto quiere decir que a partir de A se aplica el algoritmo de Gauss-Jordan
hasta que en la matriz resultante (llamada por facilidad también A) se tenga que A(:, 1 : n0) es escalonada
reducida.

Esta matriz escalonada reducida parcial no es única. Dependiendo de la manera de escoger p puede variar
el resultado. De todas maneras la matriz obtenida es equivalente por filas a la matriz inicial.
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Ejemplo 1.15. Obtener una matriz escalonada reducida de A hasta la columna 2,

A =

1/2 1 3/2 2
1 1 1 3
−1 0 1 2


Después de procesar la primera columna, sin intercambio de filas:1 2 3 4

0 −1 −2 −1
0 2 4 6


Después de procesar la segunda columna, 1 0 −1 2

0 1 2 1
0 0 0 4


Esta matriz es escalonada reducida hasta la segunda columna. El proceso se puede realizar, a partir de
la misma matriz inicial, de otra manera. Primero intercambio de filas 1 y 2: 1 1 1 3

1/2 1 3/2 2
−1 0 1 2


Al finalizar el proceso de la primera columna:1 1 1 3

0 1/2 1 1/2
0 1 2 5


Intercambio de filas 2 y 3: 1 1 1 3

0 1 2 5
0 1/2 1 1/2


Después de procesar la segunda columna, 1 0 −1 −2

0 1 2 5
0 0 0 −2


Esta matriz es escalonada reducida hasta la segunda columna y diferente de la que se obtuvo en la primera
parte del ejemplo.

1.7 Producto de matrices

1.7.1 Caso más secillo

Sea A ∈ R1×n (una matriz fila con n entradas) y B ∈ Rn×1 (una matriz columna con n entradas). El
producto de estas dos matrices es un número:
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AB =
[
a11 a12 · · · a1n

]

b11
b21
...

bn1

 = a11b11 + a12b21 + · · ·+ a1nbn1 =

n∑
k=1

a1kbk1 .

Ejemplo 1.16. [
2 −3 4

]  5
6
−7

 = 2× 5 + (−3)× 6 + 4× (−7) = −36.

1.7.2 Caso general

Sea A ∈ Rm×n y b ∈ Rn×p (dos matrices no necesariamente del mismo tamaño, pero el número de
columnas de la primera debe ser igual al número de filas de la segunda). El producto AB ∈ Rm×p se
define usando el producto entre filas de la primera matriz y columnas de la segunda:

C = AB =


A1·B·1 A1·B·2 · · · A1·B·p
A2·B·1 A2·B·2 · · · A2·B·p

...
Am·B·1 Am·B·2 · · · Am·B·p


cij =

n∑
k=1

aikbkj , i = 1, ...,m, j = 1, ..., p

cij = ai1b1j + ai2b2j + · · ·+ ainbnj

Ejemplo 1.17.

A =

[
2 1 −3
4 0 5

]
B =

0 1 2 3
4 5 6 −1
8 −2 10 0


C = AB =

[
−20 13 −20 5
40 −6 58 12

]
c23 = 4× 2 + 0× 6 + 5× 10 = 58 .

El producto por filas o por columnas. Sean A ∈ Rm×n, B ∈ Rn×p, f ∈ Rn×1 (matrices compatibles
para el producto) y

C = AB

g = Af

Entonces:

Ai·B = (AB)i· = Ci· (1.12)

Ai·f = (Af)i = gi (1.13)

AB·j = (AB)·j = C·j (1.14)

AB =


A1·B
A2·B
...

Am·B

 =
[
AB·1 AB·2 · · · AB·p

]
(1.15)
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En palabras, el producto de una fila de A y la matriz B es una fila de C. El producto de la matriz A y
una columna de B es una columna de C.

Ejemplo 1.18.

A =

[
2 3 4
5 6 7

]
, B =

2 −1 0 1
4 10 2 −1
5 −2 3 1

 ,
[
5 6 7

] 2 −1 0 1
4 10 2 −1
5 −2 3 1

 =
[
69 41 33 6

]
= (AB)2·

Sean A ∈ Rm×n y g ∈ Rn×1.

Ag =


a11g1 + a12g2 + · · · + a1ngn
a21g1 + a22g2 + · · · + a2ngn

...
am1g1 + am2g2 + · · ·+ amngn

 ∈ Rm×1 (1.16)

Ag = g1


a11
a21
...

am1

+ g2


a12
a22
...

am2

+ · · ·+ gn


a1n
a2n
...

amn

 (1.17)

Ag = g1A·1 + g2A·2 + · · ·+ gnA·n+ (1.18)

Esta última expresión dice que el producto Ag es la suma de las columnas de A multiplicadas, cada una,
por un escalar. Esto se conoce como combinación lineal 1 de las columnas de A.

(AB)T = BTAT (1.19)

La matriz identidad I = In es una matriz cuadrada tal que las entradas diagonales valen 1 y las otras
son nulas.

I3 =

1 0 0
0 1 0
0 0 1


En Scilab se puede obtener mediante eye(3,3) .

Sean A ∈ Rm×n, B, C, D, F , G, H matrices de tamaños tales que las operaciones siguientes estén bien
definidas. El producto y la suma cumplen las siguientes propiedades:

ImA = A (1.20)

AIn = A (1.21)

AIn = InA = A , si A es cuadrada (1.22)

A0 = 0 (1.23)

0A = 0 (1.24)

A(BC) = (AB)C y se escribe simplemente ABC (1.25)

A(D + F ) = AD +AF (1.26)

(G+H)A = GA+HA (1.27)

1Este concepto se verá con más detalle más adelante.
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Solamente para matrices cuadradas están definidos al mismo tiempo los productos AB y BA y, en general,
no coinciden, es decir, el producto de matrices cuadradadas no es conmutativo.

Ejemplo 1.19.

A =

[
2 3
4 5

]
, B =

[
2 −1
1 8

]
, AB =

[
7 22
13 36

]
, BA =

[
0 1
34 43

]
.

Dos matrices cuadradas del mismo tamaño A y B conmutan si AB = BA. Claramente hay casos
inmediatos, por ejemplo A y 0. También A e I o A y A.

Ejemplo 1.20. Las matrices siguientes conmutan:

A =

[
2 1
−4 4

]
, B =

[
1 −1
4 −1

]
, AB =

[
6 −3

12 0

]
= BA

De manera semejante a los números reales se puede definir la potencia de una matriz cuadrada:

A2 = AA (1.28)

A3 = AAA (1.29)

An+1 = AnA (1.30)

A1 = A (1.31)

A0 = I (1.32)

Por el momento An tiene sentido para potencias enteras no negativas. Más adelante se verá que para
algunas matrices tiene sentido A−2.

1.8 Inversa de una matriz

En los números reales, todo x ̸= 0 tiene inverso multiplicativo. ¿Qué pasa con las matrices cuadradas?
¿Para cuales matrices existe B tal que AB = I?

Sea A ∈ Rn×n. Si existe B tal que AB = I se dice que B es la matriz inversa de A o simplemente la
inversa de A. Esta matriz, cuando existe, se denota por

A−1

Se dice entonces que A es invertible. Primeros resultados inmediatos:

I−1 = I (1.33)

(cI)−1 =
1

c
I si c ̸= 0. (1.34)

Obviamente la matriz cuadrada nula no tiene inversa. A continuación ejemplos de una matriz invertible
y dos no invertibles.

Ejemplo 1.21.

A =

[
1 2
3 4

]
, B =

[
−2 1
3/2 −1/2

]
, AB =

[
1 0
0 1

]
, A−1 =

[
−2 1
3/2 −1/2

]
,
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Más adelante hay dos métodos para obtener la inversa. El segundo requiere el uso de determinantes.

Ejemplo 1.22. Encontrar, si posible, la inversa de la matriz siguiente:

A =

[
0 1
0 0

]
B =

[
a b
c d

]
AB =

[
c d
0 0

]
= I =

[
1 0
0 1

]
Claramente se ve una inconsistencia en la posición (2, 2). Para que las dos matrices sean iguales, 0 = 1.
Luego A, que no es la matriz nula, no tiene inversa.

Ejemplo 1.23. Encontrar, si posible la inversa de la matriz siguiente:

A =

[
1 2
2 4

]
B =

[
a b
c d

]
AB =

[
a+ 2c b+ 2d
2a+ 4c 2b+ 4d

]
=

[
1 0
0 1

]
a+ 2c = 1

b+ 2d = 0

2a+ 4c = 0

2b+ 4d = 1

De nuevo hay inconsistencia, por ejemplo, a+ 2c = 1 y 2a+ 4c = 0. Es decir 2(a+ 2c) = 0. Luego A
no tiene inversa.

En Scilab, cuando la matriz tiene inversa, ésta se puede obtener por medio de inv(A).

1.9 Obtención de la inversa

El procedimiento es muy sencillo. Se construye una matriz n× (2n). En la mitad izquierda se coloca A,
en la mitad derecha se coloca I. Se busca su matriz escalonada reducida. Si en la mitad izquierda del
resultado quedó I, entonces lo que quedó a la derecha es la inversa. Si en la mitad izquierda no está la
identidad, entonces A no tiene inversa.

Ejemplo 1.24.

A =

[
1 2
3 4

]
[
A I

]
=

[
1 2 1 0
3 4 0 1

]
E =

[
1 0 −2 1
0 1 3/2 −1/2

]
A−1 =

[
−2 1
3/2 −1/2

]
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Ejemplo 1.25.

A =

[
1 2
2 4

]
[
A I

]
=

[
1 2 1 0
2 4 0 1

]
E =

[
1 2 0 1/2
0 0 1 −1/2

]
A no es invertible.

Ejemplo 1.26.

A =

−1 2 5
0 3 6
1 4 7


[
A I

]
=

−1 2 5 1 0 0
0 3 6 0 1 0
1 4 7 0 0 1


E =

1 0 −1 0 −4/3 1
0 1 2 0 1/3 0
0 0 0 1 −2 1


A no es invertible.

Ejemplo 1.27.

A =

1 2 3
4 5 6
7 8 10


[
A I

]
=

1 2 3 1 0 0
4 5 6 0 1 0
7 8 10 0 0 1


E =

1 0 0 −2/3 −4/3 1
0 1 0 −2/3 11/3 −2
0 0 1 1 −2 1


A−1 =

−2/3 −4/3 1
−2/3 11/3 −2

1 −2 1


Teorema 1.2. Sea A un matriz cuadrada. Las siguientes afirmaciones son equivalentes:

� A es invertible.

� rango(A) = n

� EA = I.

Si A es invertible se puede definir A−2, A−3, ....

A−2 =
(
A−1

)2
(1.35)

A−3 =
(
A−1

)3
(1.36)

A−n =
(
A−1

)n
(1.37)
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Para valores enteros de p y q (para enteros negativos se requiere que A sea invertible)

ApAq = Ap+q . (1.38)

Por ejemplo

A5A−2 = A3 , A5A−9 = A−4 .

1.10 Matriz de una operación elemental

Las operaciones elementales se pueden representar por medio del producto a la izquierda por una matriz.
Veámoslo con ejemplos.

A =


10 12 13 14
20 25 26 27
32 34 35 33
44 40 48 42



B =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



BA =


10 12 13 14
44 40 48 42
32 34 35 33
20 25 26 27



C =


1 0 0 0
0 1 0 0
0 0 1/4 0
0 0 0 1



CA =


10 12 13 14
20 25 26 27
8 17/2 35/4 33/4

44 40 48 42



D =


1 0 0 0
0 1 0 0
0 0 1 0

−0.1 0 0 1



DA =


10 12 13 14
20 25 26 27
32 34 35 33
43 38.8 46.7 40.6


Es claro que el resultado BA es el mismo de la operación F2 ↔ F4 sobre A. El resultado CA es el mismo

de la operación
1

4
F3. El resultado DA es el mismo de la operación F4 − 0.1F1.

¿Cómo se obtiene la matriz que representa una operación elemental? Muy sencillo. Se aplica la
operación elemental a la matriz I. La matriz obtenida se llama matriz elemental.
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1.10.1 Inversas de la matrices elementales

La inversa de una matriz elemental, se puede obtener directamente a partir de la matriz elemental, o
también, se puede obtener como la matriz de la operación inversa:

(M(oper. elem.))−1 = M(inversa(oper. elem.)) (1.39)

Es necesario saber entonces cual es la inversa de una operación elemental. La inversa de la operación es
simplemente la operación que permite llegar al estado antes de aplicar la operación.

A
oper. elem.−−−−−−−−−→ A′ inversa( oper. elem. )−−−−−−−−−−−−−−−−→ A

Entonces:

Operación inversa

Fi ↔ Fj Fi ↔ Fj

cFi
1

c
Fi

Fk + cFi Fk − cFi

Ejemplo 1.28. En R4×4,

B = M(F2 ↔ F4)

B =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


B−1 = M(inversa(F2 ↔ F4)) = M(F2 ↔ F4)

B−1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Ejemplo 1.29. En R4×4,

C = M(
1

4
F3)

C =


1 0 0 0
0 1 0 0
0 0 1/4 0
0 0 0 0


C−1 = M(inversa(

1

4
F3)) = M(4F3)

C−1 =


1 0 0 0
0 1 0 0
0 0 4 0
0 0 0 0


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Ejemplo 1.30. En R4×4,

D = M(F4 − 0.1F1)

D =


1 0 0 0
0 1 0 0
0 0 1 0

−0.1 0 0 1


D−1 = M(inversa(F4 − 0.1F1)) = M(F4 + 0.1F1)

D−1 =


1 0 0 0
0 1 0 0
0 0 1 0

0.1 0 0 1


Sean A y B dos matrices cuadradas invertibles, (AB)(B−1A−1) = ABB−1A−1 = AIA−1 = AA−1 = I.
Entonces AB es invertible sssi A y B son invertibles y

(AB)−1 = B−1A−1 . (1.40)

Si A es invertible y c ̸= 0,

(cA)−1 =
1

c
A−1 (1.41)

(AT)−1 =
(
A−1

)T
(1.42)

1.11 Ecuaciones matriciales

Sean A y B matrices cuadradas del mismoo tamaño y A invertible. Encontrar X tal que

3XA+ 5A− 6B = 0.

3XA+ 5A− 6B = 0

3XA = −5A+ 6B

3XAA−1 = (−5A+ 6B)A−1

3X = −5I + 6BA−1

X = −5

3
I + 2BA−1

1.12 Algunas matrices especiales

Una matriz cuadrada es diagonal si sus entradas no diagonales son nulas, es decir,

aij = 0 si i ̸= j .

Ejemplo 1.31. [
0 0
0 0

] 0 0 0
0 2 0
0 0 0

 −1
2 0 0
0 5 0
0 0 −3


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La suma de dos matrices diagonales es una matriz diagonal. El producto de un escalar y una matriz
diagonal es una matriz diagonal. El producto de dos matrices diagonales es una matriz diagonal.

El proceso de obtención de la inversa indica que una matriz diagonal es invertible sssi todas sus entradas
diagonales son no nulas y 

a11 0 · · · 0
0 a22 · · · 0

. . .

0 0 · · · ann


−1

=


1

a11
0 · · · 0

0 1
a22

· · · 0
. . .

0 0 · · · 1
ann

 (1.43)

Una matriz cuadrada es triangular superior si todas sus entradas por debajo de la diagonal son nulas,
es decir,

aij = 0 si i > j .

Ejemplo 1.32. En particular toda matriz diagonal, también es triangular superior. Las siguientes
matrices son triangulares superiores:

[
0 0
0 0

] 0 0 0
0 2 0
0 0 0

 −1
2 0 6
0 5 7
0 0 −3


La suma de dos matrices triangulares superiores es una matriz triangular superior. El producto de un
escalar y una matriz triangular superior es una matriz triangular superior. El producto de dos matrices
triangulares superiores es una matriz triangular superior.

Una matriz triangular superior es invertible sssi todas sus entradas diagonales son no nulas.

De manera análoga se define matriz triangular inferior, aij = 0 si i < j.

Matriz simétrica A = AT.

Matriz antisimétrica A = −AT.

Los elementos diagonales de una matriz antisimétrica son nulos.

Si A es cuadrada

A+AT es simétrica (1.44)

A−AT es antisimétrica (1.45)

A =
1

2
(A+AT) +

1

2
(A−AT) suma de simétrica y antisimétrica. (1.46)

Si A ∈ Rm×n

AAT ∈ Rm×m es simétrica (1.47)

ATA ∈ Rn×n es simétrica (1.48)
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(kA)T = kAT

(A+B)T = AT +BT

(AB)T = BTAT

tr(In) = n

tr(A+B) = tr(A) + tr(B)

tr(kA) = ktr(A)

tr(AB) = tr(BA)

En general tr(AB) ̸= tr(A)tr(B)

✓ Una matriz cuadrada es idempotente si A2 = A.

✓ Una matriz cuadrada es nilpotente de ı́ndice k si existe un entero no negativo k tal que Ak = 0.

✓ Una matriz cuadrada es ortogonal si A−1 = AT, es decir, AAT = I.

✓ Una matriz cuadrada es singular si no es invertible.

✓ Una matriz cuadrada es regular si es invertible.

✓ Una matriz cuadrada es escalar si existe un real t tal que A = tI.

✓ Una matriz cuadrada es involutiva si A2 = I, es decir, A−1 = A.

Ejemplo 1.33. Matrices idempotentes:

[
0 0
0 0

]
,

1 0 0
0 1 0
0 0 1

 ,

[
1 0
7 0

]

Matrices nilpotentes: A = 0 es una matriz nilpotente de orden 1.

A =


0 2 3 4
0 0 5 6
0 0 0 7
0 0 0 0

 , A2 =


0 0 10 33
0 0 0 35
0 0 0 0
0 0 0 0

 , A3 =


0 0 0 70
0 0 0 0
0 0 0 0
0 0 0 0

 , A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

A es matriz nilpotente de ı́ndice 4.

Matrices ortogonales:[√
3/2 1/2

−1/2
√
3/2

]
,

[
cos(θ) sen (θ)
− sen (θ) cos(θ)

]
, In −

2

vTv
vvT, con v ∈ Rn×1, v ̸= 0.

Matrices escalares: [
3 0
0 3

]
,

−4.2 0 0
0 −4.2 0
0 0 −4.2


Matriz involutiva:

A =

[
1 −1
0 −1

]
, A2 =

[
1 0
0 1

]
.
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⋆ Si A nilpotente, entonces det(A) = 0.

⋆ Si A idempotente, entonces det(A) es 1 o 0.

⋆ Si A ortogonal, entonces det(A) es 1 o −1.

⋆ Si A involutiva, entonces det(A) es 1 o −1.

1.13 Matrices por bloques

✓ Una matriz A ∈ Rm×n está descompuesta propiamente por bloques, o simplemente, A es una matriz
por bloques, si A se puede representar adecuadamente

A =


A11 A12 · · · A1q

A21 A22 · · · A2q
...

Ap1 Ap2 · · · Apq

 (1.49)

donde, a su vez, Aij es una matriz. Hay p filas de bloques y q columnas de bloques. Las matrices
de cada fila de bloques deben tener igual número de filas y las matrices de cada columna de bloques
deben tener igual número de columnas. Aśı, por ejemplo,

nf (A11) = nf (A12)

nc (A13) = nc (A23)

Las matrices por bloques pueden ser muy útiles para calcular productos, inversas, determinantes (caṕıtulo
3), en matrices grandes con algunos o muchos bloques nulos.

Se puede definir de manera natural la suma y producto de matrices por bloques. Por ejemplo,[
A11 A12 A13

A21 A22 A23

]
+

[
B11 B12 B13

B21 B22 B23

]
=

[
A11 +B11 A12 +B12 A13 +B13

A21 +B21 A22 +B22 A23 +B23

]
Obviamente se requiere que los bloques o submatrices sean del mismo tamaño,

tamaño(Aij) = tamaño(Bij) .

Un ejemplo para el producto:A11 A12

A21 A22

A31 A32

[B11 B12

B21 B22

]
=

A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

A31B11 +A32B21 A31B12 +A32B22


Los productos entre los bloques deben estar bien definidos, por ejemplo,

nc (A12) = nf (B22) .

Para matrices cuadradas, con frecuencia es útil que se pueda expresar como una matriz cuadrada por
bloques, que los bloques diagonales sean cuadrados y que ciertos bloques sean nulos.
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Ejemplo 1.34.

A =


21 23 25 27 29
41 43 45 47 49
0 0 55 57 59
0 0 65 67 69
0 0 85 87 89



A =


[
21 23 25
41 43 45

] [
27 29
47 49

]
0 0 55
0 0 65
0 0 85

 57 59
67 69
87 89




A =


21 23 25
41 43 45
0 0 55

 27 29
47 49
57 59


[
0 0 65
0 0 85

] [
67 69
87 89

]


A =


[
21 23
41 43

] [
25 27 29
45 47 49

]
 0 0
0 0
0 0

 55 57 59
65 67 69
85 87 89




Las tres descomposiciones por bloques son correctas, pero puede ser más útil la última. En esta, A es
una matriz triangular superior por bloques.

⋆ Una matriz triangular por bloques es invertible si y solamente si sus bloques diagonales son invertibles.
Para el caso de dos filas y dos columnas de bloques[

A11 A12

0 A22

]−1

=

[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]
(1.50)

Para el caso de una matriz diagonal por bloques
A11 0 0
0 A22 0

. . .

0 0 App


−1

=


A−1

11 0 0

0 A−1
22 0

. . .

0 0 A−1
pp

 (1.51)

Ejemplo 1.35. Hallar la inversa de

A =


2 1 1 2 4
5 3 1 −1 0
0 0 1 0 2
0 0 2 0 3
0 0 4 1 5


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Esta es una matriz triangular superior por bloques:

A11 =

[
2 1
5 3

]
A12 =

[
1 2 4
1 −1 0

]

A22 =

1 0 2
2 0 3
4 1 5



A−1
11 =

[
3 −1
−5 2

]

A−1
22 =

−3 2 0
2 −3 1
2 −1 0


−A−1

11 A12A
−1
22 =

[
−32 29 −7
55 −50 12

]

A−1 =


3 −1 −32 29 −7
−5 2 55 −50 12
0 0 −3 2 0
0 0 2 −3 1
0 0 2 −1 0


Ejemplo 1.36. Hallar la inversa de

A =


2 1 0 0 0
5 3 0 0 0
0 0 −2 0 0
0 0 0 10 3
0 0 0 3 1


Esta matriz es diagonal por bloques,

A11 =

[
2 1
5 3

]
A22 =

[
−2
]

A33 =

[
10 3
3 1

]

A−1 =


3 −1 0 0 0
−5 2 0 0 0
0 0 −1/2 0 0
0 0 0 1 −3
0 0 0 −3 10


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1.14 Grafos y matrices

Un grafo no dirigido es simplemente un conjunto finito no vaćıo de puntos, llamados vértices o nodos,
y un conjunto de aristas que unen algunos pares de nodos.

1
2

3

4

5

6

Un sistema vial se puede representar por un grafo. Los nodos son las ciudades. Las aristas son las
carreteras.

Se puede suponer, sin pérdida de generalidad, que si hay n vértices, estos son justamente 1, 2, ..., n.

De manera formal un grafo no dirigido G está formado por un conjunto de vértices V = {1, 2, ..., n} y por
un conjunto E de aristas, es decir, de parejas no ordenadas de elementos de V . Aśı, G = (V,E), donde

V = {1, 2, ..., n},
E = {{i1, j1}, {i2, j2}, ..., {im, jm}} con ik, jk ∈ V, ik ̸= jk para todo k.

El número de aristas es m. En algunas definiciones se permite que haya aristas de un vértice a si mismo,
por ejemplo {3, 3}.

Para el grafo del dibujo anterior, G = (V,E), con

V = {1, 2, 3, 4, 5, 6},
E = {{1, 2}, {3, 4}, {4, 5}, {4, 6}} .

La matriz de adyacencia de un grafo no dirigido es una matriz de tamaño n×n que indica entre cuales
vértices hay arista. Si A ∈ Rn×n es la matriz de adyacencia, entonces

aij =

{
1 si {i, j} ∈ E,

0 si {i, j} /∈ E.
(1.52)

La matriz de adyacencia es simétrica y sus entradas diagonales son nulas. Para el grafo anterior,

A =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0


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En algunos casos es necesario dar un orden a las aristas. Supongamos que las aristas son

e1 = {i1, j1}
e2 = {i2, j2}

...

em = {im, jm}

El orden de las aristas puede ser cualquiera, en particular, puede ser el lexicográfico.

1
2

3

4

5

6

e1

e2
e3

e4

La matriz de incidencia de un grafo es un matriz n ×m, una fila por cada vértice, una columna por
cada arista. Si B ∈ Rn×m es la matriz de incidencia,

bij =

{
1 si i ∈ ej ,

0 si i /∈ ej .

En cada fila, correspondiente a un vértice, el número de unos indica el numero de aristas que inciden en
el vértice. En cada columna hay dos unos.

Para el ejemplo,

B =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 1 1
0 0 1 0
0 0 0 1

 .

Unn grafo dirigido o digrafo está compuesto por un conjunto finito no vaćıo de vértices o nodos y
un conjunto de arcos o flechas que van de un vértice a otro vértice. De nuevo se puede suponer que si
hay n vértices, estos son {1, 2, ..., n}.
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1

2

3

4

5

6

Una flecha de i a j se puede representar por la pareja ordenada (i, j). Un grafo dirigido G es un pareja
de vértices y flechas, G = (V, F ), con

V = {1, 2, ..., n}, n ≥ 1,

F ⊆ V × V.

Para el ejemplo,

V = {1, 2, 3, 4, 5, 6},
F = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 6), (4, 5), (5, 2), (6, 5)}.

Un sistema de distribución de agua se puede representar por un grafo (en este caso no debe haber dos
vértices con flechas en ambos sentidos).

También un grafo puede representar un sistema donde los vértices corresponden a los actores del sistema
y la flechas indican que hay influencia directa entre un actor y otro.

La matriz de adyacencia de un grafo dirigido es una matriz n× n,

aij =

{
1 si (i, j) ∈ F,

0 si (i, j) /∈ F.
(1.53)

Para el ejemplo,

A =



0 1 1 0 1 0
0 0 1 1 1 1
1 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0


La matriz A2 tiene una interpretación interesante,

A2 =



1 1 1 1 1 2
1 1 0 0 2 1
0 1 1 0 2 0
0 1 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0


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(A2)15 = 1 indica que hay un camino de longitud 2 (2 flechas) desde 1 hasta 5. Este camino es (1, 2), (2, 5).
(A2)16 = 2 indica que hay dos caminos de longitud 2 desde 1 hasta 6. Estos caminos son (1, 2), (2, 6) y
(1, 3), (3, 6).

De manera análoga A3 indica los caminos de longitud 3.

Si el grafo representa las influencias directas entre actores, A2, A3... representan las influencias indirectas
entre actores.
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Sistemas de ecuaciones lineales

2.1 Sistemas 2× 2

El siguiente es un sistema de dos ecuaciones lineales con dos incógnitas.

3x1 + 5x2 = 21

4x1 + 2x2 = 14

Se puede resolver por varios métodos: sustitución, igualación, eliminación, determinantes, gráfico. Su
única solución es x1 = 2, x2 = 3.

El sistema

2x1 + 4x2 = 6

−4x1 − 8x2 = −12

tiene muchas soluciones (un número infinto de soluciones), por ejemplo

x1 = 1, x2 = 1

x1 = 3, x2 = 0

x1 = 203, x2 = −100

El sistema

2x1 + 4x2 = 6

−4x1 − 8x2 = −10

no tiene solución, es inconsistente.

En resumen, para un sistemas de dos ecuaciones con dos incógnitas, hay tres casos:

� Hay una única solución.

� Hay un número infinito de soluciones.

� No hay solución.

Esto se puede deducir teniendo en cuenta que cada ecuación representa una recta del plano. Hay tres
casos:

29
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1) Las dos rectas se cortan, las coordenadas del punto de corte corresponden a la solución.

2) Las dos ecuaciones representan la misma recta, cualquier punto de la recta es una solución.

3) Las rectas son paralelas y diferentes, no hay solución.

Aunque no sea con rectas los tres casos se dan en sistemas más grandes: una única solución, un número
infinito de soluciones, no hay solución.

2.2 Caso general

Un sistema de m ecuaciones lineales con n incógnitas se puede escribir aśı:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1+am2x2+ · · · +amnxn= bm

(2.1)

donde los valores aij y bi son conocidos. Se desea encontrar el valor de cada una de las incógnitas xj
para que se cumplan todas las ecuaciones.

Ejemplo 2.1.

2x1 + 3x2 + πx3 + 13
5 x4 = 3

−x1− 2x2 +10x3 = 0
6.2x2+ 4x3 − 0.001x4= 2

Dos sistemas de ecuaciones son equivalentes si tienen exactamente las mismas soluciones. Los métodos
válidos son aquellos que paso a paso van obteniendo sistemas equivalentes pero que cada vez sean más
fáciles, hasta llegar a un sistema equivalente donde sea muy fácil obtener la solución (si la hay).

Hay tres clases de operaciones con las ecuaciones que permiten obtener sistemas equivalentes:

1. Intercambiar dos ecuaciones, denotado Ei ↔ Ej .

2. Multiplicar una ecuación por una constante no nula, denotado cEk .

3. A una ecuación sumar un múltiplo de otra ecuación, denotado Ek + cEi .

2.3 Método de Gauss para sistemas cuadrados

Un sistema de ecuaciones es cuadrado si tiene tantas ecuaciones como incógnitas:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
an1x1+an2x2+ · · · +annxn= bn

(2.2)
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El método de Gauss busca obtener un sistema equivalente triangular superior

a′11x1+a′12x2 + · · · + a′1nxn = b′1
a′22x2 + · · · + a′2nxn = b′2

. . .

a′nnxn= b′n

(2.3)

De la última ecuación se obtiene xn. Con este valor, de la penúltima ecuación, se calcula xn−1 y aśı
sucesivamente hasta obtener x1, usando la primera ecuación.

Ejemplo 2.2. Resolver:

2x1+ 3x2+ 4x3= 5
−6x1− 9x2− 10x3= −19
10x1+12x2+14x3= 28

E2 + 3E1

2x1+ 3x2+ 4x3= 5
2x3= −4

10x1+12x2+14x3= 28

E3 − 5E1

2x1+3x2+4x3= 5
2x3= −4

− 3x2− 6x3= 3

E2 ↔ E3

2x1+3x2+4x3= 5
− 3x2− 6x3= 3

2x3= −4

De la última ecuación se deduce x3 = −2. Remplazando este valor en al segunda ecuación

−3x2 − 6x3 = 3

−3x2 − 6(−2) = 3

−3x2 + 12 = 3

−3x2 = −9
x2 = 3

De la primera ecuación

2x1 + 3x2 + 4x3 = 5

2x1 + 3(3) + 4(−2) = 5

2x1 + 1 = 5

2x1 = 4

x1 = 2

En resumen la solución es x1 = 2, x2 = 3 y x3 = −2. Se puede comprobar que estos valores satisfacen
las tres ecuaciones iniciales.
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2.4 Notación matricial

Sean

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Rm×n, x =


x1
x2
...
xn

 ∈ Rn×1, b =


b1
b2
...
bm

 ∈ Rm×1.

El sistema (2.1) se puede ecribir

A1·x = b1

A2·x = b2
...

Am·x = bm

Usando (1.12), Ai·x = (Ax)i· . Como Ax es una columna, (Ax)i· = (Ax)i, es decir, Ai·x = (Ax)i,

(Ax)1 = b1

(Ax)2 = b2
...

(Ax)m = bm

Las m igualdades anteriores dicen que todas las entradas de Ax y b son iguales, es decir, Ax = b. En
resumen, el sistema (2.1) se puede escribir de manera compacta

Ax = b (2.4)

La matriz A ∈ Rm×n es la matriz de coeficientes, b ∈ Rm×1 es la columna de términos indepen-
dientes y x ∈ Rn×1 es la columna de incógnitas.

2.4.1 Matriz ampliada

En lugar de escribir en cada iteración y en cada ecuación x1, x2, ... etc., basta con escribir los coeficientes
aij y bi en una matriz. Esta matriz es la matriz ampliada o aumentada

Â =
[
A b

]
=


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

am1 am2 · · · amn bm

 ∈ Rm×(n+1) . (2.5)

Las operaciones elementales sobre las ecuaciones del sistema son exactamente operaciones elementales
sobre las filas de la matriz ampliada. Aśı, el ejemplo anterior del método de Gauss, se puede escribir de
manera más simple.

Ejemplo 2.3.

2x1+ 3x2+ 4x3= 5
−6x1− 9x2− 10x3= −19
10x1+12x2+14x3= 28
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 2 3 4 5
−6 −9 −10 −19
10 12 14 28


F2 + 3F1

F3 − 5F1 2 3 4 5
0 0 2 −4
0 −3 −6 3


F2 ↔ F3 2 3 4 5

0 −3 −6 3
0 0 2 −4


La última fila se traduce por la ecuación 0x1 +0x2 +2x3 = −4. Ah́ı se obtiene x3 = −2. La segunda fila
se traduce por 0x1 − 3x2 − 6x3 = 3, de donde x2 = 3, etc.

2.5 Caso general, método de Gauss-Jordan

Consideremos el sistema de m ecuaciones con n incógnitas

Ax = b (2.6)

Se construye la matriz ampliada
Â =

[
A b

]
∈ Rm×(n+1)

y se obtiene su matriz escalonada reducida
E = EÂ .

2.5.1 Sistema inconsistente

El sistema es inconsistente (no tiene solución) si en Â, o en E, o en una matriz intermedia, se presenta
una inconsistencia. Una inconsistencia es una ecuación de la forma

0x1 + 0x2 + · · ·+ 0xn = α ̸= 0 .

En la matriz ampliada inicial, o en una matriz intermedia, o en la matriz escalonada reducida final, una
inconsistencia es una fila de la forma[

0 0 · · · 0 α
]
, con α ̸= 0 . (2.7)

Ejemplo 2.4. Resolver el sistema Ax = b, donde

A =

2 3 4 5
1 1 1 1
3 4 5 6

 , b =

144
20

 .

Supongamos que se obtiene directamente la matriz escalonada reducida, por ejemplo con Scilab.

Â =

2 3 4 5 14
1 1 1 1 4
3 4 5 6 20

 , EÂ =

1 0 −1 −2 0
0 1 2 3 0
0 0 0 0 1


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En la tercera fila de EÂ hay una inconsistencia, luego el sistema no tiene solución.

Veamos ahora paso a paso el proceso de obtención de EÂ .2 3 4 5 14
1 1 1 1 4
3 4 5 6 20


1
2F1 1 3/2 2 5/2 7

1 1 1 1 4
3 4 5 6 20


F2 − F1, F3 − 3F1 1 3/2 2 5/2 7

0 −1/2 −1 −3/2 −3
0 −1/2 −1 −3/2 −1


−2F2 1 3/2 2 5/2 7

0 1 2 3 6
0 −1/2 −1 −3/2 −1


F1 − 3

2F2, F3 +
1
2F2 1 0 −1 −2 −2

0 1 2 3 6
0 0 0 0 2


Esta matriz no es escalonada reducida, pero ya se ve una inconsistencia. Luego el sistema no tiene
solución. No es necesario continuar con el proceso.

2.5.2 Sistemas consistentes

En un sistema consistente, a partir de EÂ se obtiene la solución o la forma general de las soluciones.

� La variables de las columnas de los pivotes se llaman variables básicas.

� Las otras variables se llaman variables libres, independientes o no básicas.

� Si no hay variables libres, la solución es única y los valores son los términos independientes en EÂ.

� Cuando hay variables libres, las variables básicas se pueden expresar fácilmente en función de las
varibles libres.

Ejemplo 2.5. Resolver el sistema Ax = b, donde

A =


2 4 6
2 3 4
−1 1 −1
3 8 9

 , b =


16
11
−9
18

 .

Â =


2 4 6 16
2 3 4 11
−1 1 −1 −9
3 8 9 18

 , EÂ =


1 0 0 2
0 1 0 −3
0 0 1 4
0 0 0 0


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El sistema es consistente y no hay variables libres, luego la solución es única:

x1 = 2, x2 = −3, x3 = 4.

Ejemplo 2.6. Resolver el sistema Ax = b, donde

A =

2 3 4 5
1 1 1 1
3 4 5 6

 , b =

144
18

 .

Â =

2 3 4 5 14
1 1 1 1 4
3 4 5 6 18

 , EÂ =

1 0 −1 −2 −2
0 1 2 3 6
0 0 0 0 0

 .

El sistema es consistente. Las variables básicas son x1 y x2. Las variables libres son x3 y x4. Las dos
primeras filas representan las ecuaciones

x1 − x3 − 2x4 = −2
x2 + 2x3 + 3x4 = 6

Luego

x1 = −2 + x3 + 2x4 (2.8)

x2 = 6− 2x3 − 3x4

Para obtener una solución basta con dar cualquier valor a x3 y x4 y calcular los valores de x1 y x2. Por
ejemplo,

x1 =−2
x2 = 6
x3 = 0
x4 = 0

x1 =−1
x2 = 4
x3 = 1
x4 = 0

x1 =0
x2 =3
x3 =0
x4 =1

x1 =−22
x2 = 31
x3 = 10
x4 =−15

La solución general se puede escribir de manera matricial aśı (para valores cualesquiera de α y β):


x1
x2
x3
x4

 =


−2
6
0
0

+ α


1
−2
1
0

+ β


2
−3
0
1


Después del signo igual, la primera columna es simplemente la solución obtenida para x3 = 0 y x4 = 0.

La segunda columna está orientada por x3 y tiene dos partes. La correspondiente a las variables básicas
tiene los coeficientes de x3 en (2.8). La correspondiente a las variables libres tiene los valores x3 = 1 y
cero para las demás variables libres.

La tercera columna está orientada por x4 y también tiene dos partes. La correspondiente a las variables
básicas tiene los coeficientes de x4 en (2.8). La correspondiente a las variables libres tiene los valores
x4 = 1 y cero para las demás variables libres.

2.6 Método de Gauss para sistemas cuadrados con solución única

El método de Gauss se usa para sistemas cuadrados que se suponen de solución única, aunque esta última
condición no se conozca por adelantado. Requiere menos operaciones que el método de Gauss-Jordan. Es
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la base del método usado para sistemas cuadrados generales (no de estructura espećıfica) en la mayoŕıa
de los programas de computador.

Simplemente se busca triangularizar el sistema, como en un ejemplo anterior, utilizando la matriz
ampliada. Una vez triangularizado el sistema, se calcula xn, después xn−1, después xn−2, y aśı suce-
sivamente hasta obtener x1.

� El pivote siempre debe quedar en las entradas diagonales y no es necesario que valga 1.

� Si no es posible obtener un pivote en las entradas diagonales, es decir, si durante el proceso de
triangularización, buscando el pivote en akk, todo el pedazo de columna A(k : n, k) = 0, entonces
el sistema no es de solución única, o sea, puede ser inconsistente o tener un número infinito de
soluciones. Seŕıa necesario continuar con el método de Gauss-Jordan.

� Las operaciones elementales usadas son el intercambio de filas y sumar a una fila un múltiplo de
otra fila. Normalmente no es necesario multiplicar una fila por una constante.

Ejemplo 2.7. Resolver el sistema Ax = b, donde

A =

 0 5 6
2 3 4
10 35 42

 , b =

 3
5

41


 0 5 6 3

2 3 4 5
10 35 42 41


F1 ↔ F2  2 3 4 5

0 5 6 3
10 35 42 41


F3 − 5F1 2 3 4 5

0 5 6 3
0 20 22 16


F3 − 4F2 2 3 4 5

0 5 6 3
0 0 −2 4


Entonces x3 = −2, x2 = 3, x1 = 2 .

Ejemplo 2.8. Resolver el sistema Ax = b, donde

A =

−2 2 3
−8 8 16
10 −10 −10

 , b =

 −4−24
10


−2 2 3 −4
−8 8 16 −24
10 −10 −10 10


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F2 − 4F1

F3 + 5F1 −2 2 3 −4
0 0 4 −8
0 0 5 −10


La porción de columna A(2 : 3, 2) es nula, luego no es un sistema de solución única y no se puede continuar
con el método de Gauss. Si se desea continuar se debe utilizar el método de Gauss-Jordan.

2.7 Solución usando la inversa

La solución de un sistema Ax = b cuando A es cuadrada e invertible se puede obtener mediante

Ax = b

A−1Ax = A−1b

Ix = A−1b

x = A−1b . (2.9)

Esta forma de solución es teóricamente perfecta, pero en la mayoŕıa de los casos requiere más operaciones
que el método de Gauss y el método de Gauss-Jordan.

Ejemplo 2.9. Resolver el sistema Ax = b, donde

A =

 0 5 6
2 3 4
10 35 42

 , b =

 3
5
41



x =

 0 5 6
2 3 4

10 35 42

−1  3
5

41


x =

−7/10 0 1/10
−11/5 −3 3/5

2 5/2 −1/2

 3
5

41


x =

 2
3
−2



2.8 Sistemas homogéneos

Un sistema homogéneo es simplemente un sistema de ecuaciones lineales donde todos los términos
independientes son nulos, es decir,

Ax = 0 . (2.10)

A diferencia de los sistemas generales (no homogéneos), un sistema homogéneo siempre tiene solución,
ya que x1 = x2 = · · · = xn = 0, llamada solución trivial, siempre es solución. Hay dos casos:
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� La solución trivial es la única solución.

� Hay un número infinito de soluciones, es decir, hay soluciones diferentes de la trivial.

Los métodos vistos para sistemas no homogéneos se utilizan para sistemas homogéneos. Como siempre los
términos indpendientes van a ser nulos, no importa la operación elemental que se efectúe, no es necesario
construir la matriz ampliada y se puede simplemente trabajar con A.

Ejemplo 2.10. Resolver Ax = 0, con

A =


0 1 2
3 4 5
6 7 9
3 5 7

 (2.11)

EA =


1 0 0
0 1 0
0 0 1
0 0 0


Luego hay una única solución, la trivial, x1 = x2 = x3 = 0.

Ejemplo 2.11. Resolver Ax = 0, con

A =


2 3 4 6
−6 −9 −11 −16
4 6 9 14
−2 −3 −2 −2

 (2.12)

EA =


1 3/2 0 −1
0 0 1 2
0 0 0 0
0 0 0 0


Luego hay un número infinito de soluciones

x1 = −
3

2
x2 + x4

x3 = −2x4
x1
x2
x3
x4

 = α


−3/2

1
0
0

+ β


1
0
−2
1



Algunas veces puede ser útil el siguiente resultado relativo a los dos sistemas, no homogéneo y homogéneo,
con la misma matriz de coeficientes, suponiendo que el sistema no homogéneo es consistente.

Ax = b (2.13)

Ax = 0 (2.14)
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El sistema no homogéneo tiene una única solución sssi el sistema homogéneo tiene una única solución.
Cualquier solución del sistema no homogéneo es igual a una solución particular del sistema no homogéneo,
más una solución del sistema homogéneo.

xGNH = xPNH + xGH (2.15)

Los sub́ındices quieren decir: la solución general del sistema no homogéneo es igual a una solución
particular del sistema no homogeneo más la solución general del sistema homogéneo.



3

Determinantes

El determinate es una función que se aplica a las matrices cuadradas dando como resultado un número:

det : Rn×n → R

A continuación veremos dos formas de calcular el determinante. Hay una tercera por medio de permuta-
ciones pero no está en este documento. Para n = 1, 2, la definición es muy sencilla:

det
[
a11
]
= a11 (3.1)

det

[
a11 a12
a21 a22

]
= a11a22 − a21a12 (3.2)

Ejemplo 3.1.

det
[
−4
]
= −4

det

[
2 3
4 −5

]
= 2(−5)− 4(3) = −22 .

3.1 Cálculo recurrente (por menores)

Si A ∈ Rn×n, Aij es una matriz de tamaño (n− 1)× (n− 1), submatriz de A, obtenida al quitar de A la
fila i y la columna j.

Ejemplo 3.2.

A =

2 3 4
5 6 7
8 9 1


A13 =

[
5 6
8 9

]
A21 =

[
3 4
9 1

]
El cálculo recurrente del determinante de una matriz n× n se hace utilizando determinates de matrices
(n−1)×(n−1), que a su vez se obtienen por medio de determinantes (n−2)×(n−2) y aśı sucesivamente.

El cálculo del determinante por medio de la primera fila es:

40
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det(A) = (−1)1+1a11 det(A11) + (−1)1+2a12 det(A12) + · · ·+ (−1)1+na1n det(A1n) (3.3)

Para una matriz 3× 3,

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13)

Ejemplo 3.3.

det

2 3 4
5 6 7
8 9 1

 = 2det

[
6 7
9 1

]
− 3 det

[
5 7
8 1

]
+ 4det

[
5 6
8 9

]
= 2(6− 63)− 3(5− 56) + 4(45− 48)

= 2(−57)− 3(−51) + 4(−3)
= 27 .

El determinante de Aij se llama el menor (i, j) y usualmente se denota por Mij , es decir

Mij = Mij(A) = det(Aij) (3.4)

Asi:

det(A) =

n∑
j=1

(−1)1+ja1jM1j

El determinante se puede calcular por cualquier fila, no solo la primera, o por cualquier columna:

det(A) =

n∑
j=1

(−1)i+jaij det(Aij) por la fila i (3.5)

det(A) =
n∑

i=1

(−1)i+jaij det(Aij) por la columna j . (3.6)

Ejemplo 3.4. Cálculo del determinante por la segunda columna.

det

2 3 4
5 6 7
8 9 1

 = −3 det
[
5 7
8 1

]
+ 6det

[
2 4
8 1

]
− 9 det

[
2 4
5 7

]
= −3(5− 56) + 6(2− 32)− 9(14− 20)

= −3(−51) + 6(−30)− 9(−6)
= 27 .

Una manera sencilla de calcular el determinante de una matriz A ∈ R3×3 es mediante la Regla de
Sarrus:

1. Construir una tabla con las tres filas de A y debajo la primera y la segunda fila.

2. El determinante de A es igual a la suma de los productos “bajando” menos la suma de los productos
“subiendo”.
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Ejemplo 3.5. Calcular el determinante de

A =

1 2 3
4 5 6
7 8 9


1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

det(A) = 1 · 5 · 9 + 4 · 8 · 3 + 7 · 2 · 6− (7 · 5 · 3 + 1 · 8 · 6 + 4 · 2 · 9)
= 45 + 96 + 84− (105 + 48 + 72)

= 225− 225 = 0

Para calcular el determinante de una matriz 4 × 4 es necesario calcular cuatro determinantes 3 × 3.
Normalmente se escoge la fila o columna con más ceros.

Ejemplo 3.6.

A =


2 0 0 −3
0 1 2 3
3 4 5 6
8 7 8 9


det(A) = 2 det

1 2 3
4 5 6
7 8 9

− (−3) det

0 1 2
3 4 5
8 7 8


det(A) = 2(0) + 3(−6) = −18

3.2 Propiedades

1. A es invertible sssi det(A) ̸= 0.

2. det(AB) = det(A) det(B) .

3. det(An) = (det(A))n .

4. det(AT) = det(A) .

5. Si A es diagonal, triangular superior o triangular inferior,

det(A) = a11a22 · · · ann (3.7)

6. Si A tiene una fila nula, entonces det(A) = 0 .
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7. Si A tiene dos filas iguales, entonces det(A) = 0 .

8. Si una fila de A es un múltiplo de otra fila de A, entonces det(A) = 0 .

9. Si una fila de A es combinación lineal de otras filas de A, entonces det(A) = 0 .

10. Si A es invertible,

det(A−1) =
1

det(A)
(3.8)

11. Si en A se intercambian dos filas, el determinante cambia de signo.

12. Si se multiplica una fila de A por una constante, el determinante queda multiplicado por esa
constante.

13. det(cA) = cn det(A) .

14. Si a una fila se le suma un múltiplo de otra fila, el determinante no se altera.

15. Las propiedades anteriores relativas a las filas, también son válidas para columnas.

16. Si A se puede expresar como una matriz triangular superior por bloques con bloques diagonales
cuadrados, su determinante es el producto de los determinantes de los bloques diagonales:

det


A11 A12 · · · A1p

0 A22 · · · A2p

. . .

0 0 · · · App

 = det(A11) det(A22) · · · det(App)

Ejemplo 3.7. Calcular el determinante de

A =


3 4 0 1 2
4 5 3 4 5
0 0 6 6 7
0 0 0 6 7
0 0 0 8 9


Esta matriz se puede escribir como una matriz triangular superior por bloques, con bloques diagonales
cuadrados:

A =


[
3 4
4 5

] [
0
3

] [
1 2
4 5

]
[
0 0

] [
6
] [

6 7
][

0 0
0 0

] [
0
0

] [
6 7
8 9

]


det(A) = det

[
3 4
4 5

]
det(6) det

[
6 7
8 9

]
= (−1)(6)(−2) = 12.
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3.3 Áreas y volúmenes

⋆ Sean x, y dos puntos de R2. El origen, x y y no deben ser colineales. El área del paralelogramo
determinado por: (0, 0), x y y (el paralelogramo de vértices (0, 0), x, x+ y y y) es

A =

∣∣∣∣det [x1 x2
y1 y2

]∣∣∣∣ (3.9)

x

y
x+ y·

⋆ Sean x, y, z tres puntos no colineales de R2. El área del triángulo con estos vértices es:

A =
1

2

∣∣∣∣∣∣det
x1 x2 1
y1 y2 1
z1 z2 1

∣∣∣∣∣∣ (3.10)

x

y

z

⋆ Sean x, y, z tres puntos no colineales de R3. El volumen del paraleleṕıpedo determinado por x, y y z,
es decir, con vértices 0, x, x+ y, y, z, x+ z, x+ y + z, y + z es:

V =

∣∣∣∣∣∣det
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ (3.11)

0

z

x

x+ y

x+ y + z

y

y + z

x+ z

⋆ Sean x, y, z, u cuatro puntos no coplanares de R3. El volumen del tetraedro con estos vértices es:

V =
1

6

∣∣∣∣∣∣∣∣det

x1 x2 x3 1
y1 y2 y3 1
z1 z2 z3 1
u1 u2 u3 1


∣∣∣∣∣∣∣∣ (3.12)
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x

y

z

u

Ejemplo 3.8. Hallar el área del paralelogramo de vértices (2, 1), (7, 2), (9, 5), (4, 4).

Primero es necesario hacer una traslación para convertir un vértice en el origen. Por ejemplo restando a
cada vértice (2, 1). Los nuevos vértices con: (0, 0), (5, 1), (7, 4), (2, 3).

A =

∣∣∣∣det [5 1
2 3

]∣∣∣∣
A = |13| = 13.

Ejemplo 3.9. Hallar el área del triángulo con vértices (3, 1), (1, 1), y (2, 4).

A =
1

2

∣∣∣∣∣∣det
3 1 1
1 1 1
2 4 1

∣∣∣∣∣∣
=

1

2
| − 6|

= 3

También, conocidos los valores a, b, c, longitudes de los lados, se puede usar la fórmula de Herón de
Alejandŕıa:

A =
√
p(p− a)(p− b)(p− c), (3.13)

p = (a+ b+ c)/2, el semipeŕımetro.

a = ||(1, 1)− (3, 1)|| = 2

b = ||(1, 1)− (2, 4)|| =
√
10

c = ||(3, 1)− (2, 4)|| =
√
10

p =
√
10 + 1

A =

√
(
√
10 + 1)(

√
10 + 1− 2)(

√
10 + 1−

√
10)(
√
10 + 1−

√
10)

A =

√
(
√
10 + 1)(

√
10− 1) =

√
10− 1

A = 3

Ejemplo 3.10. Hallar el volumen del paraleleṕıpedo determinado por puntos (1, 2, 3), (5, 2, 1), (1, 1, 6),

V =

∣∣∣∣∣∣det
1 2 3
5 2 1
1 1 6

∣∣∣∣∣∣
= | − 38| = 38
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Ejemplo 3.11. Hallar el volumen del tetraedro con vértices (1, 1, 0), (5, 1, 0), (3, 3, 0) y (2, 3, 5).

V =
1

6

∣∣∣∣∣∣∣∣det

1 1 0 1
5 1 0 1
3 3 0 1
2 3 5 1


∣∣∣∣∣∣∣∣

=
1

6
| − 40| = 20

3

En este ejemplo sencillo, el volumen se puede calcular teniendo en cuenta que se puede considerar la base
formada por los tres primeros vértices, los tres tienen tercera coordenada nula. El área de ese triángulo
es la misma del triángulo de vértices (1, 1), (5, 1) y (3, 3). Esta área es (4 × 2)/2 = 4. El volumen del
tetraedro es Bh/3, un tercio del área de la base por la altura, V = 4× 5/3 = 20/3.

3.4 Cálculo del determinante por el método de Gauss

Es el método más usado y, para matrices sin una estructura particular, el más eficiente (menor número
de operaciones). Consiste simplemente en triangularizar la matriz mediante operaciones del tipo Fi ↔ Fj

o Fk + cFi. El determinante de la matriz triangular superior resultante es simplemente el producto de
las entradas diagonales. El determinante de la matriz inicial es igual al determinante final multiplicado
por −1 elevado al número de intercambios.

Si en la iteración j (se desea obtener ceros en la columna j debajo de la diagonal) no es posible obtener
un pivote nulo, es decir, A(j : n, j) = 0, el determinate de la matriz vale cero.

Ejemplo 3.12. Calcular el determinante de

A =


0 −1 −3 −4
2 −2 3 4

−10 7 −23 −27
4 −4 4 −4


F1 ↔ F2 

2 −2 3 4
0 −1 −3 −4

−10 7 −23 −27
4 −4 4 −4


F3 + 5F1, F4 − 2F1 

2 −2 3 4
0 −1 −3 −4
0 −3 −8 −7
0 0 −2 −12


F3 − 3F2 

2 −2 3 4
0 −1 −3 −4
0 0 1 5
0 0 −2 −12


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F4 + 2F3 
2 −2 3 4
0 −1 −3 −4
0 0 1 5
0 0 0 −2


El determinante de la última matriz es 2(−1)(1)(−2) = 4. Como hubo un intercambio, entonces el
det(A) = −4.

Ejemplo 3.13. Calcular el determinante de

A =

 2 3 4
−14 −21 −23
12 18 30


F2 + 7F1, F3 − 6F1 2 3 4

0 0 5
0 0 6


Como no se puede colocar un pivote adecuado en la posición (2, 2), (es decir, A(2 : 3, 2) = 0 ), entonces
det(A) = 0 .

3.5 Cálculo de la inversa

Dada una matriz cuadrada, el cofactor en la posición (i, j) es

Cij = Cij(A) = (−1)i+j det(Aij) = (−1)i+jMij . (3.14)

La matriz adjunta es la matriz formada por los cofactores,

adj(A) =


C11 C12 · · · C1n

C21 C22 · · · C2n
...

Cn1 Cn2 · · · Cnn


Dos resultados importantes relacionados:

A adj(A)T = det(A) I (3.15)

Si det(A) ̸= 0

A−1 =
1

det(A)
adj(A)T . (3.16)
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Ejemplo 3.14.

A =

2 3 4
5 6 7
8 9 9


det(A) = 3

C11 = (−1)1+1 det

[
6 7
9 9

]
= −9

C12 = (−1)1+2 det

[
5 7
8 9

]
= 11

C13 = (−1)1+3 det

[
5 6
8 9

]
= −3

...

A−1 =
1

3

−9 11 −3
9 −14 6
−3 6 −3

T

A−1 =
1

3

−9 9 −3
11 −14 6
−3 6 −3



3.6 Regla de Cramer

Permite resolver un sistema de ecuaciones cuadrado Ax = b, con A invertible:

x1 =
det
[
b A·2 A·3 · · · A·n

]
det(A)

x2 =
det
[
A·1 b A·3 · · · A·n

]
det(A)

(3.17)

...

xn =
det
[
A·1 A·2 · · · A·n−1 b

]
det(A)

Para calcular xi, en el numerador está el determinante de una matriz obtenida de A quitando la columna
i y remplazándola por b.

Ejemplo 3.15. Resolver Ax = b, donde

A =

2 3 4
5 6 7
8 9 9

 , b =

 5
14
25


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det(A) = 3

x1 =

det

 5 3 4
14 6 7
25 9 9


3

=
6

3
= 2

x2 =

det

2 5 4
5 14 7
8 25 9


3

=
9

3
= 3

x3 =

det

2 3 5
5 6 14
8 9 25


3

=
−6
3

= −2 .



4

Espacios vectoriales

4.1 Definición y ejemplos

El concepto de espacio vectorial es la abstracción de las caracteŕısticas más importantes de los vectores
usados en F́ısica (por ejemplo, las fuerzas) o también de las matrices y de otros conjuntos usados en
Matemáticas.

Un espacio vectorial es simplemente un conjunto en el que hay definidas dos operaciones, suma y producto,
que cumplen ciertas propiedades. La suma es entre elementos del conjunto. El producto es entre un
número real y un elemento del conjunto.

Definición 4.1. Un espacio vectorial real es una terna o tripla (V, suma, producto), donde V es un
conjunto no vaćıo, suma es una operación entre elementos de V , denotada x + y, y producto es una
operación entre un número real y un elemento de V , denotada simplemente αx (o algunas veces por xα ),
con las siguientes propiedades:

S.0 Para todo x, y ∈ V, x+ y ∈ V.
S.1 Para todo x, y, z ∈ V, (x+ y) + z = x+ (y + z).
S.2 Para todo x, y ∈ V, x+ y = y + x.
S.3 Existe un elemento 0 ∈ V, tal que para todo x ∈ V, x+ 0 = x.
S.4 Para todo x ∈ V existe x̃ ∈ V tal que x+ x̃ = 0.

P.0 Para todo α ∈ R y para todo x ∈ V, αx ∈ V.
P.1 Para todo α, β ∈ R y para todo x ∈ V, α(βx) = (αβ)x.
P.2 Para todo x ∈ V, 1x = x.

D.1 Para todo α, β ∈ R y para todo x ∈ V, (α+ β)x = αx+ βx.
D.2 Para todo α ∈ R y para todo x, y ∈ V, α(x+ y) = αx+ αy.

(4.1)

Los elementos de V se llaman vectores. En el producto αx, α es llamado el escalar. Aśı, el producto
también se conoce con el nombre de producto por escalar. Mientras no haya lugar a confusión, el
elemento especial 0 ∈ V se denotará simplemente por 0. Para cada x ∈ V , el elemento especial x̃ tal que
x + x̃ = 0, se llama inverso aditivo de x y se denota simplemente por −x. Aśı, se habla de resta, es
decir, x− y es simplemente x+ (−y). Por la propiedad S.1, se puede escribir simplemente x+ y + z. De
manera análoga, por la propiedad P.1, se puede escribir simplemente αβx.

50
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Las propiedades de la suma se llaman, clausurativa, asociativa, conmutativa, modulativa e invertiva
(nombre no muy frecuente). Las propiedades del producto escalar se llaman clausurativa, asociativa y
modulativa. Las dos últimas propiedades son distributivas.

Propiedades adicionales , que no hacen parte de la definición:

0x = 0 (4.2)

(−1)x = −x (4.3)

También hay espacios vectoriales complejos, en ellos el producto por escalar se hace con un escalar en C.
En este documento, mientras no se diga lo contrario, si se habla de un espacio vectorial, se trata de un
espacio vectorial real.

En un espacio vectorial, dos vectores no nulos son paralelos si uno es un múltiplo del otro. Sea V un
espacio vectorial, x, y ∈ V , x ̸= 0, y ̸= 0 son paralelos si existe α ∈ R tal que

x = αy. (4.4)

Ejemplo 4.1. El conjunto de matrices Rm×n con la suma y producto definidos en (1.1) y (1.2), es un
espacio vectorial real.

Ejemplo 4.2. El conjunto de números reales R, con la suma y producto usuales, también es un espacio
vectorial real. Claro está que R cumple otras propiedades y también es un cuerpo (estructura algebraica
más sofisticada), pero es un espacio vectorial.

Ejemplo 4.3. El conjunto R2, es el conjunto de todas las parejas ordenadas reales,

R2 = {(x1, x2) : x1, x2 ∈ R}. (4.5)

R2 representa el conjunto de puntos del plano cartesiano, la primera coordenada es la coordenada hori-
zontal o abscisa o coordenada “x”, la segunda es la vertical u ordenada o coordenada “y”. El punto
(x1, x2) también representa el vector que va desde el punto (0, 0) al punto (x1, x2).

La suma y producto por escalar en R2 se definen aśı:

x+ u = (x1, x2) + (u1, u2) = (x1 + u1, x2 + u2) (4.6)

αx = α(x1, x2) = (αx1, αx2) (4.7)

0 1 2 3 4 5 6 7
0

1

2

3

4

x

u

x+ u

R2, con esa suma y producto, es un espacio vectorial.
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Si se desea demostrar que un conjunto, definida la suma y el producto, es un espacio vectorial, es necesario
demostrar que se cumplen todas las propiedades. Generalmente estas demostraciones están basadas en
las propiedades de lo números reales. Si se desea demostrar que no es espacio vectorial, basta con dar un
contraejemplo, es decir, un ejemplo donde no se cumple una propiedad.

Por abuso de lenguaje y si no se presenta ambigüedad, frecuentemente no se dice de manera completa que
tal conjunto con tal suma y tal producto es un espacio vectorial, sino que simplemente tal conjunto es un
espacio vectorial, sobreentendiéndose que la suma y el producto están definidas de manera “natural”. Aśı,
por ejemplo, se dice frecuentemente, “R2 es un espacio vectorial”, sobreentendiendo la suma y producto
naturales o canónicos (4.6) y (4.7).

Ejemplo 4.4. El conjunto R3, es el conjunto de todas las triplas o ternas ordenadas reales,

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}. (4.8)

R3 representa el conjunto de puntos del espacio, la primera coordenada es la coordenada “x”, la segunda
es la coordenada “y” y la tercera es la coordenada “z”. El punto (x1, x2, x3) también representa el vector
que va desde el punto (0, 0, 0) al punto (x1, x2, x3).

De manera análoga a R2, la suma y producto se definen aśı:

x+ y = (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3) (4.9)

αx = α(x1, x2, x3) = (αx1, αx2, αx3) (4.10)

R3, con esa suma y producto, es un espacio vectorial.

Ejemplo 4.5. La generalización de los espacios anteriores es

Rn = {(x1, x2, ..., xn) : x1, x2, ..., xn ∈ R}, (4.11)

con las operaciones

x+ y = (x1, x2, ..., xn) + (y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn) (4.12)

αx = α(x1, x2, ..., xn) = (αx1, αx2, ..., αxn) (4.13)

También es un espacio vectorial.

Ejemplo 4.6.

Z2 = {(x1, x2) : x1, x2 ∈ Z},

con las operaciones

x+ y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

αx = α(x1, x2) = (αx1, αx2)

no es un espacio vectorial. Basta con mostrar un caso de una propiedad que no se cumpla. El producto
0.5(4, 7) = (2, 3.5) no está en Z2.

Ejemplo 4.7. El conjunto Q2 de polinomios de grado 2 (en una sola variable) con la suma y producto
por escalar “naturales” no es un espacio vectorial.

p(x) = x2 + 3x− 4

q(x) = −x2

p(x) + q(x) = 3x− 4 no está en Q2
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Ejemplo 4.8. El conjunto P2 de polinomios de grado menor o igual a 2, con la suma y producto por
escalar “naturales” es un espacio vectorial.

Ejemplo 4.9. El conjunto Pn de polinomios de grado menor o igual a n es un espacio vectorial.

Ejemplo 4.10. El conjunto de todos los polinomios es un espacio vectorial.

Ejemplo 4.11. El conjunto de todas las funciones, de los reales en los reales, continuas, es un espacio
vectorial.

Hay tres conjuntos que son muy parecidos, pero son diferentes

R1×n : matrices fila

Rn×1 : matrices columna

Rn : n-uplas

Para simplificar, en este documento, los conjuntos Rn×1 y Rn son exactamente iguales. Aśı, según la
conveniencia o facilidad de escritura,

x = (x1, x2, ..., xn) =


x1
x2
...
xn

 (4.14)

xT =
[
x1 x2 · · · xn

]
(4.15)

4.2 Subespacios

En un espacio vectorial V , un subconjunto U es un subespacio vectorial de V , si U también es un
espacio vectorial para la suma y producto definidos en V .

Para demostrar que U es un subespacio vectorial de V , seŕıa necesario demostar que en U se cumplen las
diez propiedades (4.1). El siguiente teorema permite la comprobación de una manera muchos más corta.

Teorema 4.1. Sea (V, suma, producto) un espacio vectorial, U ⊆ V , U ̸= ∅. U es un subespacio
vectorial de V sssi:

� Para todo x, y en U , también x+ y está en U .

� Para todo x en U y para todo α en R, también αx está en U .

En otras palabras, U es subespacio de V sssi U es cerrado para la suma y para el producto por escalar.

Una pequeña conclusión indica que si 0 no está en U , entonces U no es un subespacio de V . Sin embargo,
es posible que 0 esté en U y que U no sea subespacio vectorial de V .

Ejemplo 4.12. En cualquier espacio vectorial V , los conjuntos V y {0} son subespacios de V . Son los
subespacios “triviales” de V .

En general la unión de dos subespacios no es un subespacio, pero la intersección śı.

Teorema 4.2. Sea V un espacio vectorial, U y W subsepacios vectoriales de V , entonces U ∩W también
es un subespacio vectorial de V . En general, si hay 3, 4, o cualquier cantidad de subespacios, la inter-
sección de todos ellos, también es un subespacio.



4. ESPACIOS VECTORIALES 54

Ejemplo 4.13. Considere R2. Averigüe si la recta

U = {(x1, x2) ∈ R2 : x2 = 2x1} .

es un subespacio.

Sean x = (x1, x2), y = (y1, y2) ∈ U . Entonces x2 = 2x1 y y2 = 2y1. x + y = (x1 + y1, x2 + y2),
x2 + y2 = 2x1 + 2y1 = 2(x1 + y1). Luego x+ y ∈ U .

Sea α ∈ R. αx = (αx1, αx2), αx2 = α2x1 = 2(αx1), luego αx ∈ U . Luego U es un subespacio de R2.

Ejemplo 4.14. Considere R2. Averigüe si la recta

U = {(x1, x2) ∈ R2 : x2 = x1 + 3} .

es un subespacio.

El punto (0, 0) no está en U , luego U no es un subespacio.

⋆ Los únicos subespacios vectoriales de R2 son: R2, {(0, 0)} y las rectas que pasan por el origen.

4.2.1 Rectas en R2

En R2 una recta se puede representar de varias maneras. Las dos formas más usadas son las dadas por
las ecuaciones

x2 = mx1 + b (4.16)

cx1 + dx2 = e (4.17)

La primera no permite representar las rectas verticales. La segunda forma permite representar todas las
rectas. Únicamente se requiere que por lo menos uno de los valores c y d sea diferente de cero.

En la primera forma una recta está determinada de manera única por los valores m y b, es decir, si cambia
m o si cambia b, se tiene otra recta. En la segunda forma, dos ecuaciones aparentemente diferentes, definen
la misma recta. Por ejemplo

2x1 − 3x2 = 4

−4x1 + 6x2 = −8

Para las rectas que pasan por el origen, las ecuaciones son

x2 = mx1 (4.18)

cx1 + dx2 = 0 (4.19)

También se puede definir una recta que pasa por el origen como el conjunto de puntos múltiplos de un
vector no nulo,

{ t(p1, p2) : t ∈ R} (4.20)

por ejemplo
{ t (6,−7) : t ∈ R}.
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Los siguientes conjuntos, rectas que pasan por el origen, son exactamente iguales

{(x1, x2) : x2 = 2x1},
{(x1, x2) : 2x1 − x2 = 0},
{(x1, x2) : −4x1 + 2x2 = 0},
{t(2, 4) : t ∈ R},
{s(−3,−6) : s ∈ R}.

4.2.2 Rectas en R3 y Rn

Más adelante se verá el caso general de las rectas en Rn. En esta subsección está el resumen sobre las
rectas de R3 o de Rn que pasan por el origen. La caracterización (4.20) de la recta de R2 que pasa por
el origen se puede generalizar inmediatamente a R3 o Rn.

Dado (p1, p2, p3) ̸= (0, 0, 0), el conjunto

{ t(p1, p2, p3) : t ∈ R} (4.21)

es una recta en R3 que pasa por el origen. Es la recta paralela al vector (p1, p2, p3).

Dado (p1, p2, ..., pn) ̸= (0, 0, ..., 0), el conjunto

{ t(p1, p2, ..., pn) : t ∈ R} (4.22)

es una recta en Rn que pasa por el origen. Es la recta paralela al vector (p1, p2, ..., pn).

Sean p ∈ Rn, q ∈ Rn, p ̸= 0, q ̸= 0. La recta {tp : t ∈ R} es igual a la recta {tq : t ∈ R} sssi p y q son
paralelos.

Ejemplo 4.15. Una recta que pasa por el origen es un subespacio. No importa que sea un recta de R2

o de Rn.

4.2.3 Planos

En R3 el conjunto de puntos que cumplen la ecuación

3x1 + 4x2 − 5x3 = 12

es un plano.

Sea (c1, c2, c3) ̸= 0, α ∈ R. El conjunto

{x ∈ R3 : c1x1 + c2x2 + c3x3 = α} = {x ∈ R3 : cTx = α} (4.23)

es un plano. El conjunto

{x ∈ R3 : c1x1 + c2x2 + c3x3 = 0} = {x ∈ R3 : cTx = 0} (4.24)

es un plano que pasa por el origen (o que contiene al origen).

Ejemplo 4.16. Un plano que pasa por el origen es un subespacio de R3.
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Ejemplo 4.17. Averigüe si la intersección de los planos definidos por las ecuaciones

−2x1 + 6x2 − 4x3 = 0

−x1 + x2 − x3 = 0

es un subespacio. En caso afirmativo, dar la forma general de sus elementos.

Como se trata de dos planos que pasan por el origen, es decir subespacios, su intersección también es un
subespacio.

En el caso general de la intersección de 2 planos hay tres posibilidades:

� Los dos planos son paralelos y su intersección es vaćıa.

� Los dos planos son diferentes y no paralelos, su intersección es una recta.

� Se trata de dos planos iguales y su intersección es el mismo plano.

Para la intersección de dos planos que pasan por el origen, hay únicamente dos posibilidades:

� Los dos planos son diferentes, su intersección es una recta que pasa por el origen.

� Se trata de dos planos iguales y su intersección es el mismo plano.

Para el ejemplo, es necesario resolver el sistema homogéneo, llevando la matriz de coeficientes a escalonada
reducida.

A =

[
−2 6 −4
−1 1 −1

]
, E =

[
1 0 1/2
0 1 −1/2

]
Entonces

x1 = −
1

2
x3

x2 =
1

2
x3

x3 = x3

Forma general de la solución x1x2
x3

 = s

−1/21/2
1


La intersección de los dos planos es la recta que pasa por el origen, paralela a (−1/2, 1/2, 1).

⋆ Los subespacios de R3 son: R3, {(0, 0, 0)}, los planos que pasan por el origen y las rectas que pasan
por el origen.
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4.2.4 Hiperplanos

El concepto de plano en R3 se puede generalizar a hiperplano en Rn.

Sea c ∈ Rn, c ̸= 0, α ∈ R. Un hiperplano es un conjunto de la forma

H = {x ∈ Rn : c1x1 + c2x2 + · · ·+ cnxn = α} = {x ∈ Rn : cTx = α}. (4.25)

Los hiperplanos de R3 son los planos, los hiperplanos de R2 son las rectas, los hiperplanos de R son los
puntos.

Ejemplo 4.18. Un hiperplano que pasa por el origen es un subespacio de Rn. Por ejemplo, el conjunto
de puntos de R5 que satisfacen

2x1 − 3x2 + 4x3 + 10x5 = 0

es un subespacio de R5.

4.2.5 Espacio nulo de una matriz

Dada una matriz A ∈ Rm×n, su espacio nulo, núcleo o kernel, es el conjunto

NA = {x ∈ Rn : Ax = 0}. (4.26)

Fácilmente se comprueba de manera directa que NA es un subespacio de Rn. O también, cada ecuación
del sistema homogéneo es de la forma Ai·x = 0, es decir, cada ecuación define un hiperplano que pasa
por el origen, o sea, el espacio nulo de A es simplemente la intersección de m hiperplanos que pasan por
el origen, luego NA es un subespacio de Rn.

Vale anotar que Ai·x = 0 corresponde a un hiperplano solamente si Ai· ̸= 0. Cuando Ai· es una fila nula,
el conjunto de puntos que cumplen la ecuación Ai·x = 0 es todo Rn.

Generalmente no basta con saber que NA es un subespacio, es útil conocer la forma de los elementos de
NA. Esto se logra llevando A a la forma escalonada reducida y expresando la solución o las soluciones
en función de las variables libres.

Ejemplo 4.19. Halle NA para

A =


1 2 3
4 5 6
7 8 0
1 2 4


La matriz escalonada reducida es

E =


1 0 0
0 1 0
0 0 1
0 0 0


Traducido a ecuaciones,

x1 = 0

x2 = 0

x3 = 0

0 = 0

Entonces NA = {(0, 0, 0)}.
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Ejemplo 4.20. Halle NA para

A =

2 4 6 8
1 1 1 1
0 2 4 6


La matriz escalonada reducida es

E =

1 0 −1 −2
0 1 2 3
0 0 0 0


Traducido a ecuaciones,

x1 = x3 + 2x4

x2 = −2x3 − 3x4

0 = 0

O también

x1 = x3 + 2x4

x2 = −2x3 − 3x4

x3 = x3

x4 = x4
x1
x2
x3
x4

 = s


1
−2
1
0

+ t


2
−3
0
1


Entonces NA es el conjunto de vectores de la forma anterior, donde s y t pueden tomar cualquier valor.

El siguiente teorema muestra una caracterización de los subespacios de Rn.

Teorema 4.3. Todo subespacio de Rn es el espacio nulo de alguna matriz.

En esta caracterización no hay unicidad, es decir, dado un subespacio U hay muchas matrices A tales
que NA = U .

4.3 Combinaciones lineales y espacio generado

Sea V un espacio vectorial, v1, v2, ..., vk ∈ V , α1, α2, ..., αk ∈ R. El elemento de V

α1v
1 + α2v

2 + · · ·+ αkv
k (4.27)

es una combinación lineal de v1, v2, ..., vk.

Por ejemplo, sean v1 = (1, 2, 3), v2 = (1, 0,−1). Entonces u = (−1, 4, 9) es combinación lineal de v1 y v2

ya que
u = 2v1 − 3v2 .

El conjunto generado por v1, v2, ..., vk es el conjunto de todas las combinaciones lineales de v1, v2,
..., vk:

gen(v1, v2, ..., vk) = {α1v
1 + α2v

2 + · · ·+ αkv
k : α1, α2, ..., αk ∈ R }. (4.28)
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Por la definición de combinaciones lineales, gen(v1, ..., vk) es un subconjunto no vaćıo de V . Además
cumple la importante siguiente propiedad.

Teorema 4.4. Sea V un espacio vectorial, v1, v2, ..., vk ∈ V , entonces gen(v1, ..., vk) es un subespacio
vectorial de V .

Ejemplo 4.21. Encuentre la forma del espacio generado por v1 = (2, 3, 4), v2 = (6, 0, 1).

Como v1, v2 están en R3, entonces G = gen(v1, v2) es un subespacio de R3.

Sea x = (x1, x2, x3) ∈ G, entonces

α1v
1 + α2v

2 = (x1, x2, x3)

α1(2, 3, 4) + α2(6, 0, 1) = (x1, x2, x3)

Al desarrollar e igualar coordenada a coordenada,

2α1 + 6α2 = x1

3α1 + 0α2 = x2

4α1 + 1α2 = x3

Aqúı las incógnitas son α1 y α2. La matriz aumentada es2 6 x1
3 0 x2
4 1 x3


Al buscar una matriz escalonada reducida hasta la columna 2, las primeras operaciones dan:1 3 1

2x1
3 0 x2
4 1 x3


1 3 1

2x1
0 −9 −3

2x1 + x2
0 −11 −2x1 + x3


Finalmente 1 0 1

3x2
0 1 1

6x1 −
1
9x2

0 0 −1
6x1 −

11
9 x2 + x3


Para que este sistema sea consistente se requiere que

−1

6
x1 −

11

9
x2 + x3 = 0

x1 +
22

3
x2 − 6x3 = 0

x1 = −
22

3
x2 + 6x3

Aśı, los puntos que están en G son de la formax1x2
x3

 = s

−22/31
0

+ t

60
1


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Se puede evitar el trabajo con x1, x2 y x3 y hacer las cuentas únicamente con sus coeficientes. Para esto
se contruye una matriz, pegando a la derecha de la matriz inicial, la identidad (en este ejemplo, I3).2 6 1 0 0

3 0 0 1 0
4 1 0 0 1


Ahora se calcula la matriz escalonada reducida parcial hasta la columna 2 (véase 1.6.3).1 0 0 1/3 0

0 1 1/6 −1/9 0
0 0 −1/6 −11/9 1


Se observa claramente que en las tres últimas columnas están los coeficentes de x1, x2 y x3 obtenidos
anteriormente.

Ejemplo 4.22. Encuentre la forma del espacio generado por v1 = (0, 1, 2), v2 = (3, 4, 5), v3 = (6, 7, 0).

Como v1, v2 y v3 están en R3, entonces G = gen(v1, v2, v3) es un subespacio de R3.

Sea x = (x1, x2, x3) ∈ G, entonces

α1v
1 + α2v

2 + α3v
3 = (x1, x2, x3)

Al desarrollar e igualar coordenada a coordenada,

0α1 + 3α2 + 6α3 = x1

1α1 + 4α2 + 7α3 = x2

2α1 + 5α2 + 0α3 = x3

Este sistema es cuadrado, el determinante de la matriz es −24, luego siempre tiene solución (además
única), luego G = R3.

Ejemplo 4.23. Encuentre la forma del espacio generado por v1 = (2, 3, 4, 5), v2 = (6, 7, 8, 9), v3 =
(8, 10, 12, 14), v4 = (4, 6, 8, 10).

Como v1, v2, ... están en R4, entonces G = gen(v1, v2, v3, v4) es un subespacio de R4.

Sea x = (x1, x2, x3, x4) ∈ G, entonces

α1v
1 + α2v

2 + α3v
3 + α4v

4 = (x1, x2, x3, x4)

α1(2, 3, 4, 5) + α2(6, 7, 8, 9) + α3(8, 10, 12, 14) + α4(4, 6, 8, 10) = (x1, x2, x3, x4)

Al desarrollar e igualar coordenada a coordenada,

2α1 + 6α2 + 8α3 + 4α4 = x1

3α1 + 7α2 + 10α3 + 6α4 = x2

4α1 + 8α2 + 12α3 + 8α4 = x3

5α1 + 9α2 + 14α3 + 10α4 = x4

Aqúı las incógnitas son α1, ..., α4. La matriz aumentada es
2 6 8 4 x1
3 7 10 6 x2
4 8 12 8 x3
5 9 14 10 x3


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Es necesario obtener la matriz escalonada reducida hasta la columna 4. El resultado es:
1 0 1 2 −7

4x1 +
3
2x2

0 1 1 0 3
4x1 −

1
2x2

0 0 0 0 x1 − 2x2 + x3
0 0 0 0 2x1 − 3x2 + x4


Si se hubiera hecho sin la escritura expĺıcita de x1, ..., x4, se empieza con

2 6 8 4 1 0 0 0
3 7 10 6 0 1 0 0
4 8 12 8 0 0 1 0
5 9 14 10 0 0 0 1


La escalonada reducida parcial hasta la columna 4 es:

1 0 1 2 −7/4 3/2 0 0
0 1 1 0 3/4 −1/2 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 2 −3 0 1


Para que el sistema inicial sea consistente se necesita que

x1 − 2x2 + x3 = 0

2x1 − 3x2 + x4 = 0

Al resolver este sistema homogéneo, buscando la matriz escalonada reducida, se obtiene

x1 = 3x3 − 2x4

x2 = 2x3 − x4

O también 
x1
x2
x3
x4

 = s


3
2
1
0

+ t


−2
−1
0
1


Los vectores de la forma anterior son los que están en el conjunto gen(v1, v2, v3, v4). 3

Para averiguar si v está en gen(v1, v2, ..., vk) basta con averiguar si la ecuación

v = α1v
1 + α2v

2 + · · ·+ αkv
k

tiene solución (las incógnitas son α1, α2, ..., αk). Si tiene por lo menos una solución, entonces v ∈
gen(v1, v2, ..., vk). Si no tiene solución, entonces v /∈ gen(v1, v2, ..., vk).

Ejemplo 4.24. Averiguar si v = (1, 4, 7, 9) está en gen( (1, 2, 3, 4), (1, 1, 1, 1), (5, 6, 7, 8) ).

¿Es (1, 4, 7, 9) combinación lineal de estos tres vectores?

α1(1, 2, 3, 4) + α2(1, 1, 1, 1) + α3(5, 6, 7, 8) = ? (1, 4, 7, 9).
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La matriz aumentada del sistema es: 
1 1 5 1
2 1 6 4
3 1 7 7
4 1 8 9


Un paso intermedio en la búsqueda de la solución puede ser,

1 0 1 3
0 1 4 −2
0 0 0 0
0 0 0 −1


El sistema es inconsistente, es decir, (1, 4, 7, 9) no está en gen( (1, 2, 3, 4), (1, 1, 1, 1), (5, 6, 7, 8) ). 3

Sea A ∈ Rm×n. Asociados a esta matriz hay tres subespacios:

� NA el espacio nulo de A, NA = {x ∈ Rn×1 : Ax = 0}, subespacio de Rn×1.

� El espacio generado por las columnas de A, llamado usualmente espacio columna de la matriz,
CA = gen(A·1, A·2, ..., A·n ), subespacio de Rm×1. Este espacio es la imagen o recorrido de la
siguiente función:

f : Rn → Rm

f(x) = Ax

CA = f(Rn)

� FA , el espacio fila o espacio generado por las filas de A, subespacio de R1×n.

Los más usados son los dos primeros, el espacio nulo y el espacio columna.

4.4 Independencia y dependencia lineal

Definición 4.2. Sea V un espacio vectorial, v1, v2, ..., vm vectores (elementos) de V , m ≥ 1. El conjunto
C = {v1, v2, ..., vm} es linealmente independiente (también se dice que los vectores v1, v2, ..., vm son
linealmente independientes) si la única combinación lineal igual al vector nulo es la combinación lineal
trivial. Cuando hay una combinación lineal diferente de la trivial que sea igual al vector nulo, se dice
que el conjunto es linealmente dependiente.

Al aplicar la definición para un ejemplo espećıfico, se obtiene un sistema homogéneo, donde las incógnitas
son los escalares de la combinación lineal. Si el sistema homogéneo tiene como única solución la trivial,
entonces C es linealmente independediente. Si el sistema homogéneo tiene soluciones diferentes de la
trivial, entonces C es linealmente dependiente.

Sea A la matriz de coeficientes del sistema homogéneo y E su matriz escalonada reducida. Si E no
tiene columnas libres, entonces los vectores son linealmente independientes. Si E tiene por lo menos una
columna libre, entonces los vectores son linealmente dependientes.
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Ejemplo 4.25. Averiguar si los vectores v1 = (1, 2, 3) y v2 = (4, 5, 6) son linealmente independientes.

α1(1, 2, 3) + α2(4, 5, 6) = (0, 0, 0)

(α1 + 4α2, 2α1 + 5α2, 3α1 + 6α2) = (0, 0, 0)

α1 + 4α2 = 0

2α1 + 5α2 = 0

3α1 + 6α2 = 0

A =

1 4
2 5
3 6


E =

1 0
0 1
0 0


Como E no tiene columnas libres, la solución trivial es la única solución del sistema homogéneo y los dos
vectores son linealmente independientes.

Ejemplo 4.26. Averiguar si las matrices

A1 =

[
−1 0
1 2

]
, A2 =

[
3 4
5 6

]
, A3 =

[
−7 −4
−1 2

]
,

son linealmente independientes.

α1

[
−1 0
1 2

]
+ α2

[
3 4
5 6

]
+ α3

[
−7 −4
−1 2

]
=

[
0 0
0 0

]
−α1 + 3α2 − 7α3 = 0

4α2 − 4α3 = 0

α1 + 5α2 − α3 = 0

2α1 + 6α2 + 2α3 = 0

A =


−1 3 −7
0 4 −4
1 5 −1
2 6 2



E =


1 0 4
0 1 −1
0 0 0
0 0 0


Como E tiene una columna libre (la tercera), entonces las tres matrices son linealmente dependientes.
Hasta acá ya está la respuesta al ejercicio propuesto. Se puede comprobar que una solución no trivial es
α1 = −4, α2 = 1, α3 = 1. Fácilmente se verifica que −4A1 +A2 +A3 = 0.

Ejemplo 4.27. Averiguar si los polinomios

p1(x) = x2 − 4, p2(x) = x− 2, p3(x) = x+ 2,

son linealmente independientes.
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α1(x
2 − 4) + α2(x− 2) + α3(x+ 2) = 0

α1x
2 + (α2 + α3)x− 4α1 − 2α2 + 2α3 = 0

α1 = 0

α2 + α3 = 0

−4α1 − 2α2 + 2α3 = 0

A =

 1 0 0
0 1 1
−4 −2 2


E =

1 0 0
0 1 0
0 0 1


Como E no tiene columnas libres, entonces los tres polinomios son linealmente independientes.

⋆ Si en un conjunto está el vector nulo, entonces es linealmente dependiente.

⋆ Un conjunto de un único vector no nulo es linealmente independiente.

⋆ Un conjunto de dos vectores no nulos es linealmente independiente si y solamente si uno de los vectores
no es múltiplo del otro.

⋆ Un conjunto es linealmente dependiente si y solamente si alguno de sus vectores es combinación lineal
de los otros.

4.5 Bases y dimensión

Definición 4.3. Sea V un espacio vectorial, B = {v1, ..., vm} ⊆ V . Se dice que B es una base de V si B
es linealmente independientemente y genera todo V .

Ejemplo 4.28. B = {(1, 0), (0, 1)} es una base de R2, es la base canónica de R2.

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} es una base de R3, la base canónica.

B = {(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)} es una base de Rn, la base canónica y se denotará por Bc.

Ejemplo 4.29. B = {(1, 2), (3, 4)} es una base de R2.
B = {(1, 2), (3, 4), (5, 6)} no es una base de R2.
B = {(1, 2), (3, 6)} no es una base de R2.
B = {(1, 2)} no es una base de R2.

Ejemplo 4.30. El conjunto de matrices[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

es una base de R2×2.

Ejemplo 4.31. Los polinomios

p1(x) = 1, p2(x) = x, p3(x) = x2

forman la base canónica de P2, conjunto de polinomios de grado menor o igual a dos.
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Ejemplo 4.32. Los polinomios

p1(x) = 1, p2(x) = x, p3(x) = x2, ..., pn+1(x) = xn, ...

forman la base canónica del conjunto de todos los polinomios.

Teorema 4.5. Si un espacio vectorial tiene una base finita, entonces cualquier base tiene el mismo
número de elementos.

✓ El número de vectores de una base finita de un espacio vectorial es la dimensión del espacio vectorial.
Se denotará por dim(V ). Para el espacio cuyo único elemento es el vector 0, la dimensión es 0.

Ejemplo 4.33. dim(R2) = 2, dim(R3) = 3, dim(Rn) = n, dim(R2×2) = 4, dim(P2) = 3,
dim(P3) = 4.

⋆ Sea B = {v1, v2, ..., vm} ⊆ V espacio vectorial de dimensión n. Si m = n y B es linealmente indepen-
diente, entonces B genera a V y es base de V .

⋆ Sea B = {v1, v2, ..., vm} ⊆ V espacio vectorial de dimensión n. Si m = n y B genera a V , entonces B
es linealmente independiente y es base de V .

⋆ Sea B = {v1, v2, ..., vm} ⊆ V espacio vectorial de dimensión n. Si m > n, entonces B es linealmente
dependiente.

⋆ Sea B = {v1, v2, ..., vm} ⊆ V espacio vectorial de dimensión n. Si m < n, entonces B no genera a V .

4.5.1 Base del espacio generado

Sea V un espacio vectorial, C = {u1, u2, ..., uk} ⊆ V y U = gen(u1, u2, ..., uk). Entonces

dim(U) ≤ k.

Si C es linealmente independiente, entonces dim(U) = k y C es base de U .

Si C es linealmente dependiente, entonces dim(U) < k y C no es base de U . Hay que buscar un subconjunto
de C, del mayor tamaño posible que sea linealmente independiente. Este conjunto será base y su cantidad
de elementos será la dimensión de U . Cualquier otro subconjunto de C, linealmente independiente con
esa misma cantidad de elementos será también base.

A modo de ejemplo, supongamos de k = 4. Si C es linealmente independiente, entonces dim(U) = 4 y C
es una base de U .

Si C es linealmente dependiente, es necesario considerar los subconjuntos con 3 elementos. Si alguno de
ellos es linealmente independiente, este conjunto es una base y dim(U) = 3. Fin de la búsqueda.

Si todos los subconjunto de 3 elementos son linealmente dependientes, entonces dim(U) < 3 y es necesario
considerar los subconjuntos de 2 elementos. Aśı sucesivamente hasta obtener la diemensión y una base.

El proceso descrito anteriormente puede ser rápido en algunos casos, pero en muchos casos puede ser
muy dispendioso. Un proceso más general está en la siguiente sección.
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4.5.2 Base del espacio nulo, del espacio columna y del espacio fila de una matriz

Sea A ∈ Rm×n y E su matriz escalonada reducida. Para obtener la dimensión de NA y una base es
necesario resolver el sistema homogéneo Ax = 0. Este sistema es equivalente a Ex = 0.

dim(NA) = número de columnas libres de E.

Para obtener una base de NA, se obtiene la forma general de la solución, es decir, se expresan todas las
variables, básicas y libres, en función de las variables libres. A la primera variable libre se le asigna el
valor 1 y a las otras variables libres se les asigna 0 y se obtiene un x solución de Ex = 0. El vector x
obtenido hace parte de una base.

En seguida se asigna el valor 1 a la segunda variable libre y 0 a las otras variables libres. El vector x
obtenido hace parte de la base que se está construyendo y aśı sucesivamente. Al final de este proceso se
tiene una base de NA.

Ejemplo 4.34. Hallar la dimensión y una base del espacio nulo de A,

A =

0 0 0 3 12
0 2 4 0 −6
0 5 10 6 9

 .

Su matriz escalonada reducida es

E =

0 1 2 0 −3
0 0 0 1 4
0 0 0 0 0

 .

Como hay tres variables libres, x1, x3 y x5, entonces dim(NA) = 3. La forma general de la solución de
Ex = 0 es:

x1 = x1

x2 = −2x3 + 3x5

x3 = x3

x4 = −4x5
x5 = x5

x1 = 1
x3 = 0
x5 = 0

, x =


1
0
0
0
0

 ,
x1 = 0
x3 = 1
x5 = 0

, x =


0
−2
1
0
0

 ,
x1 = 0
x3 = 0
x5 = 1

, x =


0
3
0
−4
1

 .

Estos tres vectores forman una base de NA.

Ejemplo 4.35. Hallar la dimensión y una base del espacio nulo de A,

A =

1 2 3
4 5 6
7 8 0


Esta matriz es cuadrada, det(A) = 27, luego E = I3. Entonces dim(NA) = 0, NA = {(0, 0, 0)}.
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Para obtener la dimensión y una base del espacio generado por las columnas de una matriz A, se podŕıa
seguir el proceso presentado en la sección anterior.

Un procedimiento, generalmente, más eficiente es el siguiente. Se obtiene E la matriz escalonada reducida
de A.

dim(CA) = número de filas no nulas de E

= número de columnas básicas de E

= rango(A) = rango(E)

Sea r = rango(A). Para escoger de manera segura y rápida r columnas de A linealmente independientes,
basta con tomar las columnas de A correspondientes a las columnas básicas en E.

Ejemplo 4.36. Hallar la dimensión y una base de CA, espacio generado por las columnas de A,

A =

0 0 0 3 12
0 2 4 0 −6
0 5 10 6 9

 .

Su matriz escalonada reducida es

E =

0 1 2 0 −3
0 0 0 1 4
0 0 0 0 0

 .

Entonces dim(CA) = 2. Una base de CA está formada por las columnas02
5

 ,

30
6

 . 3

Para obtener una base del espacio fila de A, generalmente el camino más rápido también comienza con
la obtención de la matriz escalonada reducida de A.

dim(FA) = dim(CA)

= número de filas no nulas de E

= número de columnas básicas de E

= rango(A) = rango(E)

Las filas no nulas de E forman una base de FA. Para la matriz A del ejemplo anterior,
[
0 1 2 0 −3

]
y
[
0 0 0 1 4

]
forman una base de FA.

En algunos casos cuando se conoce r = rango(A) y A tiene una estructura especial, puede ser más rápido,
encontrar un subconjunto de r filas de A linealmente independientes.

Sea V un espacio vectorial de dimensión finita. Algunas veces es necesario saber si dos conjuntos de
vectores C1 y C2 (ambos subconjuntos de V ) generan el mismo subespacio. Un proceso natural, no
necesariamente el más eficiente, consiste en tomar cada vector de C1 y averiguar si está en gen(C2) y de
igual forma tomar cada vector de C2 y averiguar si está en gen(C1). Si en todos los casos la respuesta es
afirmativa, entonces gen(C1) = gen(C2).

Otra manera, equivalente a la anterior y algunas veces más eficiente, consiste en escoger B1 ⊆ C1 base de
gen(C1) y B2 ⊆ C2 base de gen(C2). Si el número de elementos de B1 es diferente del número de elementos
de B2, entonces gen(B1) = gen(C1) ̸= gen(B2) = gen(C2). Si B1 y B2 tienen igual número de elementos,
basta con verificar si cada elemento de B1 es combinación lineal de los vectores de B2. No es necesario
verificar si cada elemento de B2 es combinación lineal de los elementos de B1.
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Ejemplo 4.37. Sean C1 = {(4, 3, 6, 5), (0, 2, 2, 4), (3, 4, 5, 6)} y C2 = {(1, 2, 3, 4), (1, 1, 1, 1), (1, 0, 1, 0)}.
Averiguar si gen(C1) = gen(C2).

Como los dos conjuntos son linealmente independientes, entonces C1 es base de gen(C1) y C2 es base de
gen(C2). Después de algunas operaciones, se constata que cada elemento de C1 es combinación lineal de
los elementos de C2. Luego gen(C1) = gen(C2). 3

Ejemplo 4.38. Sean C1 = {(−10,−15,−20,−25), (−6,−12,−14,−20), (−7,−7,−11, 10)} y C2 =
{(−7,−9,−13,−15), (−1,−1,−3,−3), (−4,−3,−6,−5)}. Averiguar si gen(C1) = gen(C2).

En este ejemplo también los dos conjuntos son linealmente independientes y son base de sus generados.
El tercer vector de C1 no es combinación lineal de los vectores de C2, luego los subespacios generados son
diferentes. 3

4.6 Coordenadas y matriz para cambio de base

⋆ Sea V un espacio vectorial y B = {v1, ..., vn} una base de V . Si v ∈ V , entonces v se puede expresar
de manera única como combinación lineal de v1, ..., vn.

✓ Sea V un espacio vectorial, B = {v1, ..., vn} una base de V , v ∈ V . Con los n escalares de la
combinación lineal se construye un vector de Rn llamado el vector de coordenadas de v con respecto
a la base B.

v = α1v
1 + α2v

2 + · · ·+ αnv
n

[v]B = (α1, α2, ..., αn) =


α1

α2
...
αn


Aunque una base se definió simplemente como un conjunto de vectores con dos propiedades, para
la definición de coordenadas con respecto a una base, es indispensable tener en cuenta un orden
determinado en la base. Al cambiar el orden de los elementos de la base el conjunto no cambia pero la
base si cambia para la consideración de las coordenadas. Entonces cuando se requiera tener en cuenta
el orden se habla de base ordenada.

Ejemplo 4.39. Sea v = (−9, 0,−11), Bc = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, B1 = {(1, 2, 3), (−1, 0, 1), (2, 1, 5)}.

Obviamente
[v]Bc = (−9, 0,−11)

Para hallar las coordenadas de v con respecto a B1 es necesario resolver un sistema de ecuaciones prove-
niente de la igualdad

α1(1, 2, 3) + α2(−1, 0, 1) + α3(2, 1, 5) = (−9, 0,−11)

Al resolverlo se obtiene
[v]B1 = (2, 3,−4)

⋆ Para el caso de Rn, si B = {v1, ..., vn}

[v]B =
[
v1 v2 · · · vn

]−1
v (4.29)
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Ejemplo 4.40. Hallar las coordenadas de v = (−9, 0,−11) y de w = (3, 2, 1) con respecto a B =
{(1, 2, 3), (−1, 0, 1), (2, 1, 5)}.

[v]B =

1 −1 2
2 0 1
3 1 5

−1  −90
−11


[v]B =

−1/10 7/10 −1/10
−7/10 −1/10 3/10

1/5 −2/5 1/5

 −90
−11

 =

 2
3
−4


[w]B =

−1/10 7/10 −1/10
−7/10 −1/10 3/10

1/5 −2/5 1/5

32
1

 =

 1
−2
0


Ejemplo 4.41. Halle las coordenadas de A con respecto a la base B en el espacio de las matrices
triangulares superiores 2× 2, donde

A =

[
3 1
0 4

]
, B =

{[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
0 1

]}
.

El sistema de ecuaciones es

α1 + α2 + α3 = 3

α2 + α3 = 1

α3 = 4

Al resolverlo se obtiene

[A]B = (2,−3, 4).

✓ Sea V un espacio vectorial de dimensión finita, B1 y B2 bases de V . La matriz A tal que

A[v]B1 = [v]B2 (4.30)

para cualquier v ∈ V se llama la matriz de cambio de base (o de transición) de B1 a B2. En
palabras, al multiplicar A por las coordenadas de un vector cualquiera v con respecto a B1 se obtienen
las coordenadas de v con respecto a B2. Usualmente se denota por

MB1B2 (4.31)

⋆ Sean las bases B1 = {v1, ..., vn} y B2 = {w1, ..., wn}. Las columnas de MB1B2 son las coordenadas de
los vj con respecto a B2,

MB1B2 =
[
[v1]B2 [v2]B2 · · · [vn]B2

]
(4.32)

⋆ En el otro sentido

MB2B1 =
[
[w1]B1 [w2]B1 · · · [wn]B1

]
= (MB1B2)

−1 (4.33)

⋆ Si B3 es otra base,

MB1B3 = MB2B3MB1B2 . (4.34)
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⋆ En Rn, sean Bc la base canónica y B1 = {v1, ..., vn} otra base. Entonces las matrices que permiten
pasar de B1 a Bc y de Bc a B1 son:

MB1Bc =
[
v1 v2 · · · vn

]
(4.35)

MBcB1 = (MB1Bc)
−1 =

[
[v1]Bc [v2]Bc · · · [vn]Bc

]−1
=
[
v1 v2 · · · vn

]−1
(4.36)

⋆ En Rn, sean las bases B1 = {v1, ..., vn} y B2 = {w1, ..., wn}. Usando (4.34),

MB1B2 = MBcB2MB1Bc (4.37)

MB1B2 =
[
w1 w2 · · · wn

]−1 [
v1 v2 · · · vn

]
(4.38)

La igualdad (4.37) dice simplemente: para pasar de las coordenadas con respecto a B1 a las coordenadas
con respecto a B2, primero se pasa de B1 a Bc usando MB1Bc (matriz a la derecha) y después, se pasa
de Bc a B2 usando MBcB2 (producto por la izquierda).

Ejemplo 4.42. Obtener la matriz para cambiar de base, de B1 a B2, donde

B1 = {(1, 2, 3), (−1, 0, 1), (2, 1, 5)}, B2 = {(1, 1, 1), (1, 1, 0), (0, 1, 1)}.

MB1B2 =

1 1 0
1 1 1
1 0 1

−1 1 −1 2
2 0 1
3 1 5

 =

 2 0 6
−1 −1 −4
1 1 −1


Para una pequeña verificación, sea v = (−9, 0,−11). Al calcular las coordenadas con respecto a las dos
bases, [v]B1 = (2, 3,−4) y [v]B2 = (−20, 11, 9). Por otro lado, 2 0 6

−1 −1 −4
1 1 −1

 2
3
−4

 =

−2011
9



4.7 Ejercicios

1. Considere la función redondeo, que a un número real le asigna el entero más cercano. En caso de
empate y de un número positivo, se le asigna el entero superior. Con empate y número negativo,
se le asigna el entero inferior.

r(3.8) = 4

r(3.2) = 3

r(3) = 3

r(3.5) = 4

r(−3.5) = −4

Considere Z2 con las siguientes operaciones:

x+ y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

αx = α(x1, x2) = ( r(αx1), r(αx2) )

Por ejemplo: 0.5(4, 7) = (r(2), r(3.5)) = (2, 4).

¿Este conjunto con estas dos operaciones es un espacio vectorial?
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2. Considere V = R++ = {x ∈ R : x > 0} con las siguientes operaciones para x, y ∈ V y α ∈ R.

x⊕ y = xy

α⊙ x = xα

¿Este conjunto con estas dos operaciones es un espacio vectorial?

3. En R2×2 diga cuales conjuntos son subespacios. Cuando no sea un subespacio, dé un contraejemplo.

(a) Las matrices simétricas

(b) Las matrices triangulares superiores

(c) Las matrices triangulares inferiores

(d) Las matrices diagonales

(e) Las matrices invertibles

(f) Las matrices no invertibles

(g) Las matrices tales que a11 + a22 = 0

(h) Las matrices tales que |a11 + a22| = 0

(i) Las matrices tales que |a11|+ |a22| = 0

(j) Las matrices tales que a11a22 = 0



5

Producto interno, norma

5.1 Producto interno

Definición 5.1. En un espacio vectorial1 V , un producto interno o producto interior o producto
escalar2 o producto punto es una operación que a cuaquier pareja de vectores asigna un número y que
cumple ciertas propiedades:

⟨x, y⟩ ∈ R para todo x, y ∈ V, (5.1)

⟨x, y⟩ = ⟨y, x⟩ para todo x, y ∈ V, (5.2)

⟨x+ z, y⟩ = ⟨x, y⟩+ ⟨z, y⟩ para todo x, y, z ∈ V, (5.3)

⟨αx, y⟩ = α⟨x, y⟩ para todo x, y ∈ V y para todo α ∈ R, (5.4)

⟨x, x⟩ ≥ 0 para todo x ∈ V, (5.5)

⟨x, x⟩ = 0 si y solamente si x = 0. (5.6)

En este documento, para el producto interno, se utilizará la notación ⟨x, y⟩ o algunas veces x · y , de uso
frecuente en Rn (por eso se le llama algunas veces producto punto). Aśı, las propiedades se escriben:

x·y ∈ R,
x·y = y ·x,
(x+ z)·y = (x·y) + (z ·y) = x·y + z ·y,
(αx)·y = α(x·y) = α x·y,
x·x ≥ 0,

x·x = 0, si y solamente si x = 0.

Ejemplo 5.1. En R2, ⟨x, y⟩ = x1y1 + x2y2 es un producto interno. En Rn,

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn (5.7)

es un producto interno, es el producto interno canónico de Rn.

⟨(1, 2, 3), (2, 0,−1)⟩ = 1× 2 + 2× 0 + 3× (−1) = −1.

Ejemplo 5.2. En R2,

⟨x, y⟩ = 4x1y1 + 5x2y2

también es un producto interno.
1En este documento se trata de espacios vectoriales reales.
2No confundir con producto por escalar.

72
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Ejemplo 5.3. En el Rm×n,

⟨A,B⟩ = ⟨A,B⟩ = tr(ATB) = tr(ABT) (5.8)

es un producto interno, es el producto interno canónico de Rm×n.

A =

[
1 2 3
4 5 6

]
, B =

[
2 0 1
−1 0 1

]
,

ATB =

−2 0 5
−1 0 7
0 0 9


⟨A,B⟩ = 7 .

Mientras no se diga lo contario, si V = Rn o si V = Rm×n, se supone que el producto interno es el
producto interno canónico.

El producto interno canónico (5.8) se puede ver simplemente como el producto interno canónico de dos
vectores en Rmn formados con las filas (o con las columnas) de las dos matrices. En el ejemplo anterior

⟨A,B⟩ = ⟨ (1, 2, 3, 4, 5, 6) , (2, 0, 1,−1, 0, 1) ⟩ = 7.

Ejemplo 5.4. Sea V = C[a,b] el conjunto de funciones continuas en el intervalo [a, b],

⟨f, g⟩ =
∫ b

a
f(x)g(x)dx, (5.9)

es un producto interno, es el producto interno canónico de C[a,b].

Ejemplo 5.5. Sea V = P2, el conjunto de polinomios de grado menor o igual a dos. Sea p(x) =
a0 + a1x + a2x

2, q(x) = b0 + b1x + b2x
2. Sean t0 < t1 < t2 tres números reales fijos. Los siguientes son

algunos ejemplos de producto interior:

⟨p, q⟩ = a0b0 + a1b1 + a2b2 , (5.10)

⟨p, q⟩ =
∫ 9

7
p(x)q(x)dx , (5.11)

⟨p, q⟩ = p(t0)q(t0) + p(t1)q(t1) + p(t2)q(t2) (5.12)

Teorema 5.1. Teorema de Cauchy-Schwarz. Sea V un espacio vectorial, ⟨ , ⟩ un producto interno,
entonces

⟨x, y⟩2 ≤ ⟨x, x⟩⟨y, y⟩ . (5.13)

Algunas veces se llama teorema de Cauchy-Schwarz-Bunyakovsky.

⋆ Sean x ̸= 0, y ̸= 0,

⟨x, y⟩2

⟨x, x⟩⟨y, y⟩
≤ 1

−1 ≤ ⟨x, y⟩√
⟨x, x⟩⟨y, y⟩

≤ 1 (5.14)
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✓ La anterior desigualdad permite definir el coseno del ángulo θ entre dos vectores no nulos,

cos θ =
⟨x, y⟩√
⟨x, x⟩⟨y, y⟩

(5.15)

Esta definición, para vectores de R2 o de R3, coincide exactamente con el significado geométrico. Para
otros espacios, es simplemente la generalización.

✓ Dos vectores x, y, son perpendiculares u ortogonales si

⟨x, y⟩ = 0 . (5.16)

De nuevo, esta definición, para vectores de R2 o de R3, coincide exactamente con el significado
geométrico. Para otros espacios, es simplemente la generalización.

Ejemplo 5.6. Sean x = (3, 1), y = (2, 5), z = (−2, 6), θ el ángulo entre x y y.

cos θ =
11√

10× 29
= 0.6459422

θ = 0.8685394 rad = 49.76o

⟨x, z⟩ = 0, luego x y z son perpendiculares.

Ejemplo 5.7. Averiguar si A y B son ortogonales, con

A =

[
1 2
3 4

]
, B =

[
−9 1
1 1

]
.

⟨A,B⟩ = tr

[
−6 4
−14 6

]
= 0

Luego A y B son ortogonales.

Ejemplo 5.8. Hallar la medida de los ángulos del triángulo con vértices A = (1, 2), B = (2, 5) y
C = (6, 4).

u = B −A = (1, 3)

v = C −A = (5, 2)

cos θA = ⟨u, v⟩/
√
⟨u, u⟩⟨v, v⟩

cos θA = 11/
√
10× 29 = 0.645942

θA = 49.76◦

u = A−B = (−1,−3)
v = C −B = (4,−1)

cos θB = ⟨u, v⟩/
√
⟨u, u⟩⟨v, v⟩

cos θB = −1/
√
10× 17 = −0.076696

θB = 94.40◦

θC = 35.84◦
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5.2 Norma

Definición 5.2. En un espacio vectorial V , una norma es una función ν que a cada vector asigna un
número real, con las siguiente propiedades:

ν(x) ∈ R para todo x ∈ V , (5.17)

ν(x) ≥ 0 para todo x ∈ V , (5.18)

ν(x) = 0 si y solamente si x = 0, (5.19)

ν(αx) = |α|ν(x) para todo x ∈ V y para todo α ∈ R, (5.20)

ν(x+ y) ≤ ν(x) + ν(y) para todo x, y ∈ V . (5.21)

Una norma corresponde a una manera de medir el tamaño o magnitud de un vector. En un espacio
vectorial puede haber varias normas. Para una norma es más frecuente la notación || || (análogo a valor
absoluto que es una norma en R). Aśı las propiedades son:

||x|| ∈ R, (5.22)

||x|| ≥ 0, (5.23)

||x|| = 0 si y solamente si x = 0, (5.24)

||αx|| = |α| ||x||, (5.25)

||x+ y|| ≤ ||x||+ ||y||. (5.26)

La propiedad (5.21) o (5.26) se conoce como desigualdad triangular ya que en un triángulo la longitud
de un lado siempre es menor o igual a la suma de las otras dos.

x

y

x+ y

||x+ y||||y||
||y||

||x||

Teorema 5.2. Sea V un espacio vectorial y ⟨ , ⟩ un producto interno. Entonces

||x|| =
√
⟨x, x⟩ (5.27)

es una norma.

✓ En Rn, con el producto interno canónico, la norma obtenida

||x|| =
√
⟨x, x⟩ =

√
x21 + x22 + · · ·+ x2n (5.28)

se llama la norma euclidiana. Mientras no se diga que se trata de otra norma, se supone que || || es
la norma euclidiana. Esta norma, en R2 y R3, corresponde exactamente a la distancia entre el origen
y el punto x.
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✓ En Rn, sea p ≥ 1. La siguiente es la norma de Hölder de orden p:

||x||p =

(
n∑

i=1

|xi|p
)1/p

(5.29)

✓ Los casos más usuales son p = 1, p = 2 (la norma euclidiana) y el ĺımite cuando p→∞:

||x||1 =
n∑

i=1

|xi| ,

||x|| = ||x||2 =

(
n∑

i=1

x2i

)1/2

,

||x||max = ||x||∞ = max
1≤i≤n

|xi| .

En Scilab, norm(x,1), norm(x), norm(x,’inf’) o, por ejemplo, norm(x,5) para la norma de
Hölder de orden 5.

✓ En Rm×n la utilización de (5.8) y (5.27) da lugar a la norma de Frobenius

||A||F =
√
tr(ATA) =

√√√√ m∑
i=1

n∑
j=1

a2ij . (5.30)

En Scilab, norm(A,’fro’). Para matrices hay otras normas más usadas, las normas matriciales
generadas por las normas vectoriales, fuera del alcance de este resumen.

✓ En P2 la utilización de (5.10) y (5.27) da lugar a la norma

||p|| =
√
a20 + a21 + a22

donde p(x) = a0 + a1x+ a2x
2.

Ejemplo 5.9. Sean x = (3,−4), A =

[
1 2 −3
4 5 −6

]
||x||1 = 7,

||x|| = ||x||2 = 5,

||x||max = 4,

||A||F =
√
91 .

⋆ Con la utilización de la norma euclidiana, la desigualdad de Cauchy-Schwarz (5.13) y la definición de
coseno (5.15) para vectores no nulos quedan aśı:

| ⟨x, y⟩ | ≤ ||x|| ||y|| (5.31)

cos θ =
⟨x, y⟩
||x|| ||y||

(5.32)
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5.3 Proyección ortogonal

✓ Sean x, y ∈ V espacio vectorial con producto interno, x ̸= 0. La proyección ortogonal de y sobre
x, denotada por πx(y), es un múltiplo de x tal que x y y − πx(y) son ortogonales.

x

y

πx(y)

y − πx(y)

πx(y) = tx

⟨x, y − tx⟩ = 0

⟨x, y⟩ − t⟨x, x⟩ = 0

t =
⟨x, y⟩
⟨x, x⟩

πx(y) =
⟨x, y⟩
⟨x, x⟩

x =
⟨x, y⟩
||x||2

x (5.33)

Ejemplo 5.10. Sean x = (5, 1), y = (2, 3). Calcular πx(y) y πy(x).

πx(y) =
13

26
(5, 1) = (2.5, 0.5)

πy(x) =
13

13
(2, 3) = (2, 3)

5.4 Bases ortogonales, ortonormales

✓ Sea V un espacio vectorial y B = {v1, ..., vn} una base. Se dice que B es una base ortogonal si

⟨vi, vj⟩ = 0 si i ̸= j. (5.34)

Si además,

||vi|| = 1, (5.35)

es decir,

⟨vi, vi⟩ = 1 para todo i, (5.36)

se dice que es una base ortonormal.

⋆ Sea V un espacio vectorial de dimensión n, B = {v1, ..., vn} ⊆ V en el que no está el vector nulo. Si

⟨vi, vj⟩ = 0 si i ̸= j ,

entonces B es una base ortogonal.

Ejemplo 5.11. En Rn, la base canónica es una base ortogonal y ortonormal. B = {(1, 2, 3), (1, 1,−1), (−5, 4,−1)}
es una base ortogonal. Al dividir cada vector por su norma se obtiene una base ortonormal:

{ (0.2673, 0.5345, 0.8018), (0.5774, 0.5774, −0.5774), (−0.7715, 0.6172, −0.1543) }
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5.4.1 Ortogonalización de Gram-Schmidt

Mediante este proceso se puede obtener a partir de un conjunto {v1, ...., vm} linealmente independiente
un conjunto {w1, ...., wm} ortonormal (⟨wi, wj⟩ = 0 si i ̸= j y ⟨wi, wi⟩ = 1) tal que

gen(v1) = gen(w1)

gen(v1, v2) = gen(w1, w2)

gen(v1, v2, ..., vm) = gen(w1, w2, ..., wm)

Hay dos enfoques, primero se ortogonaliza y después se normaliza, o bien, directamente se ortonormaliza.

y1 = v1 (5.37)

y2 = v2 − ⟨v
2, y1⟩
⟨y1, y1⟩

y1 (5.38)

y3 = v3 − ⟨v
3, y1⟩
⟨y1, y1⟩

y1 − ⟨v
3, y2⟩
⟨y2, y2⟩

y2 (5.39)

y4 = v4 − ⟨v
4, y1⟩
⟨y1, y1⟩

y1 − ⟨v
4, y2⟩
⟨y2, y2⟩

y2 − ⟨v
4, y3⟩
⟨y3, y3⟩

y3 (5.40)

...

wi =
yi

||yi||
(5.41)

Ortonormalización directa:

y1 = v1 (5.42)

w1 = y1/||y1|| (5.43)

y2 = v2 − ⟨v2, w1⟩w1 (5.44)

w2 = y2/||y2|| (5.45)

y3 = v3 − ⟨v3, w1⟩w1 − ⟨v3, w2⟩w2 (5.46)

w3 = y3/||y3|| (5.47)

y4 = v4 − ⟨v4, w1⟩w1 − ⟨v4, w2⟩w2 − ⟨v4, w3⟩w3 (5.48)

w4 = y4/||y4|| (5.49)

...

Ejemplo 5.12. Aplicar la ortogonalización de Gram-Schmidt a

v1 = (1, 1, 1, 1)

v2 = (1, 0,−1, 0)
v3 = (0, 1, 4, 0)

v4 = (−1, 0, 1, 2)

y1 = (1, 1, 1, 1)

y2 = (1, 0,−1, 0)
y3 = (0.75,−0.25, 0.75,−1.25)
y4 = (0.1818,−0.7273, 0.1818, 0.3636)
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w1 = (0.5, 0.5, 0.5, 0.5)

w2 = (0.7071, 0,−0.7071, 0)
w3 = (0.4523,−0.1508, 0.4523,−0.7538)
w4 = (0.2132,−0.8528, 0.2132, 0.4264)

Ortonormalización directa:

w1 = (0.5, 0.5, 0.5, 0.5)

y2 = (1, 0,−1, 0)
w2 = (0.7071, 0,−0.7071, 0)
y3 = (0.75,−0.25, 0.75,−1.25)
w3 = (0.4523,−0.1508, 0.4523,−0.7538)
y4 = (0.1818,−0.7273, 0.1818, 0.3636)
w4 = (0.2132,−0.8528, 0.2132, 0.4264)

5.5 Complemento ortogonal

✓ Sea V un espacio vectorial con producto interno, C un subconjunto no vaćıo de V . El complemento
ortogonal de C es el conjunto de vectores de V ortogonales a los elementos de C,

C⊥ = {v ∈ V : ⟨v, x⟩ = 0, para todo x ∈ C}. (5.50)

⋆ Si C ̸= ∅, entonces C⊥ es un subespacio vectorial de V .

⋆ V ⊥ = {0} , {0}⊥ = V ,
(
C⊥
)⊥

= gen(C) .

⋆ Si W es un subespacio vectorial de V , entonces (W⊥)⊥ = W .

⋆ Si V es de dimensión finita,

dim (gen(C)) + dim(C⊥) = dim(V ) . (5.51)

⋆ Si W es un subespacio vectorial de V , entonces

dim(W ) + dim(W⊥) = dim(V ). (5.52)

Ejemplo 5.13. Si C = {(1, 2, 3)}, entonces C⊥ es el plano

x1 + 2x2 + 3x3 = 0.

Ejemplo 5.14. Si C es la recta {t(1, 2, 3) : t ∈ R}, entonces C⊥ es el plano

x1 + 2x2 + 3x3 = 0.

Ejemplo 5.15. Si C = {(1, 2, 3), (1, 1, 1)}, entonces

C⊥ = {x ∈ R3 : x1 + 2x2 + 3x3 = 0 y x1 + x2 + x3 = 0}

= {x ∈ R3×1 :

[
1 2 3
1 1 1

]
x = 0},

es decir, es el espacio nulo de esa matriz. Al buscar la matriz escalonada reducida, la base del espacio
nulo tiene un solo vector, (1,−2, 1). Entonces C⊥ es la recta

{t(1,−2, 1) : t ∈ R}.



6

Rectas y planos

6.1 Rectas

✓ Sea V un espacio vectorial, por ejemplo Rn, a ∈ V , p ∈ V , p ̸= 0. La recta que pasa por a y es
paralela al vector p, o la recta que pasa por a con vector director p, es el conjunto

R = {a+ tp : t ∈ R}. (6.1)

p

•a
R

Algunas veces no se escribe en notación de conjuntos y se dice simplemente la recta

a+ tp ,

sobreentendiéndose que es el conjunto de puntos de la forma anterior cuando t vaŕıa en los reales. Por
ejemplo,

(2, 3) + t(2, 1)

(1, 0,−1) + s(2, 4, 0)

(1, 2, 4, 8) + τ(2,−1, 1, 5)

Algunas veces se habla de las ecuaciones paramétricas de la recta, simplemente son n ecuaciones de la
forma xi = ai + pit. Por ejemplo para la última recta,

x1 = 1 + 2t

x2 = 2− t

x3 = 4 + t

x4 = 8 + 5t

Averiguar si un punto b está en la recta a+ tp, se puede hacer de dos maneras. La primera es considerar
el sistema de n ecuaciones b = a+ tp con una incógnita. El sistema tiene solución si y solamente si b está
en la recta. La segunda consiste en averiguar si los vectores b− a y p son paralelos.

80
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Ejemplo 6.1. Averiguar si b = (−5, 5, 1,−5) está en la recta (1, 2, 4, 8) + τ(2,−1, 1, 5).

El punto b no esta en la recta ya que el sistema

−5 = 1 + 2t

5 = 2− t

1 = 4 + t

−5 = 8 + 5t

no tiene solución. De otra forma b− a = (−6, 3,−3,−13) no es paralelo a (2,−1, 1, 5).

Dos rectas son paralelas si son paralelas a vectores paralelos. Dos rectas son iguales si son paralelas y
tienen un punto común, en este caso todos los puntos son comunes.

6.2 Hiperplanos

✓ Dados c ∈ Rn, c ̸= 0 y α ∈ R, un hiperplano es el conjunto

Hc,α = H = {c ∈ Rn : cTx = α}. (6.2)

En R3 un hiperplano es una plano, por ejemplo, {(x1, x2, x3) : 2x1 − 3x2 + 4x3 = −10}. En R2 un
hiperplano es una recta, por ejemplo, {(x1, x2) : 5x1 − 6x2 = 1}. En R un hiperplano es un punto, por
ejemplo, {x ∈ R : 3x = 2}. El conjunto {(x1, x2, x3, x4, x5) : 2x1−3x2+4x3+x5 = −10} es un hiperplano
de R5.

Por facilidad y mientras no haya confusión se habla del hiperplano dando simplemente la ecuación sin
utilizar la notación de conjuntos. Aśı por ejemplo se habla del hiperplano 2x1 − 3x2 + 4x3 + x5 = −10 .

Si x y z son dos puntos de H, entonces

cT(x− z) = 0 . (6.3)

Por esto se dice que c es perpendicular al hiperplano H o que c es un vector normal a H.

✓ Dos hiperplanos son paralelos si sus vectores normales son paralelos.

Los hiperlanos x1 + 2x2 + 3x3 + 4x4 = 5 y −3x1 − 6x2 − 9x3 − 12x4 = 1 son paralelos.

Otra manera de determinar un hiperplano es mediante n puntos x1, x2, ..., xn que estén en él y tales que
x2 − x1, x3 − x1, ..., xn − x1 sean linealmente independientes. Se requiere entonces encontrar un vector
c no nulo y perpendicular a estos n − 1 vectores (las diferencias). Esto da como resultado un sistema
homogéneo de n− 1 ecuaciones con n incógnitas. Cualquier solución no nula es un vector c.

Sean y2 = x2 − x1, y3 = x3 − x1, ..., yn = xn − x1,

cTy2 = 0

cTy3 = 0

...

cTyn = 0
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En forma matricial 
y21 y22 · · · y2n
y31 y32 · · · y3n
...
yn1 yn2 · · · ynn


Una vez conocido c, se calcula el valor α = cTxi con cualquier xi (el resultado es el mismo).

Ejemplo 6.2. Determinar el hiperplano que pasa por los puntos x1 = (−2,−5,−2,−2), x2 = (0,−1,−2,−2),
x3 = (−3,−5,−3, 1), x4 = (−3,−3,−2,−3).

y2 = (2, 4, 0, 0)

y3 = (−1, 0,−1, 3)
y4 = (−1, 2, 0,−1)

Resolver el sistema Ac = 0, con

A =

 2 4 0 0
−1 0 −1 3
−1 2 0 −1


Una solución es c = (−1/2, 1/4, 7/2, 1). También sirve c = (−2, 1, 14, 4). Aśı α = cTx1 = −37. El
hiperplano es

H = {(x1, x2, x3, x4) : −2x1 + x2 + 14x3 + 4x4 = −37}.

6.3 Distancia de un punto a un hiperplano

Sea c ∈ Rn, c ̸= 0, H = {x ∈ Rn : cTx = α} un hiperplano. Dado b ∈ Rn se puede encontrar la distancia
de b a H y también p, el punto de H más cercano a b, también llamado la proyección de b sobre H.

c

H

•b

•
p

tc

Como c es ortogonal a H, se pusca p en H tal que:

p = b+ tc

cTp = α

cT(b+ tc) = α

Entonces,

t =
α− cTb

cTc
(6.4)

p = b+ tc (6.5)

dist(b,H) = |t| ||c|| = |α− cTb|
||c||

(6.6)
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Como una recta es un hiperplano de R2 y un plano es un hiperplano de R3, las fórmulas anteriores se
pueden aplicar para la distancia de un punto a una recta de R2 o para la distancia de un punto a un
plano.

Ejemplo 6.3. Hallar la distancia del punto (1, 2, 3, 4) al hiperplano x1 − x2 + 2x3 − 3x4 = 6.

t =
6− (−7)

15
=

13

15

p = (1, 2, 3, 4) +
13

15
(1,−1, 2,−3) = (28/15, 17/15, 71/15, 7/5)

dist = ||b− p|| = 3.3565856

Ejemplo 6.4. Hallar la distancia del punto b = (4,−2) a la recta 2x1 − 3x2 = 5, y el punto de la recta
más cercano a b.

t =
5− [2 − 3][4 − 2]T

4 + 9
= − 9

13
≈ −0.69

p = (4,−2)− 9

13
(2,−3) =

(
34

13
,
1

13

)
≈ (2.62, 0.077)

distancia =
| − 9|√

13
≈ 2.5

6.4 Distancia de un punto a una recta de Rn

Sea a, d ∈ Rn, d ̸= 0, R = {a+ td : t ∈ R} una recta. Dado b ∈ Rn se puede encontrar la distancia de b a
R y también p, el punto de R más cercano a b, también llamado la proyección de b sobre R.

•a
d

R

•b

•
p

p = a+ td

(p− b)Td = 0 (6.7)(
a+ td− b

)T
d = 0

t =
(b− a)Td

dTd
(6.8)

p = a+ td (6.9)

dist(b, R) = ||b− p|| (6.10)
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Ejemplo 6.5. Hallar la distancia entre el punto b = (4,−2) a la recta (1,−1) + t(6, 4).

b− a = (3,−1)

t =
(3,−1) · (6, 4)

36 + 16
=

7

26

p = (1,−1) + 7

26
(6, 4) =

(
34

13
,
1

13

)
distancia = ||(4,−2)− (34/13, 1/13)|| = ||(18/13,−27/13))|| =

√
1053

13
≈ 2.50

Obsérvese que la recta 2x1 − 3x2 = 5 es la misma recta (1,−1) + t(6, 4). Obviamente los resultados
coinciden.

6.5 Distancia entre dos rectas de R2

Si las rectas no son paralelas, se cortan y su distancia es cero. Supongamos entonces que las dos rectas
son paralelas.

Sean R = {u+ tf : t ∈ R} y S = {v + sg : s ∈ R} las dos rectas tales que f = kg.

dist(R,S) = dist(v,R) = dist(u, S) (6.11)

Ejemplo 6.6. Hallar la distancia entre las rectas R = {(1, 2)+t(−3, 4) : t ∈ R} y S = {(3, 1)+τ(6,−8) :
τ ∈ R}.

Las dos rectas son paralelas. Para calcular dist( (1, 2), S ):

b− a = (−2, 1)
t = −1/5
p = (9/5, 13/5)

dist = 1

Para calcular dist( (3, 1), R ):

b− a = (2,−1)
t = −2/5
p = (11/5, 2/5)

dist = 1

6.6 Producto vectorial

Está definido únicamente en R3. También se llama producto cruz. Dados x, y en R3, el producto vectorial
es un vector de R3,

x× y = det

 i j k
x1 x2 x3
y1 y2 y3

 , (es simplemente notación)
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donde i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

x× y = det

 i j k
x1 x2 x3
y1 y2 y3

 , (6.12)

x× y = i(x2y3 − y2x3)− j(x1y3 − y1x3) + k(x1y2 − y1x2) (6.13)

x× y = (x2y3 − y2x3, −x1y3 + y1x3, x1y2 − y1x2 ) (6.14)

Propiedades

u× 0 = 0 (6.15)

y × x = −(x× y) (6.16)

(αx)× y = α (x× y) (6.17)

x× (y + z) = (x× y) + (x× z) (6.18)

xT(x× y) = 0, (6.19)

yT(x× y) = 0, es decir, x× y es perpendicular a x y a y. (6.20)

Si x× y = 0, entonces x es paralelo a y (6.21)

||x× y|| = área(paralelogramo(0, x, y)) (6.22)

1

2
||x× y|| = área(triángulo(0, x, y)) (6.23)

donde paralelogramo(0, x, y) es el paralelogramo determinado por 0, x y y, es decir, el paralelogramo de
vértices 0, x, x+ y y y. Este resultado es análogo a (3.9), pero ahora x y y están en R3. Obviamente el
paralelogramo está contenido en un plano de R3, el plano determinado por 0, x y y.

x

y
x+ y

Ejemplo 6.7. x = (1, 2, 3), y = (2,−1, 1)

x× y = det

 i j k
1 2 3
2 −1 1


= i(2− (−3))− j(1− 6) + k(−1− 4)

= 5i+ 5j− 5k

= (5, 5,−5) .

Ejemplo 6.8. x = (1, 2, 3), y = (−2,−4,−6)

x× y = det

 i j k
1 2 3
−2 −4 −6


= i(−12 + 12)− j(−6 + 6) + k(−4 + 4)

= 0i+ 0j+ 0k

= (0, 0, 0) ,
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luego x y y son paralelos.

6.6.1 Producto triple escalar o producto mixto

x · (y × z) = det

x1 x2 x3
y1 y2 y3
z1 z2 z3

 (6.24)

Ejemplo 6.9.

(1, 2, 3) · ( (4, 5, 6)× (7, 8, 0) ) = (1, 2, 3) · (−48, 42,−3) = 27

= det

1 2 3
4 5 6
7 8 0

 = 27

Propiedades

y · (x× z) = −x · (y × z) (6.25)

x · (y × z) = y · (z × x) = z · (x× y) (6.26)

|x · (y × z)| = volumen(paraleleṕıpedo(0, x, y, z)) (6.27)

El paraleleṕıpedo determinado por 0, x, y y z es el paraleleṕıpedo cuya tapa inferior tiene como vértices
0, x, x+ y y y. Los vértices de la tapa superior son: z, x+ z, x+ y + z y y + z. Este resultado, (6.27),
es exactamente el mismo (3.11).

6.7 Planos

Un plano es simplemente un hiperplano de R3. Sea c ∈ R3, c ̸= 0, α ∈ R,

P = {x ∈ R3 : cTx = α}. (6.28)

Por ejemplo, si c = (2,−3, 4) y α = 10,

P = {(x1, x2, x3) : 2x1 − 3x2 + 4x3 = 10}.

También, por facilidad, se habla del plano

2x1 − 3x2 + 4x3 = 10

Si x, y ∈ P ,

cT(x− y) = 0 (6.29)

6.7.1 Plano determinado por el vector normal y un punto

Sea c ∈ R3, c ̸= 0, el vector normal y a un punto del plano:

P = {x ∈ R3 : cTx = cTa}. (6.30)
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✓ Dos planos son paralelos si sus vectores normales son paralelos.

Ejemplo 6.10. Obtener el plano de vector normal (2,−3, 4) que pasa por el punto (1, 0,−1).

2x1 − 3x2 + 4x3 = (2,−3, 4) · (1, 0,−1)
2x1 − 3x2 + 4x3 = −2

6.7.2 Plano determinado por tres puntos

Sean u, v, w tres puntos distintos no colineales (no están en la misma recta).

c = (u− v)× (u− w)

a = uno de los tres puntos

P = {x ∈ R3 : cTx = cTa}.

Si c = 0, entonces los tres puntos son colineales.

Ejemplo 6.11. Hallar la ecuación del plano que pasa por los puntos u = (1, 2, 3), v = (1, 1, 1), w =
(2, 4,−5).

u− v = (0, 1, 2)

u− w = (−1,−2, 8)
c = (u− v)× (u− w) = (12,−2, 1)

c · u = 11

12x1 − 2x2 + x3 = 11

6.8 Distancia de un punto a un plano

Es un caso particular de la distancia de un punto a un hiperplano.

Si el plano es P = {(x1, x2, x3) : c1x1 + c2x2 + c3x3 = α} y b = (b1, b2, b3),

dist(b, P ) =
|c1b1 + c2b2 + c3b3 − α|√

c21 + c22 + c23
=
|c · b− α|
||c||

(6.31)

t =
α− c1b1 − c2b2 − c3b3

c21 + c22 + c23
=

α− c · b
c · c

(6.32)

p = b+ tc punto del plano más cercano a b. (6.33)

Ejemplo 6.12. Hallar la distancia del punto b = (−9, 6, 5) al plano −2x1 + x2 + 2x3 = −2.

dist =
|34− (−2)|

3
= 12

t =
−2− 34

9
= −4

p = (−9, 6, 5) + (−4)(−2, 1, 2) = (−1, 2,−3) .
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6.9 Distancia entre dos rectas de R3

Sean a, p, b, q ∈ R3, p ̸= 0, q ̸= 0 y las dos rectas

R = {a+ tp : t ∈ R}
L = {b+ sq : s ∈ R}

La distancia entre las dos rectas es

dist(R,L) =
| (a− b) · (p× q) |

||p× q||
(6.34)

Ejemplo 6.13. Hallar la distancia entre las rectas (−3, 9, 8) + t(3,−2,−2) y (3, 2, 1) + t(−2, 1, 2).

a− b = (−6, 7, 7)
p× q = (−2,−2,−1)

(a− b) · (p× q) = −9
||p× q|| = 3

dist = 3

6.10 Distancia entre dos rectas de Rn

Sean a, p, b, q ∈ Rn, p ̸= 0, q ̸= 0 y las dos rectas

R = {a+ tp : t ∈ R}
L = {b+ sq : s ∈ R}

Se buscan, x en R, y en L, tales que

(x− y) · p = 0,

(x− y) · q = 0,

dist(R,L) = ||x− y||

Entonces

(a+ tp− b− sq) · p = 0

(a+ tp− b− sq) · q = 0

Resolver el sistema 2× 2, con incógnitas t y s

(p · p)t− (p · q)s = (b− a) · p (6.35)

(p · q)t− (q · q)s = (b− a) · q (6.36)

Construir

x = a+ tp (6.37)

y = b+ sq (6.38)

dist(R,L) = ||x− y|| (6.39)
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Ejemplo 6.14. Hallar la distancia entre las rectas (−1, 0,−4, 3)+t(4, 2, 2, 2) y (1, 0,−1, 0) +t(−4,−3,−3,−3)

b− a = (2, 0, 3,−3)[
28 34
−34 −43

] [
t
s

]
=

[
8
−8

]
t = 3/2

s = −1
x = (5, 3,−1, 6)
y = (5, 3, 2, 3)

dist = 4.242641

Ejemplo 6.15. Hallar por este método, la distancia entre las dos rectas de R3, del ejemplo 6.13:
(−3, 9, 8) + t(3,−2,−2) y (3, 2, 1) + t(−2, 1, 2).

b− a = (6,−7,−7)[
17 12
−12 −9

] [
t
s

]
=

[
46
−33

]
t = 2

s = 1

x = (3, 5, 4)

y = (1, 3, 3)

dist = 3
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Funciones lineales

xscf

7.1 Definición y ejemplos

Definición 7.1. Sean U , V espacios vectoriales. Se dice que la función f : U → V es una función
lineal o una transformación lineal si para todo x, y en U y para todo α ∈ R,

f(x+ y) = f(x) + f(y), (7.1)

f(αx) = αf(x). (7.2)

⋆ Si f es lineal, entonces

f(0) = 0. (7.3)

Si f(0) ̸= 0, entonces f no es lineal. Sin embargo, si f(0) = 0, f podŕıa ser no lineal..

Ejemplo 7.1.
f : R→ R, f(x) = 3x+ 4, no es lineal.
f : R→ R, f(x) = 3x, es lineal.
f : R→ R, f(x) = 4, no es lineal.
f : R→ R, f(x) = 0, es lineal.
f : R→ R, f(x) = |x|, no es lineal.
f : R2 → R, f(x1, x2) = 2x1 − 3x2 + 1, no es lineal.
f : R2 → R, f(x1, x2) = 2x1 − 3x2, es lineal.
f : R2 → R, f(x1, x2) = 2x1x2, no es lineal.
f : R→ R2, f(x) = (3x,−4x), es lineal.
f : R→ R2, f(x) = (0, 0), es lineal.
f : R→ R2, f(x) = (3x+ 1,−4x), no es lineal.
f : R2 → R2, f(x1, x2) = (2x1 + 3x2, x1 − x2), es lineal.
f : R2 → R2, f(x1, x2) = (x2, x1), es lineal.
f : R2 → R2, f(x1, x2) = (x1 + x2, x1x2), no es lineal.

f : R3 → R2, f(x1, x2, x3) =

[
2 3 −4
1 −1 0

]x1x2
x3

, es lineal.
Sea A ∈ Rm×n, f : Rn → Rm, f(x) = Ax, es lineal.

90
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Sea A ∈ Rm×n, f(A) = AT es lineal.
Sea A ∈ Rm×n, f(A) = ATA no es lineal.
Sea A ∈ Rn×n, f(A) = A+AT es lineal.
Sea M ∈ Rp×m una matriz fija, A ∈ Rm×n, f(A) = MA es lineal.
Sea u ∈ Rn×1 un vector fijo, la proyección de x sobre u (5.33), πu(x) es lineal.

Ejemplo 7.2. Sea f : R2 → R2 la función que obtiene el punto simétrico con respecto al eje horizontal:

· x

· f(x)

Esta función, f(x1, x2) = (x1,−x2), es lineal.

La simetŕıa con respecto al eje vertical, g(x1, x2) = (−x1, x2), es lineal.

La simetŕıa con respecto a la recta x2 = x1, también es lineal: h(x1, x2) = (x2, x1).

La rotación de un cuarto de vuelta (π/2 radianes o 90 grados) en el sentido antihorario,

·

·

x

p(x)

p(x1, x2) = (−x2, x1) es lineal.

La rotación de un ángulo θ en el sentido antihorario:

r(x1, x2) = (cos(θ)x1 − sen (θ)x2, sen (θ)x1 + cos(θ)x2)

=

[
cos(θ) − sen (θ)
sen (θ) cos(θ)

] [
x1
x2

]
es lineal.

7.2 Algunas propiedades

Sean A y B conjuntos, f : A→ B una función cualquiera, C ⊆ A, D ⊆ B.

✓ f(C) = {f(x) : x ∈ C} ⊆ B es la imagen de C por f .

✓ f(A) = {f(x) : x ∈ A} ⊆ B es la imagen o recorrido de la función f .
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A f B

C f(C)

✓ f−1(D) = {x ∈ A : f(x) ∈ D} ⊆ A es la imagen inversa o preimagen de D.
Observación: f(f−1(D)) ⊆ D pero no es necesariamente igual a D. Análogamente, C ⊆ f−1(f(C)).

A f B

f−1(D)
D

⋆ Sean U , V espacios vectoriales, f : U → V lineal, U ′ subespacio vectorial de U , V ′ subespacio vectorial
de V . Supóngase, cuando se requiera, que U y V son de dimensión finita. Entonces:

1. f(U ′) es subespacio vectorial de V . En particular, f(U) se llama el espacio imagen de f .

2. f está perfectamente determinada si se conoce f(u1), f(u2), ..., f(un) para {u1, ..., un} una base
de U .

3. f−1(V ′) es subespacio vectorial de U . En particular, f−1(0) se llama el núcleo o kernel de f .

4. dim(U ′) ≥ dim(f(U ′)).

5. Si B1 = {w1, w2, ..., wk} es una base de U ′, entonces f(U ′) = gen( f(w1), f(w2), ..., f(wk) ).

6. f es uno a uno si y solamente si el núcleo es igual a {0}.
7. Si los vectores de U , w1, w2, ..., wk son linealmente independientes y f es uno a a uno, entonces

f(w1), f(w2), ..., f(wk) son linealmente independientes.

8. Si B1 = {w1, w2, ..., wk} es una base de U ′ y f es uno a uno, entonces { f(w1), f(w2), ..., f(wk) }
es una base de f(U ′).

9. Sea B1 = {u1, u2, ..., un} una base de U . Si g : U → V es otra otra función lineal y g(ui) = f(ui)
para i = 1, ..., n, entonces g(x) = f(x) para todo x ∈ U , es decir, f = g (es la misma propiedad
2., dicha de otra manera).

10.

dim(U ) = dim( f(U) ) + dim( f−1(0) ) (7.4)

En palabras, la dimensión del dominio (espacio de salida) es igual a la dimensión del espacio
imagen más la dimensión del núcleo.

La dimensión de la imagen de f se llama el rango de f . La dimensión del núcleo de f se llama
la nulidad de f .

dim(U ) = rango(f) + nulidad(f). (7.5)
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Dado U ′ subespacio de U , para encontrar f(U ′) se puede aplicar el siguiente proceso: encontrar una base
de U ′; encontrar las imágenes de los elementos de esta base; hallar una base del espacio generado por
estas imágenes.

Ejemplo 7.3. Sea f : R3 → R3 definida por f(x1, x2, x3) = (7x1 − 9x2 + 4x3,−6x1 + 7x2 − 3x3, x1 +
3x2 − 2x3), U

′ = gen( (1, 2, 3), (1, 1, 1), (3, 5, 7) ). Encontrar una base de f(U ′).1 1 3
2 1 5
3 1 7


E =

1 0 2
0 1 1
0 0 0


Como las variables básicas son x1 y x2, entonces una base de U ′ es B1 = {(1, 2, 3), (1, 1, 1)}

f(1, 2, 3) = (1,−1, 1)
f(1, 1, 1) = (2,−2, 2)

f(U ′) = gen((1,−1, 1), (2,−2, 2)). Una base de f(U ′) es {(1,−1, 1)}. En este ejemplo, U ′ es un subespa-
cio de R3 de dimensión dos, es decir, un plano que pasa por el origen. Su imagen es una recta que pasa
por el origen. 3

Dado V ′ subespacio de V , para encontrar f−1(V ′) se puede aplicar el siguiente proceso. Supongamos
por facilidad que f : Rn → Rm, definida por f(x) = Ax, donde A ∈ Rm×n es una matriz fija. Cuando
f : U → V es lineal y U y V son otros espacios de dimensión finita, la representación matricial (siguiente
sección) permite no perder generalidad al suponer que f(x) = Ax.

� Encontrar B′ = {v1, ..., vk} base de V ′.

� Plantear el sistema de ecuaciones,

Ax = α1v
1 + · · ·+ αkv

k,

con variables x1, ..., xn, α1, ..., αk, es decir, el sistema homogéneo

Ax− α1v
1 − · · · − αkv

k = 0.

O sea, construir la matriz
Â =

[
A −v1 · · · −vk

]
� Calcular la matriz escalonada reducida.

� Obtener la solución general del sistema homogéneo, en función de las variables libres.

� Dar a las variables libres los valores 1, 0, ..., 0, luego 0, 1, 0, ..., 0, luego ... y finalmente 0, 0, ..., 0, 1.
Los vectores x obtenidos seran generadores de f−1(V ′).

Estos últimos tres pasos se pueden ver como: construir una base del espacio nulo de Â y de estos vectores
tomar únicamente las primeras n entradas. Como se trata del conjunto generado, la matriz Â también
se puede construir

[
A v1 · · · vk

]
.
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Ejemplo 7.4. Sea V ′ = gen( (6, 2,−8), (−3,−1, 4), (−4,−8, 10) ). Hallar f−1(V ′) para la función f(x) =
Ax, con

A =

 1 −1 1 0
1 0 2 2
−2 2 −2 −2


Una base de V ′ es {v1, v2} = {(6, 2,−8), (−4,−8, 10)}. Es necesario resolver

Ax = α1v
1 + α2v

2

equivalente al sistema homogéneo

Ax− α1v
1 − α2v

2 = 0

La matriz de coeficientes del sistema es 1 −1 1 0 −6 4
1 0 2 2 −2 8
−2 2 −2 −2 8 −10


Su matriz escalonada reducida es 1 0 2 0 −6 6

0 1 1 0 0 2
0 0 0 1 2 1


La solución general es de la forma

x1 = −2x3 + 6α1 − 6α2

x2 = −x3 − 2α2

x3 = x3

x4 = −2α1 − α2

α1 = α1

α2 = α2

Dando a las variables independientes, x3, α1, α2, los valores 1, 0, 0, 0, 1, 0 y 0, 0, 1, se obtiene
x1
x2
x3
x4

 =


−2
−1
1
0

 ,


6
0
0
−2

 ,


−6
−2
0
−1


Entonces f−1(V ′) = gen( (−2,−1, 1, 0), (6, 0, 0,−2), (−6,−2, 0,−1) ).

Ejemplo 7.5. Sea f(x) = Ax, con

A =

−2 −1 2 2
−1 −1 1 0
−1 −1 1 0


Hallar f−1( gen(v1) ), con v1 = (1, 2, 3).
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Siguiendo los mismos pasos:

[A − v1] =

−2 −1 2 2 −1
−1 −1 1 0 −2
−1 −1 1 0 −3



EÂ =

1 0 −1 −2 0
0 1 0 2 0
0 0 0 0 1


Una base de f−1( gen(v1) ) es 

1
0
1
0

 ,


2
−2
0
1


En esta caso la variablle α1 es básica y debe valer 0. Esto quiere decir que los únicos x tales que Ax = α1v

1

son aquellos tales que Ax = 0. O sea, en este caso, f−1( gen(v1) ) = NA.

Ejemplo 7.6. Para la misma función del ejemplo anterior, hallar f−1( gen(v2) ), con v2 = (1, 1, 1).

[A − v2] =

−2 −1 2 2 −1
−1 −1 1 0 −1
−1 −1 1 0 −1



EÂ =

1 0 −1 −2 0
0 1 0 2 1
0 0 0 0 0


Una base de f−1( gen(v2) ) es 

1
0
1
0

 ,


2
−2
0
1

 ,


0
−1
0
0



7.3 Representación matricial

� Si f : Rn → Rm es lineal, entonces existe una única matriz de m filas y n columnas, denotada Af

o [f ], tal que

f(x) = [f ]x (7.6)

Esta matriz es la matriz de la función lineal f o la matriz asociada a la función lineal f .
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Ejemplo 7.7. Si f(x1, x2) = (x1 − x2, 2x1 + 3x2,−2x1), entonces

Af = [f ] =

 1 −1
2 3
−2 0


puesto que  1 −1

2 3
−2 0

[x1
x2

]
=

 x1 − x2
2x1 + 3x2
−2x1


✓ Sea B1 = {u1, ..., un} una base ordenada de U , B2 = {v1, ..., vm} una base ordenada de V , f : U → V

una función lineal. La matriz de Rm×n, llamada matriz de f con respecto a las bases B1 y B2,
denotada [f ]B1B2 , es la matriz tal que al multiplicar por las coordenadas de un x ∈ U con respecto a
B1 se obtienen las coordenadas de f(x) con respecto a B2,

[f ]B1B2 [x]B1 = [f(x)]B2 . (7.7)

Si U = V y si B1 = B2, la matriz de la función lineal f se denota con una sola base: [f ]B1 .

Si U y V tienen bases canónicas, entonces [f ] denota la matriz de f con respecto a la base canónica
de U y a la base canónica de V .

La columna j de la matriz [f ]B1B2 está formada por las coordenadas de f(uj) con respecto a B2, es
decir

[f ]B1B2 =
[
[f(u1)]B2 [f(u2)]B2 · · · [f(un)]B2

]
(7.8)

La matriz definida en (7.6) es la matriz con respecto a la base canónica de Rn y a la base canónica de
Rm. Ver ejemplo anterior.

⋆ Sean U y V espacios vectoriales de igual dimensión, f : U → V lineal, B1 base de U , B2 base de V .

� f es uno a uno sssi [f ]B1B2 es invertible.

� f es sobre sssi [f ]B1B2 es invertible.

Ejemplo 7.8. Sea f(x1, x2) = (x1−x2, 2x1+3x2,−2x1), B1 = {(1, 1), (1,−1)} y B2 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}.
Obtener [f ]B1B2 .

f(1, 1) =

 0
5
−2

 , [f(1, 1)]B2 =

−57
−2

 ,

f(1,−1) =

 2
−1
−2

 , [f(1,−1)]B2 =

 3
1
−2

 ,

[f ]B1B2 =

−5 3
7 1
−2 −2


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Comprobación de un caso particular. Sea x = (5,−1). Obviamente f(x) = (6, 7,−10). Por otro lado,

[x]B =

[
2
3

]

[f(x)]B′ =

−5 3
7 1
−2 −2

[2
3

]
=

 −117
−10


f(x) = −1(1, 0, 0) + 17(1, 1, 0)− 10(1, 1, 1) = (6, 7,−10).

Ejemplo 7.9. Obtener la matriz [f ]B1B2 con f(A) = A+AT en R2×2 y las dos bases

B1 =
{
A1 =

[
1 0
0 0

]
, A2 =

[
1 1
0 0

]
, A3 =

[
0 0
1 0

]
, A4 =

[
0 0
1 1

]}
B2 =

{
C1 =

[
2 0
0 0

]
, C2 =

[
2 3
0 0

]
, C3 =

[
2 3
4 0

]
, C4 =

[
2 3
4 5

]}

f(A1) =

[
2 0
0 0

]
, [f(A1)]B′ =


1
0
0
0



f(A2) =

[
2 1
1 0

]
, [f(A2)]B′ =


2/3
1/12
1/4
0



f(A3) =

[
0 1
1 0

]
, [f(A3)]B′ =


−1/3
1/12
1/4
0



f(A4) =

[
0 1
1 2

]
, [f(A4)]B′ =


−1/3
1/12
−3/20

2/5


Entonces

[f ]B1B2 =


1 2/3 −1/3 −1/3
0 1/12 1/12 1/12
0 1/4 1/4 −3/20
0 0 0 2/5



Como se hab́ıa dicho antes, f está completamente determinada si se conoce f evaluada en los elementos
de una base del espacio de salida. En particular, sea f : Rn → Rm lineal, B = {v1, v2, ..., vn} una base
de Rn y se conoce f(v1), f(v2), ..., f(vn). Se desea conocer la expresión expĺıcita de f(x1, x2, ..., xn).
Esta expresión se obtiene de manera directa si se conoce [f ], ya que f(x) = [f ]x.[

f
]
=
[
f
]
BBc

MBcB (7.9)[
f
]
=
[
f(v1) f(v2) · · · f(vn)

]
m×n

[
v1 v2 · · · vn

]−1

n×n
(7.10)
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Ejemplo 7.10. Sea f : R3 → R2 lineal tal que f(1, 1, 1) = (6, 15), f(2, 0,−1) = (−1, 2) y f(0, 2, 1) =
(7, 16). Obtener f(x1, x2, x3).

Fácilmente se comprueba que (1, 1, 1), (2, 0,−1) y (0, 2, 1) forman una base de R3 (el determinante de la
matriz es 4).

[
f
]
=

[
6 −1 7
15 2 16

]1 2 0
1 0 2
1 −1 1

−1

=

[
6 −1 7
15 2 16

] 1/2 −1/2 1
1/4 1/4 −1/2
−1/4 3/4 −1/2


=

[
1 2 3
4 5 6

]
Luego f(x1, x2, x3) = (x1 + 2x2 + 3x3, 4x1 + 5x2 + 6x3).

Ejemplo 7.11. Sea B1 = {(1, 1), (2,−1)}, B2 = {(2, 3), (−5, 4)} dos bases y f : R2 → R2 una función
lineal tal que

[f ]B1B2

[
2 1
4 −1

]
Obtener f(x1, x2).

[f ]BcBc = MB2Bc [f ]B1B2MBcB1 (7.11)

Este producto, de derecha a izquierda, significa: primero se pasa de la base canónica a B1; después se
obtienen las coordenadas de la imagen con respecto a la base B2; finalmente se obtienen las coordenadas
de la imagen con respecto a Bc.

[f ]BcBc =

[
2 −5
3 4

] [
2 1
4 −1

] [
1/3 2/3
1/3 −1/3

]
[f ]BcBc =

[
−3 −13
7 15

]
f(x1, x2) = (−3x1 − 13x2, 7x1 + 15x2).

7.4 Isomorfismos

Definición 7.2. Sean U y V espacios vectoriales. Un isomorfismo es una función lineal f : U → V
uno a uno y sobre. Si existe un isomorfismo de U a V , se dice que U y V son isomorfos.

⋆ Los espacios isomorfos tienen la misma dimensión.

⋆ En espacios de dimension finita, f es un isomorfismo sssi [f ]B1B2 es invertible.

Ejemplo 7.12. Sea U = R2×2, V = R4, f(A) = (a11, a12, a21, a22). Esta función es lineal, uno a uno y
sobre, es decir, es un isomorfismo y R2×2, R4 son isomorfos. Hay muchas más isomorfismos, pero basta
con uno solo para decir que los dos espacios son isomorfos.
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Ejemplo 7.13. De manera análoga, Rm×n y Rmn son isomorfos.

Ejemplo 7.14. Sea p(x) = a0 + a1x + a2x
2 un polinomio de P2. La función f : P2 → R3 definida por

f(p) = (a0, a1, a2) es un isomorfismo.

Ejemplo 7.15. Sea S2 el conjunto de matrices en R2×2 simétricas. La función f : S2 → R3 definida por
f(A) = (a11, a12, a22) es un isomorfismo.

Ejemplo 7.16. Sea T2 el conjunto de matrices en R2×2 triangulares superiores. La función f : T2 → R3

definida por f(A) = (a11, a12, a22) es un isomorfismo.

Ejemplo 7.17. Sea U = R2, V un plano que pasa por el origen y {v1, v2} una base de V . La función
f : U → V tal que f(1, 0) = v1 y f(0, 1) = v2, es un isomorfimsmo.
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Valores y vectores propios

8.1 Introducción

Definición 8.1. Sea A ∈ Rn×n. Sean x ̸= 0 en Rn×1 y λ ∈ R, tales que

Ax = λx. (8.1)

se dice que λ es un valor propio de A y x es un vector propio asociado a λ. Se dice que (λ, x) es una
pareja propia de A.

En Scilab v = spec(A) permite obtener los valores propios, [V, v] = spec(A) permite obtener los
valores propios y vectores propios.

Ejemplo 8.1.

A =

3 −24 10
0 0 1
1 0 0

 ,

3 −24 10
0 0 1
1 0 0

41
2

 =

82
4

 = 2

41
2


Luego x = (4, 1, 2) es un vector propio de A asociado al valor propio λ = 2.3 −24 10

0 0 1
1 0 0

 9
1
−3

 =

−27−3
9

 = −3

 9
1
−3


Luego x = (9, 1,−3) es un vector propio de A asociado al valor propio λ = −3. 3

Si se cumple

Ax = λx

Ax− λx = 0

Ax− λIx = 0

(A− λI)x = 0

Como x ̸= 0

det(A− λI) = 0

Se puede demostrar que det(A − λI) es un polinomio con coeficientes reales, de grado n, llamado el
polinomio caracteŕıstico de A. Se denota por pA(λ) o simplemente p(λ). Los valores propios de A
son las ráıces del polinomio caracteŕıstico.

100
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Ejemplo 8.2.

A =

 −4 6 2
2 0 2

−19 13 10


pA(λ) = det

−4− λ 6 2
2 0− λ 2
−19 13 10− λ


pA(λ) = (−4− λ) ((0− λ)(10− λ)− 26)− 6 (2(10− λ) + 38) + 2 (26− 19λ)

pA(λ) = −λ3 + 6λ2 + 40λ− 192

La ráıces de este polinomio son: λ = −6, λ = 8 y λ = 4. Esos mismos valores son exactamente los valores
propios de A.

Para encontrar un vector propio asociado a λ = −6 es necesario encontrar una solución no trivial de
(A− (−6)I)x = 0. Esta se obtiene a partir de la escalonada reducida de A+ 6I.

A+ 6I =

 2 6 2
2 6 2

−19 13 16


E =

1 0 −1/2
0 1 1/2
0 0 0


Entonces, una solución del sistema homogéneo es x = (1/2,−1/2, 1). Este x es un vector propio asociado
al valor propio −6. Verificación:  2 6 2

2 6 2
−19 13 16

 1/2
−1/2

1

 =

−33
−6


De manera análoga se pueden encontrar vectores propios asociados a 8 y 4. 3

El polinomio caracteŕıstico tiene necesariamente n ráıces, pero algunas pueden ser complejas. Cuando
hay ráıces complejas, siempre vienen por parejas, una ráız y su conjugado (que también es ráız). Los
polinomios de grado impar siempre tienen por lo menos una ráız real. Los vectores propios asociados a
valores propios complejos son complejos.

En Scilab un polinomio se puede construir por medio de p = poly([-192 40 6 -1], ’t’, ’c’). Sus
ráıces se pueden obtener por medio de roots(p).

El conjunto de todos los valores propios de A es el espectro de A, espc(A).

Un conjunto de vectores propios de A, {v1, v2, ..., vn}, es un conjunto completo de vectores propios,
si los vectores son linealmente independientes.

� Si x es un vector propio asociado a λ y k ∈ R, k ̸= 0, entonces kx también lo es.

� λ es un valor propio de A sssi det(A− λI) = 0.

� Sea pA(λ) = αnλ
n + αn−1λ

n−1 + αn−2λ
n−2 + · · ·+ α1λ+ α0

a) αn = (−1)n.
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b) αn−1 = traza(A).

c) α0 = λ1λ2 · · ·λn = det(A)

� Si λ es un valor propio, NA−λI es el espacio propio de A asociado a λ:

NA−λI = {x ∈ Rn : (A− λI)x = 0} .

Todos sus elementos no nulos son vectores propios asociados a λ.

� Teorema de Hamilton-Cayley:

pA(A) = αnA
n + αn−1A

n−1 + αn−2A
n−2 + · · ·+ α1A+ α0In = 0.

� Todos los valores propios de una matriz simétrica son reales.

� A es singular (no es invertible) sssi 0 es un valor propio.

� Si A es invertible y (λ, x) es una pareja propia de A, entonces (
1

λ
, x) es una pareja propia de A−1.

� Si A es diagonal o triangular superior o triangular inferior, entonces su valores propios son sus
elementos diagonales.

� Si en una fila (o columna) de A, todas las entradas no diagonales son nulas, entonces el elemento
diagonal de la fila es un valor propio.

Ejemplo 8.3. Averiguar si 5 es valor propio de

A =


1 −3 −2 −3
−1 5 1 0
2 4 10 4
1 1 1 6

 .

A− 5I =


−4 −3 −2 −3
−1 0 1 0
2 4 5 4
1 1 1 1

 , det(A− 5I) = 0,

luego 5 es un valor propio de A.

Ejemplo 8.4. Sea

A =


1 −3 −2 −3
−1 5 1 0
0 0 10 0
1 1 1 6

 .

Inmediatamente se deduce que 10 es un valor propio de A.

Ejemplo 8.5. Teorema de Hamilton Cayley.

A =

[
2 3
4 5

]
pA(λ) = λ2 − 7λ− 2

pA(A) =

[
16 21
28 37

]
− 7

[
2 3
4 5

]
− 2

[
1 0
0 1

]
=

[
0 0
0 0

]
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8.2 Semejanza de matrices y diagonalización

Definición 8.2. Dos matrices cuadradas del mismo tamaño A, B, son semejantes si existe una matriz
invertible P tal que

B = P−1AP . (8.2)

La multiplicidad algebraica de un valor propio es la multiciplicidad en el polinomio caracteŕıstico.

La multiplicidad geométrica es la dimensión de NA−λI .

⋆ multiplicidad-geométrica(λ) ≤ multiplicidad-algebraica(λ)

Ejemplo 8.6.

A =

[
6 7
8 9

]
P =

[
2 3
4 5

]
, P−1 =

[
−5/2 3/2

2 −1

]
B = P−1AP =

[
−22 −29
28 37

]
A y B son semejantes.

Ejemplo 8.7.

A =

[
0 2
0 0

]
p(λ) = λ2 = (λ− 0)2

λ1 = 0,

λ2 = 0

A− 0I =

[
0 2
0 0

]
E =

[
0 1
0 0

]
NA−0I = gen([1 0]T)

mult-alg(0) = 2

mult-geom(0) = 1

Ejemplo 8.8.

A =


4 0 0 0
0 −3 10 0
0 1 0 0

10 0 0 4

 , pb(λ) = λ4 − 5λ3 − 18λ2 + 128λ− 160 = (λ− 4)2(λ− 2)(λ+ 5)

A− 4I =


0 0 0 0
0 −7 10 0
0 1 −4 0

10 0 0 0

 , E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


mult-alg(4) = 2. Como en E hay una sola variable libre, entonces mult-geom(4) = 1.
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Ejemplo 8.9.

B =


4 0 0 0
0 −3 10 0
0 1 0 0
0 0 0 4

 , pB(λ) = λ4 − 5λ3 − 18λ2 + 128λ− 160 = (λ− 4)2(λ− 2)(λ+ 5)

B − 4I =


0 0 0 0
0 −7 10 0
0 1 −4 0
0 0 0 0

 , E =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


mult-alg(4) = 2. Como en E hay dos variables libres, entonces mult-geom(4) = 2.

Definición 8.3. Una matriz es diagonalizable si es semejante a una matriz diagonal.

� Las matrices semejantes tienen los mismos valores propios (pero no necesariamente los mismos
vectores propios).

� No todas las matrices cuadradas son diagonalizables.

� Todas las matrices simétricas son diagonalizables.

� Si A tiene n valores propios reales y diferentes, entonces es diagonalizable.

� Una matriz es diagonalizable si y solamente si todos su valores propios son reales y existen n vectores
propios linealmente independientes. O, dicho de otra forma:

� A es diagonalizable sssi A tiene un sistema completo de vectores propios {v1, v2, ..., vn}. Más aún,
si P =

[
v1 v2 · · · vn

]
, entonces

P−1AP = diag(λ1, λ2, ..., λn)

� A es diagonalizable sssi todos los valores propios son reales y

multiplicidad-geométrica(λ) = multiplicidad-algebraica(λ)

para todos los valores propios.

Ejemplo 8.10. Si es posible, diagonalice A.

A =

[
5 −6
1 0

]
p(λ) = λ2 − 5λ+ 6

p(λ) = (λ− 3)(λ− 2)

λ1 = 3, v1 =

[
3
1

]
λ2 = 2, v2 =

[
2
1

]
P =

[
3 2
1 1

]
P−1 =

[
1 −2
−1 3

]
P−1AP =

[
3 0
0 2

]
3
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Ejemplo 8.11. Si es posible, diagonalice A.

A =

0 1 0
6 −1 0
0 0 4


p(λ) = −λ3 + 3λ2 + 10λ− 24

p(λ) = −(λ− 2)(λ− 3)(λ− 4)

λ1 = 2, v1 =

1/21
0


λ2 = −3, v2 =

−1/31
0


λ3 = 4, v3 =

00
1



P =

1/2 −1/3 0
1 1 0
0 0 1


P−1 =

 6/5 2/5 0
−6/5 3/5 0

0 0 1


P−1AP =

2 0 0
0 −3 0
0 0 4

 3

Ejemplo 8.12. Si es posible, diagonalice A.

A =

[
0 2
0 0

]
Como se vio en un ejemplo anterior, mult-alg(0) = 2, mult-geom(0) = 1. Luego A no es digonalizable.

Ejemplo 8.13. Si es posible, diagonalice A.

A =

3 6 0
0 4 0
0 5 3


Su polinomio caracteŕısticos es

p(λ) = −λ3 + 10λ2 − 33λ+ 36 = (λ− 3)2(λ− 4)

Es necesario hallar la multiplicidad geométrica de λ = 3.

A− 3I =

0 6 0
0 1 0
0 5 0

 , E =

0 1 0
0 0 0
0 0 0


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Luego mult-geom(3) = 2 y, en consecuencia, A es diagonalizable.

λ = 3, v1 =

10
0

 , v2 =

00
1


λ = 4, v1 =

6/51/5
1

 ,

P =

1 0 6/5
0 0 1/5
0 1 1

 , P−1 =

1 −6 0
0 −5 1
0 5 0

 , P−1AP =

3 0 0
0 3 0
0 0 4

 .

⋆ Sea A diagonalizable con D = P−1AP diagonal. Entonces

Ak = (PDP−1)(PDP−1) · · · (PDP−1)

Ak = PDkP−1 (8.3)

Ejemplo 8.14. Calcular A10 con

A =

[
5 −6
1 0

]
Por un ejemplo anterior,

P =

[
3 2
1 1

]
P−1 =

[
1 −2
−1 3

]
D = P−1AP =

[
3 0
0 2

]
.

Entonces

A10 = PD10P−1

A10 =

[
3 2
1 1

] [
59049 0

0 1024

] [
1 −2
−1 3

]
=

[
175099 −348150
58025 −115026

]
. 3


